Time-to-infection by Plasmodium falciparum is largely determined by random factors
Background The identification of protective immune responses to P. falciparum infection is an important goal for the development of a vaccine for malaria. This requires the identification of susceptible and resistant individuals, so that their immune responses may be studied. Time-to-infection studi...
Ausführliche Beschreibung
Autor*in: |
Pinkevych, Mykola [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pinkevych et al.; licensee BioMed Central. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
---|
Übergeordnetes Werk: |
Enthalten in: BMC medicine - London : BioMed Central, 2003, 13(2015), 1 vom: 30. Jan. |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2015 ; number:1 ; day:30 ; month:01 |
Links: |
---|
DOI / URN: |
10.1186/s12916-014-0252-9 |
---|
Katalog-ID: |
SPR028354524 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR028354524 | ||
003 | DE-627 | ||
005 | 20230519191027.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12916-014-0252-9 |2 doi | |
035 | |a (DE-627)SPR028354524 | ||
035 | |a (SPR)s12916-014-0252-9-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Pinkevych, Mykola |e verfasserin |4 aut | |
245 | 1 | 0 | |a Time-to-infection by Plasmodium falciparum is largely determined by random factors |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Pinkevych et al.; licensee BioMed Central. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( | ||
520 | |a Background The identification of protective immune responses to P. falciparum infection is an important goal for the development of a vaccine for malaria. This requires the identification of susceptible and resistant individuals, so that their immune responses may be studied. Time-to-infection studies are one method for identifying putative susceptible individuals (infected early) versus resistant individuals (infected late). However, the timing of infection is dependent on random factors, such as whether the subject was bitten by an infected mosquito, as well as individual factors, such as their level of immunity. It is important to understand how much of the observed variation in infection is simply due to chance. Methods We analyse previously published data from a treatment-time-to-infection study of 201 individuals aged 0.5 to 78 years living in Western Kenya. We use a mathematical modelling approach to investigate the role of immunity versus random factors in determining time-to-infection in this cohort. We extend this analysis using a modelling approach to understand what factors might increase or decrease the utility of these studies for identifying susceptible and resistant individuals. Results We find that, under most circumstances, the observed distribution of time-to-infection is consistent with this simply being a random process. We find that age, method for detection of infection (PCR versus microscopy), and underlying force of infection are all factors in determining whether time-to-infection is a useful correlate of immunity. Conclusions Many epidemiological studies of P. falciparum infection assume that the observed variation in infection outcomes, such as time-to-infection or presence or absence of infection, is determined by host resistance or susceptibility. However, under most circumstances, this distribution appears largely due to the random timing of infection, particularly in children. More direct measurements, such as parasite growth rate, may be more useful than time-to-infection in segregating patients based on their level of immunity. | ||
650 | 4 | |a Blood-stage immunity |7 (dpeaa)DE-He213 | |
650 | 4 | |a Malaria |7 (dpeaa)DE-He213 | |
650 | 4 | |a Mathematical modelling |7 (dpeaa)DE-He213 | |
650 | 4 | |a Time-to-infection |7 (dpeaa)DE-He213 | |
700 | 1 | |a Chelimo, Kiprotich |4 aut | |
700 | 1 | |a Vulule, John |4 aut | |
700 | 1 | |a Kazura, James W |4 aut | |
700 | 1 | |a Moormann, Ann M |4 aut | |
700 | 1 | |a Davenport, Miles P |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC medicine |d London : BioMed Central, 2003 |g 13(2015), 1 vom: 30. Jan. |w (DE-627)377271225 |w (DE-600)2131669-7 |x 1741-7015 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2015 |g number:1 |g day:30 |g month:01 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12916-014-0252-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2015 |e 1 |b 30 |c 01 |
author_variant |
m p mp k c kc j v jv j w k jw jwk a m m am amm m p d mp mpd |
---|---|
matchkey_str |
article:17417015:2015----::ieonetobpamdufliauilreyee |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1186/s12916-014-0252-9 doi (DE-627)SPR028354524 (SPR)s12916-014-0252-9-e DE-627 ger DE-627 rakwb eng Pinkevych, Mykola verfasserin aut Time-to-infection by Plasmodium falciparum is largely determined by random factors 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Pinkevych et al.; licensee BioMed Central. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background The identification of protective immune responses to P. falciparum infection is an important goal for the development of a vaccine for malaria. This requires the identification of susceptible and resistant individuals, so that their immune responses may be studied. Time-to-infection studies are one method for identifying putative susceptible individuals (infected early) versus resistant individuals (infected late). However, the timing of infection is dependent on random factors, such as whether the subject was bitten by an infected mosquito, as well as individual factors, such as their level of immunity. It is important to understand how much of the observed variation in infection is simply due to chance. Methods We analyse previously published data from a treatment-time-to-infection study of 201 individuals aged 0.5 to 78 years living in Western Kenya. We use a mathematical modelling approach to investigate the role of immunity versus random factors in determining time-to-infection in this cohort. We extend this analysis using a modelling approach to understand what factors might increase or decrease the utility of these studies for identifying susceptible and resistant individuals. Results We find that, under most circumstances, the observed distribution of time-to-infection is consistent with this simply being a random process. We find that age, method for detection of infection (PCR versus microscopy), and underlying force of infection are all factors in determining whether time-to-infection is a useful correlate of immunity. Conclusions Many epidemiological studies of P. falciparum infection assume that the observed variation in infection outcomes, such as time-to-infection or presence or absence of infection, is determined by host resistance or susceptibility. However, under most circumstances, this distribution appears largely due to the random timing of infection, particularly in children. More direct measurements, such as parasite growth rate, may be more useful than time-to-infection in segregating patients based on their level of immunity. Blood-stage immunity (dpeaa)DE-He213 Malaria (dpeaa)DE-He213 Mathematical modelling (dpeaa)DE-He213 Time-to-infection (dpeaa)DE-He213 Chelimo, Kiprotich aut Vulule, John aut Kazura, James W aut Moormann, Ann M aut Davenport, Miles P aut Enthalten in BMC medicine London : BioMed Central, 2003 13(2015), 1 vom: 30. Jan. (DE-627)377271225 (DE-600)2131669-7 1741-7015 nnns volume:13 year:2015 number:1 day:30 month:01 https://dx.doi.org/10.1186/s12916-014-0252-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2015 1 30 01 |
spelling |
10.1186/s12916-014-0252-9 doi (DE-627)SPR028354524 (SPR)s12916-014-0252-9-e DE-627 ger DE-627 rakwb eng Pinkevych, Mykola verfasserin aut Time-to-infection by Plasmodium falciparum is largely determined by random factors 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Pinkevych et al.; licensee BioMed Central. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background The identification of protective immune responses to P. falciparum infection is an important goal for the development of a vaccine for malaria. This requires the identification of susceptible and resistant individuals, so that their immune responses may be studied. Time-to-infection studies are one method for identifying putative susceptible individuals (infected early) versus resistant individuals (infected late). However, the timing of infection is dependent on random factors, such as whether the subject was bitten by an infected mosquito, as well as individual factors, such as their level of immunity. It is important to understand how much of the observed variation in infection is simply due to chance. Methods We analyse previously published data from a treatment-time-to-infection study of 201 individuals aged 0.5 to 78 years living in Western Kenya. We use a mathematical modelling approach to investigate the role of immunity versus random factors in determining time-to-infection in this cohort. We extend this analysis using a modelling approach to understand what factors might increase or decrease the utility of these studies for identifying susceptible and resistant individuals. Results We find that, under most circumstances, the observed distribution of time-to-infection is consistent with this simply being a random process. We find that age, method for detection of infection (PCR versus microscopy), and underlying force of infection are all factors in determining whether time-to-infection is a useful correlate of immunity. Conclusions Many epidemiological studies of P. falciparum infection assume that the observed variation in infection outcomes, such as time-to-infection or presence or absence of infection, is determined by host resistance or susceptibility. However, under most circumstances, this distribution appears largely due to the random timing of infection, particularly in children. More direct measurements, such as parasite growth rate, may be more useful than time-to-infection in segregating patients based on their level of immunity. Blood-stage immunity (dpeaa)DE-He213 Malaria (dpeaa)DE-He213 Mathematical modelling (dpeaa)DE-He213 Time-to-infection (dpeaa)DE-He213 Chelimo, Kiprotich aut Vulule, John aut Kazura, James W aut Moormann, Ann M aut Davenport, Miles P aut Enthalten in BMC medicine London : BioMed Central, 2003 13(2015), 1 vom: 30. Jan. (DE-627)377271225 (DE-600)2131669-7 1741-7015 nnns volume:13 year:2015 number:1 day:30 month:01 https://dx.doi.org/10.1186/s12916-014-0252-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2015 1 30 01 |
allfields_unstemmed |
10.1186/s12916-014-0252-9 doi (DE-627)SPR028354524 (SPR)s12916-014-0252-9-e DE-627 ger DE-627 rakwb eng Pinkevych, Mykola verfasserin aut Time-to-infection by Plasmodium falciparum is largely determined by random factors 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Pinkevych et al.; licensee BioMed Central. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background The identification of protective immune responses to P. falciparum infection is an important goal for the development of a vaccine for malaria. This requires the identification of susceptible and resistant individuals, so that their immune responses may be studied. Time-to-infection studies are one method for identifying putative susceptible individuals (infected early) versus resistant individuals (infected late). However, the timing of infection is dependent on random factors, such as whether the subject was bitten by an infected mosquito, as well as individual factors, such as their level of immunity. It is important to understand how much of the observed variation in infection is simply due to chance. Methods We analyse previously published data from a treatment-time-to-infection study of 201 individuals aged 0.5 to 78 years living in Western Kenya. We use a mathematical modelling approach to investigate the role of immunity versus random factors in determining time-to-infection in this cohort. We extend this analysis using a modelling approach to understand what factors might increase or decrease the utility of these studies for identifying susceptible and resistant individuals. Results We find that, under most circumstances, the observed distribution of time-to-infection is consistent with this simply being a random process. We find that age, method for detection of infection (PCR versus microscopy), and underlying force of infection are all factors in determining whether time-to-infection is a useful correlate of immunity. Conclusions Many epidemiological studies of P. falciparum infection assume that the observed variation in infection outcomes, such as time-to-infection or presence or absence of infection, is determined by host resistance or susceptibility. However, under most circumstances, this distribution appears largely due to the random timing of infection, particularly in children. More direct measurements, such as parasite growth rate, may be more useful than time-to-infection in segregating patients based on their level of immunity. Blood-stage immunity (dpeaa)DE-He213 Malaria (dpeaa)DE-He213 Mathematical modelling (dpeaa)DE-He213 Time-to-infection (dpeaa)DE-He213 Chelimo, Kiprotich aut Vulule, John aut Kazura, James W aut Moormann, Ann M aut Davenport, Miles P aut Enthalten in BMC medicine London : BioMed Central, 2003 13(2015), 1 vom: 30. Jan. (DE-627)377271225 (DE-600)2131669-7 1741-7015 nnns volume:13 year:2015 number:1 day:30 month:01 https://dx.doi.org/10.1186/s12916-014-0252-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2015 1 30 01 |
allfieldsGer |
10.1186/s12916-014-0252-9 doi (DE-627)SPR028354524 (SPR)s12916-014-0252-9-e DE-627 ger DE-627 rakwb eng Pinkevych, Mykola verfasserin aut Time-to-infection by Plasmodium falciparum is largely determined by random factors 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Pinkevych et al.; licensee BioMed Central. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background The identification of protective immune responses to P. falciparum infection is an important goal for the development of a vaccine for malaria. This requires the identification of susceptible and resistant individuals, so that their immune responses may be studied. Time-to-infection studies are one method for identifying putative susceptible individuals (infected early) versus resistant individuals (infected late). However, the timing of infection is dependent on random factors, such as whether the subject was bitten by an infected mosquito, as well as individual factors, such as their level of immunity. It is important to understand how much of the observed variation in infection is simply due to chance. Methods We analyse previously published data from a treatment-time-to-infection study of 201 individuals aged 0.5 to 78 years living in Western Kenya. We use a mathematical modelling approach to investigate the role of immunity versus random factors in determining time-to-infection in this cohort. We extend this analysis using a modelling approach to understand what factors might increase or decrease the utility of these studies for identifying susceptible and resistant individuals. Results We find that, under most circumstances, the observed distribution of time-to-infection is consistent with this simply being a random process. We find that age, method for detection of infection (PCR versus microscopy), and underlying force of infection are all factors in determining whether time-to-infection is a useful correlate of immunity. Conclusions Many epidemiological studies of P. falciparum infection assume that the observed variation in infection outcomes, such as time-to-infection or presence or absence of infection, is determined by host resistance or susceptibility. However, under most circumstances, this distribution appears largely due to the random timing of infection, particularly in children. More direct measurements, such as parasite growth rate, may be more useful than time-to-infection in segregating patients based on their level of immunity. Blood-stage immunity (dpeaa)DE-He213 Malaria (dpeaa)DE-He213 Mathematical modelling (dpeaa)DE-He213 Time-to-infection (dpeaa)DE-He213 Chelimo, Kiprotich aut Vulule, John aut Kazura, James W aut Moormann, Ann M aut Davenport, Miles P aut Enthalten in BMC medicine London : BioMed Central, 2003 13(2015), 1 vom: 30. Jan. (DE-627)377271225 (DE-600)2131669-7 1741-7015 nnns volume:13 year:2015 number:1 day:30 month:01 https://dx.doi.org/10.1186/s12916-014-0252-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2015 1 30 01 |
allfieldsSound |
10.1186/s12916-014-0252-9 doi (DE-627)SPR028354524 (SPR)s12916-014-0252-9-e DE-627 ger DE-627 rakwb eng Pinkevych, Mykola verfasserin aut Time-to-infection by Plasmodium falciparum is largely determined by random factors 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Pinkevych et al.; licensee BioMed Central. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background The identification of protective immune responses to P. falciparum infection is an important goal for the development of a vaccine for malaria. This requires the identification of susceptible and resistant individuals, so that their immune responses may be studied. Time-to-infection studies are one method for identifying putative susceptible individuals (infected early) versus resistant individuals (infected late). However, the timing of infection is dependent on random factors, such as whether the subject was bitten by an infected mosquito, as well as individual factors, such as their level of immunity. It is important to understand how much of the observed variation in infection is simply due to chance. Methods We analyse previously published data from a treatment-time-to-infection study of 201 individuals aged 0.5 to 78 years living in Western Kenya. We use a mathematical modelling approach to investigate the role of immunity versus random factors in determining time-to-infection in this cohort. We extend this analysis using a modelling approach to understand what factors might increase or decrease the utility of these studies for identifying susceptible and resistant individuals. Results We find that, under most circumstances, the observed distribution of time-to-infection is consistent with this simply being a random process. We find that age, method for detection of infection (PCR versus microscopy), and underlying force of infection are all factors in determining whether time-to-infection is a useful correlate of immunity. Conclusions Many epidemiological studies of P. falciparum infection assume that the observed variation in infection outcomes, such as time-to-infection or presence or absence of infection, is determined by host resistance or susceptibility. However, under most circumstances, this distribution appears largely due to the random timing of infection, particularly in children. More direct measurements, such as parasite growth rate, may be more useful than time-to-infection in segregating patients based on their level of immunity. Blood-stage immunity (dpeaa)DE-He213 Malaria (dpeaa)DE-He213 Mathematical modelling (dpeaa)DE-He213 Time-to-infection (dpeaa)DE-He213 Chelimo, Kiprotich aut Vulule, John aut Kazura, James W aut Moormann, Ann M aut Davenport, Miles P aut Enthalten in BMC medicine London : BioMed Central, 2003 13(2015), 1 vom: 30. Jan. (DE-627)377271225 (DE-600)2131669-7 1741-7015 nnns volume:13 year:2015 number:1 day:30 month:01 https://dx.doi.org/10.1186/s12916-014-0252-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2015 1 30 01 |
language |
English |
source |
Enthalten in BMC medicine 13(2015), 1 vom: 30. Jan. volume:13 year:2015 number:1 day:30 month:01 |
sourceStr |
Enthalten in BMC medicine 13(2015), 1 vom: 30. Jan. volume:13 year:2015 number:1 day:30 month:01 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Blood-stage immunity Malaria Mathematical modelling Time-to-infection |
isfreeaccess_bool |
false |
container_title |
BMC medicine |
authorswithroles_txt_mv |
Pinkevych, Mykola @@aut@@ Chelimo, Kiprotich @@aut@@ Vulule, John @@aut@@ Kazura, James W @@aut@@ Moormann, Ann M @@aut@@ Davenport, Miles P @@aut@@ |
publishDateDaySort_date |
2015-01-30T00:00:00Z |
hierarchy_top_id |
377271225 |
id |
SPR028354524 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR028354524</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519191027.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12916-014-0252-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR028354524</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12916-014-0252-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pinkevych, Mykola</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Time-to-infection by Plasmodium falciparum is largely determined by random factors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pinkevych et al.; licensee BioMed Central. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The identification of protective immune responses to P. falciparum infection is an important goal for the development of a vaccine for malaria. This requires the identification of susceptible and resistant individuals, so that their immune responses may be studied. Time-to-infection studies are one method for identifying putative susceptible individuals (infected early) versus resistant individuals (infected late). However, the timing of infection is dependent on random factors, such as whether the subject was bitten by an infected mosquito, as well as individual factors, such as their level of immunity. It is important to understand how much of the observed variation in infection is simply due to chance. Methods We analyse previously published data from a treatment-time-to-infection study of 201 individuals aged 0.5 to 78 years living in Western Kenya. We use a mathematical modelling approach to investigate the role of immunity versus random factors in determining time-to-infection in this cohort. We extend this analysis using a modelling approach to understand what factors might increase or decrease the utility of these studies for identifying susceptible and resistant individuals. Results We find that, under most circumstances, the observed distribution of time-to-infection is consistent with this simply being a random process. We find that age, method for detection of infection (PCR versus microscopy), and underlying force of infection are all factors in determining whether time-to-infection is a useful correlate of immunity. Conclusions Many epidemiological studies of P. falciparum infection assume that the observed variation in infection outcomes, such as time-to-infection or presence or absence of infection, is determined by host resistance or susceptibility. However, under most circumstances, this distribution appears largely due to the random timing of infection, particularly in children. More direct measurements, such as parasite growth rate, may be more useful than time-to-infection in segregating patients based on their level of immunity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood-stage immunity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Malaria</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical modelling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time-to-infection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chelimo, Kiprotich</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vulule, John</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kazura, James W</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moormann, Ann M</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Davenport, Miles P</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC medicine</subfield><subfield code="d">London : BioMed Central, 2003</subfield><subfield code="g">13(2015), 1 vom: 30. Jan.</subfield><subfield code="w">(DE-627)377271225</subfield><subfield code="w">(DE-600)2131669-7</subfield><subfield code="x">1741-7015</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:30</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12916-014-0252-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">30</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
author |
Pinkevych, Mykola |
spellingShingle |
Pinkevych, Mykola misc Blood-stage immunity misc Malaria misc Mathematical modelling misc Time-to-infection Time-to-infection by Plasmodium falciparum is largely determined by random factors |
authorStr |
Pinkevych, Mykola |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)377271225 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1741-7015 |
topic_title |
Time-to-infection by Plasmodium falciparum is largely determined by random factors Blood-stage immunity (dpeaa)DE-He213 Malaria (dpeaa)DE-He213 Mathematical modelling (dpeaa)DE-He213 Time-to-infection (dpeaa)DE-He213 |
topic |
misc Blood-stage immunity misc Malaria misc Mathematical modelling misc Time-to-infection |
topic_unstemmed |
misc Blood-stage immunity misc Malaria misc Mathematical modelling misc Time-to-infection |
topic_browse |
misc Blood-stage immunity misc Malaria misc Mathematical modelling misc Time-to-infection |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC medicine |
hierarchy_parent_id |
377271225 |
hierarchy_top_title |
BMC medicine |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)377271225 (DE-600)2131669-7 |
title |
Time-to-infection by Plasmodium falciparum is largely determined by random factors |
ctrlnum |
(DE-627)SPR028354524 (SPR)s12916-014-0252-9-e |
title_full |
Time-to-infection by Plasmodium falciparum is largely determined by random factors |
author_sort |
Pinkevych, Mykola |
journal |
BMC medicine |
journalStr |
BMC medicine |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
author_browse |
Pinkevych, Mykola Chelimo, Kiprotich Vulule, John Kazura, James W Moormann, Ann M Davenport, Miles P |
container_volume |
13 |
format_se |
Elektronische Aufsätze |
author-letter |
Pinkevych, Mykola |
doi_str_mv |
10.1186/s12916-014-0252-9 |
title_sort |
time-to-infection by plasmodium falciparum is largely determined by random factors |
title_auth |
Time-to-infection by Plasmodium falciparum is largely determined by random factors |
abstract |
Background The identification of protective immune responses to P. falciparum infection is an important goal for the development of a vaccine for malaria. This requires the identification of susceptible and resistant individuals, so that their immune responses may be studied. Time-to-infection studies are one method for identifying putative susceptible individuals (infected early) versus resistant individuals (infected late). However, the timing of infection is dependent on random factors, such as whether the subject was bitten by an infected mosquito, as well as individual factors, such as their level of immunity. It is important to understand how much of the observed variation in infection is simply due to chance. Methods We analyse previously published data from a treatment-time-to-infection study of 201 individuals aged 0.5 to 78 years living in Western Kenya. We use a mathematical modelling approach to investigate the role of immunity versus random factors in determining time-to-infection in this cohort. We extend this analysis using a modelling approach to understand what factors might increase or decrease the utility of these studies for identifying susceptible and resistant individuals. Results We find that, under most circumstances, the observed distribution of time-to-infection is consistent with this simply being a random process. We find that age, method for detection of infection (PCR versus microscopy), and underlying force of infection are all factors in determining whether time-to-infection is a useful correlate of immunity. Conclusions Many epidemiological studies of P. falciparum infection assume that the observed variation in infection outcomes, such as time-to-infection or presence or absence of infection, is determined by host resistance or susceptibility. However, under most circumstances, this distribution appears largely due to the random timing of infection, particularly in children. More direct measurements, such as parasite growth rate, may be more useful than time-to-infection in segregating patients based on their level of immunity. © Pinkevych et al.; licensee BioMed Central. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
abstractGer |
Background The identification of protective immune responses to P. falciparum infection is an important goal for the development of a vaccine for malaria. This requires the identification of susceptible and resistant individuals, so that their immune responses may be studied. Time-to-infection studies are one method for identifying putative susceptible individuals (infected early) versus resistant individuals (infected late). However, the timing of infection is dependent on random factors, such as whether the subject was bitten by an infected mosquito, as well as individual factors, such as their level of immunity. It is important to understand how much of the observed variation in infection is simply due to chance. Methods We analyse previously published data from a treatment-time-to-infection study of 201 individuals aged 0.5 to 78 years living in Western Kenya. We use a mathematical modelling approach to investigate the role of immunity versus random factors in determining time-to-infection in this cohort. We extend this analysis using a modelling approach to understand what factors might increase or decrease the utility of these studies for identifying susceptible and resistant individuals. Results We find that, under most circumstances, the observed distribution of time-to-infection is consistent with this simply being a random process. We find that age, method for detection of infection (PCR versus microscopy), and underlying force of infection are all factors in determining whether time-to-infection is a useful correlate of immunity. Conclusions Many epidemiological studies of P. falciparum infection assume that the observed variation in infection outcomes, such as time-to-infection or presence or absence of infection, is determined by host resistance or susceptibility. However, under most circumstances, this distribution appears largely due to the random timing of infection, particularly in children. More direct measurements, such as parasite growth rate, may be more useful than time-to-infection in segregating patients based on their level of immunity. © Pinkevych et al.; licensee BioMed Central. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
abstract_unstemmed |
Background The identification of protective immune responses to P. falciparum infection is an important goal for the development of a vaccine for malaria. This requires the identification of susceptible and resistant individuals, so that their immune responses may be studied. Time-to-infection studies are one method for identifying putative susceptible individuals (infected early) versus resistant individuals (infected late). However, the timing of infection is dependent on random factors, such as whether the subject was bitten by an infected mosquito, as well as individual factors, such as their level of immunity. It is important to understand how much of the observed variation in infection is simply due to chance. Methods We analyse previously published data from a treatment-time-to-infection study of 201 individuals aged 0.5 to 78 years living in Western Kenya. We use a mathematical modelling approach to investigate the role of immunity versus random factors in determining time-to-infection in this cohort. We extend this analysis using a modelling approach to understand what factors might increase or decrease the utility of these studies for identifying susceptible and resistant individuals. Results We find that, under most circumstances, the observed distribution of time-to-infection is consistent with this simply being a random process. We find that age, method for detection of infection (PCR versus microscopy), and underlying force of infection are all factors in determining whether time-to-infection is a useful correlate of immunity. Conclusions Many epidemiological studies of P. falciparum infection assume that the observed variation in infection outcomes, such as time-to-infection or presence or absence of infection, is determined by host resistance or susceptibility. However, under most circumstances, this distribution appears largely due to the random timing of infection, particularly in children. More direct measurements, such as parasite growth rate, may be more useful than time-to-infection in segregating patients based on their level of immunity. © Pinkevych et al.; licensee BioMed Central. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Time-to-infection by Plasmodium falciparum is largely determined by random factors |
url |
https://dx.doi.org/10.1186/s12916-014-0252-9 |
remote_bool |
true |
author2 |
Chelimo, Kiprotich Vulule, John Kazura, James W Moormann, Ann M Davenport, Miles P |
author2Str |
Chelimo, Kiprotich Vulule, John Kazura, James W Moormann, Ann M Davenport, Miles P |
ppnlink |
377271225 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12916-014-0252-9 |
up_date |
2024-07-03T18:56:08.244Z |
_version_ |
1803585289718857728 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR028354524</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519191027.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12916-014-0252-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR028354524</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12916-014-0252-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pinkevych, Mykola</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Time-to-infection by Plasmodium falciparum is largely determined by random factors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pinkevych et al.; licensee BioMed Central. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The identification of protective immune responses to P. falciparum infection is an important goal for the development of a vaccine for malaria. This requires the identification of susceptible and resistant individuals, so that their immune responses may be studied. Time-to-infection studies are one method for identifying putative susceptible individuals (infected early) versus resistant individuals (infected late). However, the timing of infection is dependent on random factors, such as whether the subject was bitten by an infected mosquito, as well as individual factors, such as their level of immunity. It is important to understand how much of the observed variation in infection is simply due to chance. Methods We analyse previously published data from a treatment-time-to-infection study of 201 individuals aged 0.5 to 78 years living in Western Kenya. We use a mathematical modelling approach to investigate the role of immunity versus random factors in determining time-to-infection in this cohort. We extend this analysis using a modelling approach to understand what factors might increase or decrease the utility of these studies for identifying susceptible and resistant individuals. Results We find that, under most circumstances, the observed distribution of time-to-infection is consistent with this simply being a random process. We find that age, method for detection of infection (PCR versus microscopy), and underlying force of infection are all factors in determining whether time-to-infection is a useful correlate of immunity. Conclusions Many epidemiological studies of P. falciparum infection assume that the observed variation in infection outcomes, such as time-to-infection or presence or absence of infection, is determined by host resistance or susceptibility. However, under most circumstances, this distribution appears largely due to the random timing of infection, particularly in children. More direct measurements, such as parasite growth rate, may be more useful than time-to-infection in segregating patients based on their level of immunity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood-stage immunity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Malaria</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical modelling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time-to-infection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chelimo, Kiprotich</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vulule, John</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kazura, James W</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moormann, Ann M</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Davenport, Miles P</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC medicine</subfield><subfield code="d">London : BioMed Central, 2003</subfield><subfield code="g">13(2015), 1 vom: 30. Jan.</subfield><subfield code="w">(DE-627)377271225</subfield><subfield code="w">(DE-600)2131669-7</subfield><subfield code="x">1741-7015</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:30</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12916-014-0252-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">30</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
score |
7.4021244 |