Detecting cellular reprogramming determinants by differential stability analysis of gene regulatory networks
Background Cellular differentiation and reprogramming are processes that are carefully orchestrated by the activation and repression of specific sets of genes. An increasing amount of experimental results show that despite the large number of genes participating in transcriptional programs of cellul...
Ausführliche Beschreibung
Autor*in: |
Crespo, Isaac [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Crespo et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( |
---|
Übergeordnetes Werk: |
Enthalten in: BMC systems biology - London : BioMed Central, 2007, 7(2013), 1 vom: 19. Dez. |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2013 ; number:1 ; day:19 ; month:12 |
Links: |
---|
DOI / URN: |
10.1186/1752-0509-7-140 |
---|
Katalog-ID: |
SPR028416201 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR028416201 | ||
003 | DE-627 | ||
005 | 20230519224958.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1752-0509-7-140 |2 doi | |
035 | |a (DE-627)SPR028416201 | ||
035 | |a (SPR)1752-0509-7-140-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Crespo, Isaac |e verfasserin |4 aut | |
245 | 1 | 0 | |a Detecting cellular reprogramming determinants by differential stability analysis of gene regulatory networks |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Crespo et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( | ||
520 | |a Background Cellular differentiation and reprogramming are processes that are carefully orchestrated by the activation and repression of specific sets of genes. An increasing amount of experimental results show that despite the large number of genes participating in transcriptional programs of cellular phenotypes, only few key genes, which are coined here as reprogramming determinants, are required to be directly perturbed in order to induce cellular reprogramming. However, identification of reprogramming determinants still remains a combinatorial problem, and the state-of-art methods addressing this issue rests on exhaustive experimentation or prior knowledge to narrow down the list of candidates. Results Here we present a computational method, without any preliminary selection of candidate genes, to identify reduced subsets of genes, which when perturbed can induce transitions between cellular phenotypes. The method relies on the expression profiles of two stable cellular phenotypes along with a topological analysis stability elements in the gene regulatory network that are necessary to cause this multi-stability. Since stable cellular phenotypes can be considered as attractors of gene regulatory networks, cell fate and cellular reprogramming involves transition between these attractors, and therefore current method searches for combinations of genes that are able to destabilize a specific initial attractor and stabilize the final one in response to the appropriate perturbations. Conclusions The method presented here represents a useful framework to assist researchers in the field of cellular reprogramming to design experimental strategies with potential applications in the regenerative medicine and disease modelling. | ||
650 | 4 | |a Cellular reprogramming |7 (dpeaa)DE-He213 | |
650 | 4 | |a Transdifferentiation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Dedifferentiation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Stability |7 (dpeaa)DE-He213 | |
650 | 4 | |a Attractor |7 (dpeaa)DE-He213 | |
650 | 4 | |a Positive circuit |7 (dpeaa)DE-He213 | |
650 | 4 | |a Reprogramming determinants |7 (dpeaa)DE-He213 | |
700 | 1 | |a Perumal, Thanneer M |4 aut | |
700 | 1 | |a Jurkowski, Wiktor |4 aut | |
700 | 1 | |a del Sol, Antonio |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC systems biology |d London : BioMed Central, 2007 |g 7(2013), 1 vom: 19. Dez. |w (DE-627)522897126 |w (DE-600)2265490-2 |x 1752-0509 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2013 |g number:1 |g day:19 |g month:12 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1752-0509-7-140 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2013 |e 1 |b 19 |c 12 |
author_variant |
i c ic t m p tm tmp w j wj s a d sa sad |
---|---|
matchkey_str |
article:17520509:2013----::eetncluarpormigeemnnsyifrniltbltaayi |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1186/1752-0509-7-140 doi (DE-627)SPR028416201 (SPR)1752-0509-7-140-e DE-627 ger DE-627 rakwb eng Crespo, Isaac verfasserin aut Detecting cellular reprogramming determinants by differential stability analysis of gene regulatory networks 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Crespo et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Background Cellular differentiation and reprogramming are processes that are carefully orchestrated by the activation and repression of specific sets of genes. An increasing amount of experimental results show that despite the large number of genes participating in transcriptional programs of cellular phenotypes, only few key genes, which are coined here as reprogramming determinants, are required to be directly perturbed in order to induce cellular reprogramming. However, identification of reprogramming determinants still remains a combinatorial problem, and the state-of-art methods addressing this issue rests on exhaustive experimentation or prior knowledge to narrow down the list of candidates. Results Here we present a computational method, without any preliminary selection of candidate genes, to identify reduced subsets of genes, which when perturbed can induce transitions between cellular phenotypes. The method relies on the expression profiles of two stable cellular phenotypes along with a topological analysis stability elements in the gene regulatory network that are necessary to cause this multi-stability. Since stable cellular phenotypes can be considered as attractors of gene regulatory networks, cell fate and cellular reprogramming involves transition between these attractors, and therefore current method searches for combinations of genes that are able to destabilize a specific initial attractor and stabilize the final one in response to the appropriate perturbations. Conclusions The method presented here represents a useful framework to assist researchers in the field of cellular reprogramming to design experimental strategies with potential applications in the regenerative medicine and disease modelling. Cellular reprogramming (dpeaa)DE-He213 Transdifferentiation (dpeaa)DE-He213 Dedifferentiation (dpeaa)DE-He213 Stability (dpeaa)DE-He213 Attractor (dpeaa)DE-He213 Positive circuit (dpeaa)DE-He213 Reprogramming determinants (dpeaa)DE-He213 Perumal, Thanneer M aut Jurkowski, Wiktor aut del Sol, Antonio aut Enthalten in BMC systems biology London : BioMed Central, 2007 7(2013), 1 vom: 19. Dez. (DE-627)522897126 (DE-600)2265490-2 1752-0509 nnns volume:7 year:2013 number:1 day:19 month:12 https://dx.doi.org/10.1186/1752-0509-7-140 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2013 1 19 12 |
spelling |
10.1186/1752-0509-7-140 doi (DE-627)SPR028416201 (SPR)1752-0509-7-140-e DE-627 ger DE-627 rakwb eng Crespo, Isaac verfasserin aut Detecting cellular reprogramming determinants by differential stability analysis of gene regulatory networks 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Crespo et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Background Cellular differentiation and reprogramming are processes that are carefully orchestrated by the activation and repression of specific sets of genes. An increasing amount of experimental results show that despite the large number of genes participating in transcriptional programs of cellular phenotypes, only few key genes, which are coined here as reprogramming determinants, are required to be directly perturbed in order to induce cellular reprogramming. However, identification of reprogramming determinants still remains a combinatorial problem, and the state-of-art methods addressing this issue rests on exhaustive experimentation or prior knowledge to narrow down the list of candidates. Results Here we present a computational method, without any preliminary selection of candidate genes, to identify reduced subsets of genes, which when perturbed can induce transitions between cellular phenotypes. The method relies on the expression profiles of two stable cellular phenotypes along with a topological analysis stability elements in the gene regulatory network that are necessary to cause this multi-stability. Since stable cellular phenotypes can be considered as attractors of gene regulatory networks, cell fate and cellular reprogramming involves transition between these attractors, and therefore current method searches for combinations of genes that are able to destabilize a specific initial attractor and stabilize the final one in response to the appropriate perturbations. Conclusions The method presented here represents a useful framework to assist researchers in the field of cellular reprogramming to design experimental strategies with potential applications in the regenerative medicine and disease modelling. Cellular reprogramming (dpeaa)DE-He213 Transdifferentiation (dpeaa)DE-He213 Dedifferentiation (dpeaa)DE-He213 Stability (dpeaa)DE-He213 Attractor (dpeaa)DE-He213 Positive circuit (dpeaa)DE-He213 Reprogramming determinants (dpeaa)DE-He213 Perumal, Thanneer M aut Jurkowski, Wiktor aut del Sol, Antonio aut Enthalten in BMC systems biology London : BioMed Central, 2007 7(2013), 1 vom: 19. Dez. (DE-627)522897126 (DE-600)2265490-2 1752-0509 nnns volume:7 year:2013 number:1 day:19 month:12 https://dx.doi.org/10.1186/1752-0509-7-140 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2013 1 19 12 |
allfields_unstemmed |
10.1186/1752-0509-7-140 doi (DE-627)SPR028416201 (SPR)1752-0509-7-140-e DE-627 ger DE-627 rakwb eng Crespo, Isaac verfasserin aut Detecting cellular reprogramming determinants by differential stability analysis of gene regulatory networks 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Crespo et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Background Cellular differentiation and reprogramming are processes that are carefully orchestrated by the activation and repression of specific sets of genes. An increasing amount of experimental results show that despite the large number of genes participating in transcriptional programs of cellular phenotypes, only few key genes, which are coined here as reprogramming determinants, are required to be directly perturbed in order to induce cellular reprogramming. However, identification of reprogramming determinants still remains a combinatorial problem, and the state-of-art methods addressing this issue rests on exhaustive experimentation or prior knowledge to narrow down the list of candidates. Results Here we present a computational method, without any preliminary selection of candidate genes, to identify reduced subsets of genes, which when perturbed can induce transitions between cellular phenotypes. The method relies on the expression profiles of two stable cellular phenotypes along with a topological analysis stability elements in the gene regulatory network that are necessary to cause this multi-stability. Since stable cellular phenotypes can be considered as attractors of gene regulatory networks, cell fate and cellular reprogramming involves transition between these attractors, and therefore current method searches for combinations of genes that are able to destabilize a specific initial attractor and stabilize the final one in response to the appropriate perturbations. Conclusions The method presented here represents a useful framework to assist researchers in the field of cellular reprogramming to design experimental strategies with potential applications in the regenerative medicine and disease modelling. Cellular reprogramming (dpeaa)DE-He213 Transdifferentiation (dpeaa)DE-He213 Dedifferentiation (dpeaa)DE-He213 Stability (dpeaa)DE-He213 Attractor (dpeaa)DE-He213 Positive circuit (dpeaa)DE-He213 Reprogramming determinants (dpeaa)DE-He213 Perumal, Thanneer M aut Jurkowski, Wiktor aut del Sol, Antonio aut Enthalten in BMC systems biology London : BioMed Central, 2007 7(2013), 1 vom: 19. Dez. (DE-627)522897126 (DE-600)2265490-2 1752-0509 nnns volume:7 year:2013 number:1 day:19 month:12 https://dx.doi.org/10.1186/1752-0509-7-140 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2013 1 19 12 |
allfieldsGer |
10.1186/1752-0509-7-140 doi (DE-627)SPR028416201 (SPR)1752-0509-7-140-e DE-627 ger DE-627 rakwb eng Crespo, Isaac verfasserin aut Detecting cellular reprogramming determinants by differential stability analysis of gene regulatory networks 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Crespo et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Background Cellular differentiation and reprogramming are processes that are carefully orchestrated by the activation and repression of specific sets of genes. An increasing amount of experimental results show that despite the large number of genes participating in transcriptional programs of cellular phenotypes, only few key genes, which are coined here as reprogramming determinants, are required to be directly perturbed in order to induce cellular reprogramming. However, identification of reprogramming determinants still remains a combinatorial problem, and the state-of-art methods addressing this issue rests on exhaustive experimentation or prior knowledge to narrow down the list of candidates. Results Here we present a computational method, without any preliminary selection of candidate genes, to identify reduced subsets of genes, which when perturbed can induce transitions between cellular phenotypes. The method relies on the expression profiles of two stable cellular phenotypes along with a topological analysis stability elements in the gene regulatory network that are necessary to cause this multi-stability. Since stable cellular phenotypes can be considered as attractors of gene regulatory networks, cell fate and cellular reprogramming involves transition between these attractors, and therefore current method searches for combinations of genes that are able to destabilize a specific initial attractor and stabilize the final one in response to the appropriate perturbations. Conclusions The method presented here represents a useful framework to assist researchers in the field of cellular reprogramming to design experimental strategies with potential applications in the regenerative medicine and disease modelling. Cellular reprogramming (dpeaa)DE-He213 Transdifferentiation (dpeaa)DE-He213 Dedifferentiation (dpeaa)DE-He213 Stability (dpeaa)DE-He213 Attractor (dpeaa)DE-He213 Positive circuit (dpeaa)DE-He213 Reprogramming determinants (dpeaa)DE-He213 Perumal, Thanneer M aut Jurkowski, Wiktor aut del Sol, Antonio aut Enthalten in BMC systems biology London : BioMed Central, 2007 7(2013), 1 vom: 19. Dez. (DE-627)522897126 (DE-600)2265490-2 1752-0509 nnns volume:7 year:2013 number:1 day:19 month:12 https://dx.doi.org/10.1186/1752-0509-7-140 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2013 1 19 12 |
allfieldsSound |
10.1186/1752-0509-7-140 doi (DE-627)SPR028416201 (SPR)1752-0509-7-140-e DE-627 ger DE-627 rakwb eng Crespo, Isaac verfasserin aut Detecting cellular reprogramming determinants by differential stability analysis of gene regulatory networks 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Crespo et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Background Cellular differentiation and reprogramming are processes that are carefully orchestrated by the activation and repression of specific sets of genes. An increasing amount of experimental results show that despite the large number of genes participating in transcriptional programs of cellular phenotypes, only few key genes, which are coined here as reprogramming determinants, are required to be directly perturbed in order to induce cellular reprogramming. However, identification of reprogramming determinants still remains a combinatorial problem, and the state-of-art methods addressing this issue rests on exhaustive experimentation or prior knowledge to narrow down the list of candidates. Results Here we present a computational method, without any preliminary selection of candidate genes, to identify reduced subsets of genes, which when perturbed can induce transitions between cellular phenotypes. The method relies on the expression profiles of two stable cellular phenotypes along with a topological analysis stability elements in the gene regulatory network that are necessary to cause this multi-stability. Since stable cellular phenotypes can be considered as attractors of gene regulatory networks, cell fate and cellular reprogramming involves transition between these attractors, and therefore current method searches for combinations of genes that are able to destabilize a specific initial attractor and stabilize the final one in response to the appropriate perturbations. Conclusions The method presented here represents a useful framework to assist researchers in the field of cellular reprogramming to design experimental strategies with potential applications in the regenerative medicine and disease modelling. Cellular reprogramming (dpeaa)DE-He213 Transdifferentiation (dpeaa)DE-He213 Dedifferentiation (dpeaa)DE-He213 Stability (dpeaa)DE-He213 Attractor (dpeaa)DE-He213 Positive circuit (dpeaa)DE-He213 Reprogramming determinants (dpeaa)DE-He213 Perumal, Thanneer M aut Jurkowski, Wiktor aut del Sol, Antonio aut Enthalten in BMC systems biology London : BioMed Central, 2007 7(2013), 1 vom: 19. Dez. (DE-627)522897126 (DE-600)2265490-2 1752-0509 nnns volume:7 year:2013 number:1 day:19 month:12 https://dx.doi.org/10.1186/1752-0509-7-140 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2013 1 19 12 |
language |
English |
source |
Enthalten in BMC systems biology 7(2013), 1 vom: 19. Dez. volume:7 year:2013 number:1 day:19 month:12 |
sourceStr |
Enthalten in BMC systems biology 7(2013), 1 vom: 19. Dez. volume:7 year:2013 number:1 day:19 month:12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cellular reprogramming Transdifferentiation Dedifferentiation Stability Attractor Positive circuit Reprogramming determinants |
isfreeaccess_bool |
true |
container_title |
BMC systems biology |
authorswithroles_txt_mv |
Crespo, Isaac @@aut@@ Perumal, Thanneer M @@aut@@ Jurkowski, Wiktor @@aut@@ del Sol, Antonio @@aut@@ |
publishDateDaySort_date |
2013-12-19T00:00:00Z |
hierarchy_top_id |
522897126 |
id |
SPR028416201 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR028416201</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519224958.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1752-0509-7-140</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR028416201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1752-0509-7-140-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Crespo, Isaac</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Detecting cellular reprogramming determinants by differential stability analysis of gene regulatory networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Crespo et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Cellular differentiation and reprogramming are processes that are carefully orchestrated by the activation and repression of specific sets of genes. An increasing amount of experimental results show that despite the large number of genes participating in transcriptional programs of cellular phenotypes, only few key genes, which are coined here as reprogramming determinants, are required to be directly perturbed in order to induce cellular reprogramming. However, identification of reprogramming determinants still remains a combinatorial problem, and the state-of-art methods addressing this issue rests on exhaustive experimentation or prior knowledge to narrow down the list of candidates. Results Here we present a computational method, without any preliminary selection of candidate genes, to identify reduced subsets of genes, which when perturbed can induce transitions between cellular phenotypes. The method relies on the expression profiles of two stable cellular phenotypes along with a topological analysis stability elements in the gene regulatory network that are necessary to cause this multi-stability. Since stable cellular phenotypes can be considered as attractors of gene regulatory networks, cell fate and cellular reprogramming involves transition between these attractors, and therefore current method searches for combinations of genes that are able to destabilize a specific initial attractor and stabilize the final one in response to the appropriate perturbations. Conclusions The method presented here represents a useful framework to assist researchers in the field of cellular reprogramming to design experimental strategies with potential applications in the regenerative medicine and disease modelling.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cellular reprogramming</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transdifferentiation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dedifferentiation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Attractor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Positive circuit</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reprogramming determinants</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Perumal, Thanneer M</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jurkowski, Wiktor</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">del Sol, Antonio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC systems biology</subfield><subfield code="d">London : BioMed Central, 2007</subfield><subfield code="g">7(2013), 1 vom: 19. Dez.</subfield><subfield code="w">(DE-627)522897126</subfield><subfield code="w">(DE-600)2265490-2</subfield><subfield code="x">1752-0509</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:19</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1752-0509-7-140</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">19</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
author |
Crespo, Isaac |
spellingShingle |
Crespo, Isaac misc Cellular reprogramming misc Transdifferentiation misc Dedifferentiation misc Stability misc Attractor misc Positive circuit misc Reprogramming determinants Detecting cellular reprogramming determinants by differential stability analysis of gene regulatory networks |
authorStr |
Crespo, Isaac |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)522897126 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1752-0509 |
topic_title |
Detecting cellular reprogramming determinants by differential stability analysis of gene regulatory networks Cellular reprogramming (dpeaa)DE-He213 Transdifferentiation (dpeaa)DE-He213 Dedifferentiation (dpeaa)DE-He213 Stability (dpeaa)DE-He213 Attractor (dpeaa)DE-He213 Positive circuit (dpeaa)DE-He213 Reprogramming determinants (dpeaa)DE-He213 |
topic |
misc Cellular reprogramming misc Transdifferentiation misc Dedifferentiation misc Stability misc Attractor misc Positive circuit misc Reprogramming determinants |
topic_unstemmed |
misc Cellular reprogramming misc Transdifferentiation misc Dedifferentiation misc Stability misc Attractor misc Positive circuit misc Reprogramming determinants |
topic_browse |
misc Cellular reprogramming misc Transdifferentiation misc Dedifferentiation misc Stability misc Attractor misc Positive circuit misc Reprogramming determinants |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC systems biology |
hierarchy_parent_id |
522897126 |
hierarchy_top_title |
BMC systems biology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)522897126 (DE-600)2265490-2 |
title |
Detecting cellular reprogramming determinants by differential stability analysis of gene regulatory networks |
ctrlnum |
(DE-627)SPR028416201 (SPR)1752-0509-7-140-e |
title_full |
Detecting cellular reprogramming determinants by differential stability analysis of gene regulatory networks |
author_sort |
Crespo, Isaac |
journal |
BMC systems biology |
journalStr |
BMC systems biology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
author_browse |
Crespo, Isaac Perumal, Thanneer M Jurkowski, Wiktor del Sol, Antonio |
container_volume |
7 |
format_se |
Elektronische Aufsätze |
author-letter |
Crespo, Isaac |
doi_str_mv |
10.1186/1752-0509-7-140 |
title_sort |
detecting cellular reprogramming determinants by differential stability analysis of gene regulatory networks |
title_auth |
Detecting cellular reprogramming determinants by differential stability analysis of gene regulatory networks |
abstract |
Background Cellular differentiation and reprogramming are processes that are carefully orchestrated by the activation and repression of specific sets of genes. An increasing amount of experimental results show that despite the large number of genes participating in transcriptional programs of cellular phenotypes, only few key genes, which are coined here as reprogramming determinants, are required to be directly perturbed in order to induce cellular reprogramming. However, identification of reprogramming determinants still remains a combinatorial problem, and the state-of-art methods addressing this issue rests on exhaustive experimentation or prior knowledge to narrow down the list of candidates. Results Here we present a computational method, without any preliminary selection of candidate genes, to identify reduced subsets of genes, which when perturbed can induce transitions between cellular phenotypes. The method relies on the expression profiles of two stable cellular phenotypes along with a topological analysis stability elements in the gene regulatory network that are necessary to cause this multi-stability. Since stable cellular phenotypes can be considered as attractors of gene regulatory networks, cell fate and cellular reprogramming involves transition between these attractors, and therefore current method searches for combinations of genes that are able to destabilize a specific initial attractor and stabilize the final one in response to the appropriate perturbations. Conclusions The method presented here represents a useful framework to assist researchers in the field of cellular reprogramming to design experimental strategies with potential applications in the regenerative medicine and disease modelling. © Crespo et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( |
abstractGer |
Background Cellular differentiation and reprogramming are processes that are carefully orchestrated by the activation and repression of specific sets of genes. An increasing amount of experimental results show that despite the large number of genes participating in transcriptional programs of cellular phenotypes, only few key genes, which are coined here as reprogramming determinants, are required to be directly perturbed in order to induce cellular reprogramming. However, identification of reprogramming determinants still remains a combinatorial problem, and the state-of-art methods addressing this issue rests on exhaustive experimentation or prior knowledge to narrow down the list of candidates. Results Here we present a computational method, without any preliminary selection of candidate genes, to identify reduced subsets of genes, which when perturbed can induce transitions between cellular phenotypes. The method relies on the expression profiles of two stable cellular phenotypes along with a topological analysis stability elements in the gene regulatory network that are necessary to cause this multi-stability. Since stable cellular phenotypes can be considered as attractors of gene regulatory networks, cell fate and cellular reprogramming involves transition between these attractors, and therefore current method searches for combinations of genes that are able to destabilize a specific initial attractor and stabilize the final one in response to the appropriate perturbations. Conclusions The method presented here represents a useful framework to assist researchers in the field of cellular reprogramming to design experimental strategies with potential applications in the regenerative medicine and disease modelling. © Crespo et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( |
abstract_unstemmed |
Background Cellular differentiation and reprogramming are processes that are carefully orchestrated by the activation and repression of specific sets of genes. An increasing amount of experimental results show that despite the large number of genes participating in transcriptional programs of cellular phenotypes, only few key genes, which are coined here as reprogramming determinants, are required to be directly perturbed in order to induce cellular reprogramming. However, identification of reprogramming determinants still remains a combinatorial problem, and the state-of-art methods addressing this issue rests on exhaustive experimentation or prior knowledge to narrow down the list of candidates. Results Here we present a computational method, without any preliminary selection of candidate genes, to identify reduced subsets of genes, which when perturbed can induce transitions between cellular phenotypes. The method relies on the expression profiles of two stable cellular phenotypes along with a topological analysis stability elements in the gene regulatory network that are necessary to cause this multi-stability. Since stable cellular phenotypes can be considered as attractors of gene regulatory networks, cell fate and cellular reprogramming involves transition between these attractors, and therefore current method searches for combinations of genes that are able to destabilize a specific initial attractor and stabilize the final one in response to the appropriate perturbations. Conclusions The method presented here represents a useful framework to assist researchers in the field of cellular reprogramming to design experimental strategies with potential applications in the regenerative medicine and disease modelling. © Crespo et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Detecting cellular reprogramming determinants by differential stability analysis of gene regulatory networks |
url |
https://dx.doi.org/10.1186/1752-0509-7-140 |
remote_bool |
true |
author2 |
Perumal, Thanneer M Jurkowski, Wiktor del Sol, Antonio |
author2Str |
Perumal, Thanneer M Jurkowski, Wiktor del Sol, Antonio |
ppnlink |
522897126 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1752-0509-7-140 |
up_date |
2024-07-03T19:21:24.419Z |
_version_ |
1803586879540428800 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR028416201</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519224958.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1752-0509-7-140</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR028416201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1752-0509-7-140-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Crespo, Isaac</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Detecting cellular reprogramming determinants by differential stability analysis of gene regulatory networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Crespo et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Cellular differentiation and reprogramming are processes that are carefully orchestrated by the activation and repression of specific sets of genes. An increasing amount of experimental results show that despite the large number of genes participating in transcriptional programs of cellular phenotypes, only few key genes, which are coined here as reprogramming determinants, are required to be directly perturbed in order to induce cellular reprogramming. However, identification of reprogramming determinants still remains a combinatorial problem, and the state-of-art methods addressing this issue rests on exhaustive experimentation or prior knowledge to narrow down the list of candidates. Results Here we present a computational method, without any preliminary selection of candidate genes, to identify reduced subsets of genes, which when perturbed can induce transitions between cellular phenotypes. The method relies on the expression profiles of two stable cellular phenotypes along with a topological analysis stability elements in the gene regulatory network that are necessary to cause this multi-stability. Since stable cellular phenotypes can be considered as attractors of gene regulatory networks, cell fate and cellular reprogramming involves transition between these attractors, and therefore current method searches for combinations of genes that are able to destabilize a specific initial attractor and stabilize the final one in response to the appropriate perturbations. Conclusions The method presented here represents a useful framework to assist researchers in the field of cellular reprogramming to design experimental strategies with potential applications in the regenerative medicine and disease modelling.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cellular reprogramming</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transdifferentiation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dedifferentiation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Attractor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Positive circuit</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reprogramming determinants</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Perumal, Thanneer M</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jurkowski, Wiktor</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">del Sol, Antonio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC systems biology</subfield><subfield code="d">London : BioMed Central, 2007</subfield><subfield code="g">7(2013), 1 vom: 19. Dez.</subfield><subfield code="w">(DE-627)522897126</subfield><subfield code="w">(DE-600)2265490-2</subfield><subfield code="x">1752-0509</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:19</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1752-0509-7-140</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">19</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
score |
7.4016924 |