Intra-relation reconstruction from inter-relation: miRNA to gene expression
Background In computational biology, a novel knowledge has been obtained mostly by identifying 'intra-relation,' the relation between entities on a specific biological level such as from gene expression or from microRNA (miRNA) and many such researches have been successful. However, intra-...
Ausführliche Beschreibung
Autor*in: |
Kim, Dokyoon [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Kim et al.; licensee BioMed Central Ltd. 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC systems biology - London : BioMed Central, 2007, 7(2013), Suppl 3 vom: 16. Okt. |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2013 ; number:Suppl 3 ; day:16 ; month:10 |
Links: |
---|
DOI / URN: |
10.1186/1752-0509-7-S3-S8 |
---|
Katalog-ID: |
SPR028416686 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR028416686 | ||
003 | DE-627 | ||
005 | 20230519224959.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1752-0509-7-S3-S8 |2 doi | |
035 | |a (DE-627)SPR028416686 | ||
035 | |a (SPR)1752-0509-7-S3-S8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Kim, Dokyoon |e verfasserin |4 aut | |
245 | 1 | 0 | |a Intra-relation reconstruction from inter-relation: miRNA to gene expression |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Kim et al.; licensee BioMed Central Ltd. 2013 | ||
520 | |a Background In computational biology, a novel knowledge has been obtained mostly by identifying 'intra-relation,' the relation between entities on a specific biological level such as from gene expression or from microRNA (miRNA) and many such researches have been successful. However, intra-relations are not fully explaining complex cancer mechanisms because the inter-relation information between different levels of genomic data is missing, e.g. miRNA and its target genes. The 'inter-relation' between different levels of genomic data can be constructed from biological experimental data as well as genomic knowledge. Methods Previously, we have proposed a graph-based framework that integrates with multi-layers of genomic data, copy number alteration, DNA methylation, gene expression, and miRNA expression, for the cancer clinical outcome prediction. However, the limitation of previous work was that we integrated with multi-layers of genomic data without considering of inter-relationship information between genomic features. In this paper, we propose a new integrative framework that combines genomic dataset from gene expression and genomic knowledge from inter-relation between miRNA and gene expression for the clinical outcome prediction as a pilot study. Results In order to demonstrate the validity of the proposed method, the prediction of short-term/long-term survival for 82 patients in glioblastoma multiforme (GBM) was adopted as a base task. Based on our results, the accuracy of our predictive model increases because of incorporation of information fused over genomic dataset from gene expression and genomic knowledge from inter-relation between miRNA and gene expression. Conclusions In the present study, the intra-relation of gene expression was reconstructed from inter-relation between miRNA and gene expression for prediction of short-term/long-term survival of GBM patients. Our finding suggests that the utilization of external knowledge representing miRNA-mediated regulation of gene expression is substantially useful for elucidating the cancer phenotype. | ||
650 | 4 | |a miRNA Expression |7 (dpeaa)DE-He213 | |
650 | 4 | |a Original Graph |7 (dpeaa)DE-He213 | |
650 | 4 | |a Copy Number Alteration |7 (dpeaa)DE-He213 | |
650 | 4 | |a Genomic Dataset |7 (dpeaa)DE-He213 | |
650 | 4 | |a Reconstructed Graph |7 (dpeaa)DE-He213 | |
700 | 1 | |a Shin, Hyunjung |4 aut | |
700 | 1 | |a Joung, Je-Gun |4 aut | |
700 | 1 | |a Lee, Su-Yeon |4 aut | |
700 | 1 | |a Kim, Ju Han |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC systems biology |d London : BioMed Central, 2007 |g 7(2013), Suppl 3 vom: 16. Okt. |w (DE-627)522897126 |w (DE-600)2265490-2 |x 1752-0509 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2013 |g number:Suppl 3 |g day:16 |g month:10 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1752-0509-7-S3-S8 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2013 |e Suppl 3 |b 16 |c 10 |
author_variant |
d k dk h s hs j g j jgj s y l syl j h k jh jhk |
---|---|
matchkey_str |
article:17520509:2013----::nrrltorcntutofoitreainin |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1186/1752-0509-7-S3-S8 doi (DE-627)SPR028416686 (SPR)1752-0509-7-S3-S8-e DE-627 ger DE-627 rakwb eng Kim, Dokyoon verfasserin aut Intra-relation reconstruction from inter-relation: miRNA to gene expression 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Kim et al.; licensee BioMed Central Ltd. 2013 Background In computational biology, a novel knowledge has been obtained mostly by identifying 'intra-relation,' the relation between entities on a specific biological level such as from gene expression or from microRNA (miRNA) and many such researches have been successful. However, intra-relations are not fully explaining complex cancer mechanisms because the inter-relation information between different levels of genomic data is missing, e.g. miRNA and its target genes. The 'inter-relation' between different levels of genomic data can be constructed from biological experimental data as well as genomic knowledge. Methods Previously, we have proposed a graph-based framework that integrates with multi-layers of genomic data, copy number alteration, DNA methylation, gene expression, and miRNA expression, for the cancer clinical outcome prediction. However, the limitation of previous work was that we integrated with multi-layers of genomic data without considering of inter-relationship information between genomic features. In this paper, we propose a new integrative framework that combines genomic dataset from gene expression and genomic knowledge from inter-relation between miRNA and gene expression for the clinical outcome prediction as a pilot study. Results In order to demonstrate the validity of the proposed method, the prediction of short-term/long-term survival for 82 patients in glioblastoma multiforme (GBM) was adopted as a base task. Based on our results, the accuracy of our predictive model increases because of incorporation of information fused over genomic dataset from gene expression and genomic knowledge from inter-relation between miRNA and gene expression. Conclusions In the present study, the intra-relation of gene expression was reconstructed from inter-relation between miRNA and gene expression for prediction of short-term/long-term survival of GBM patients. Our finding suggests that the utilization of external knowledge representing miRNA-mediated regulation of gene expression is substantially useful for elucidating the cancer phenotype. miRNA Expression (dpeaa)DE-He213 Original Graph (dpeaa)DE-He213 Copy Number Alteration (dpeaa)DE-He213 Genomic Dataset (dpeaa)DE-He213 Reconstructed Graph (dpeaa)DE-He213 Shin, Hyunjung aut Joung, Je-Gun aut Lee, Su-Yeon aut Kim, Ju Han aut Enthalten in BMC systems biology London : BioMed Central, 2007 7(2013), Suppl 3 vom: 16. Okt. (DE-627)522897126 (DE-600)2265490-2 1752-0509 nnns volume:7 year:2013 number:Suppl 3 day:16 month:10 https://dx.doi.org/10.1186/1752-0509-7-S3-S8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2013 Suppl 3 16 10 |
spelling |
10.1186/1752-0509-7-S3-S8 doi (DE-627)SPR028416686 (SPR)1752-0509-7-S3-S8-e DE-627 ger DE-627 rakwb eng Kim, Dokyoon verfasserin aut Intra-relation reconstruction from inter-relation: miRNA to gene expression 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Kim et al.; licensee BioMed Central Ltd. 2013 Background In computational biology, a novel knowledge has been obtained mostly by identifying 'intra-relation,' the relation between entities on a specific biological level such as from gene expression or from microRNA (miRNA) and many such researches have been successful. However, intra-relations are not fully explaining complex cancer mechanisms because the inter-relation information between different levels of genomic data is missing, e.g. miRNA and its target genes. The 'inter-relation' between different levels of genomic data can be constructed from biological experimental data as well as genomic knowledge. Methods Previously, we have proposed a graph-based framework that integrates with multi-layers of genomic data, copy number alteration, DNA methylation, gene expression, and miRNA expression, for the cancer clinical outcome prediction. However, the limitation of previous work was that we integrated with multi-layers of genomic data without considering of inter-relationship information between genomic features. In this paper, we propose a new integrative framework that combines genomic dataset from gene expression and genomic knowledge from inter-relation between miRNA and gene expression for the clinical outcome prediction as a pilot study. Results In order to demonstrate the validity of the proposed method, the prediction of short-term/long-term survival for 82 patients in glioblastoma multiforme (GBM) was adopted as a base task. Based on our results, the accuracy of our predictive model increases because of incorporation of information fused over genomic dataset from gene expression and genomic knowledge from inter-relation between miRNA and gene expression. Conclusions In the present study, the intra-relation of gene expression was reconstructed from inter-relation between miRNA and gene expression for prediction of short-term/long-term survival of GBM patients. Our finding suggests that the utilization of external knowledge representing miRNA-mediated regulation of gene expression is substantially useful for elucidating the cancer phenotype. miRNA Expression (dpeaa)DE-He213 Original Graph (dpeaa)DE-He213 Copy Number Alteration (dpeaa)DE-He213 Genomic Dataset (dpeaa)DE-He213 Reconstructed Graph (dpeaa)DE-He213 Shin, Hyunjung aut Joung, Je-Gun aut Lee, Su-Yeon aut Kim, Ju Han aut Enthalten in BMC systems biology London : BioMed Central, 2007 7(2013), Suppl 3 vom: 16. Okt. (DE-627)522897126 (DE-600)2265490-2 1752-0509 nnns volume:7 year:2013 number:Suppl 3 day:16 month:10 https://dx.doi.org/10.1186/1752-0509-7-S3-S8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2013 Suppl 3 16 10 |
allfields_unstemmed |
10.1186/1752-0509-7-S3-S8 doi (DE-627)SPR028416686 (SPR)1752-0509-7-S3-S8-e DE-627 ger DE-627 rakwb eng Kim, Dokyoon verfasserin aut Intra-relation reconstruction from inter-relation: miRNA to gene expression 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Kim et al.; licensee BioMed Central Ltd. 2013 Background In computational biology, a novel knowledge has been obtained mostly by identifying 'intra-relation,' the relation between entities on a specific biological level such as from gene expression or from microRNA (miRNA) and many such researches have been successful. However, intra-relations are not fully explaining complex cancer mechanisms because the inter-relation information between different levels of genomic data is missing, e.g. miRNA and its target genes. The 'inter-relation' between different levels of genomic data can be constructed from biological experimental data as well as genomic knowledge. Methods Previously, we have proposed a graph-based framework that integrates with multi-layers of genomic data, copy number alteration, DNA methylation, gene expression, and miRNA expression, for the cancer clinical outcome prediction. However, the limitation of previous work was that we integrated with multi-layers of genomic data without considering of inter-relationship information between genomic features. In this paper, we propose a new integrative framework that combines genomic dataset from gene expression and genomic knowledge from inter-relation between miRNA and gene expression for the clinical outcome prediction as a pilot study. Results In order to demonstrate the validity of the proposed method, the prediction of short-term/long-term survival for 82 patients in glioblastoma multiforme (GBM) was adopted as a base task. Based on our results, the accuracy of our predictive model increases because of incorporation of information fused over genomic dataset from gene expression and genomic knowledge from inter-relation between miRNA and gene expression. Conclusions In the present study, the intra-relation of gene expression was reconstructed from inter-relation between miRNA and gene expression for prediction of short-term/long-term survival of GBM patients. Our finding suggests that the utilization of external knowledge representing miRNA-mediated regulation of gene expression is substantially useful for elucidating the cancer phenotype. miRNA Expression (dpeaa)DE-He213 Original Graph (dpeaa)DE-He213 Copy Number Alteration (dpeaa)DE-He213 Genomic Dataset (dpeaa)DE-He213 Reconstructed Graph (dpeaa)DE-He213 Shin, Hyunjung aut Joung, Je-Gun aut Lee, Su-Yeon aut Kim, Ju Han aut Enthalten in BMC systems biology London : BioMed Central, 2007 7(2013), Suppl 3 vom: 16. Okt. (DE-627)522897126 (DE-600)2265490-2 1752-0509 nnns volume:7 year:2013 number:Suppl 3 day:16 month:10 https://dx.doi.org/10.1186/1752-0509-7-S3-S8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2013 Suppl 3 16 10 |
allfieldsGer |
10.1186/1752-0509-7-S3-S8 doi (DE-627)SPR028416686 (SPR)1752-0509-7-S3-S8-e DE-627 ger DE-627 rakwb eng Kim, Dokyoon verfasserin aut Intra-relation reconstruction from inter-relation: miRNA to gene expression 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Kim et al.; licensee BioMed Central Ltd. 2013 Background In computational biology, a novel knowledge has been obtained mostly by identifying 'intra-relation,' the relation between entities on a specific biological level such as from gene expression or from microRNA (miRNA) and many such researches have been successful. However, intra-relations are not fully explaining complex cancer mechanisms because the inter-relation information between different levels of genomic data is missing, e.g. miRNA and its target genes. The 'inter-relation' between different levels of genomic data can be constructed from biological experimental data as well as genomic knowledge. Methods Previously, we have proposed a graph-based framework that integrates with multi-layers of genomic data, copy number alteration, DNA methylation, gene expression, and miRNA expression, for the cancer clinical outcome prediction. However, the limitation of previous work was that we integrated with multi-layers of genomic data without considering of inter-relationship information between genomic features. In this paper, we propose a new integrative framework that combines genomic dataset from gene expression and genomic knowledge from inter-relation between miRNA and gene expression for the clinical outcome prediction as a pilot study. Results In order to demonstrate the validity of the proposed method, the prediction of short-term/long-term survival for 82 patients in glioblastoma multiforme (GBM) was adopted as a base task. Based on our results, the accuracy of our predictive model increases because of incorporation of information fused over genomic dataset from gene expression and genomic knowledge from inter-relation between miRNA and gene expression. Conclusions In the present study, the intra-relation of gene expression was reconstructed from inter-relation between miRNA and gene expression for prediction of short-term/long-term survival of GBM patients. Our finding suggests that the utilization of external knowledge representing miRNA-mediated regulation of gene expression is substantially useful for elucidating the cancer phenotype. miRNA Expression (dpeaa)DE-He213 Original Graph (dpeaa)DE-He213 Copy Number Alteration (dpeaa)DE-He213 Genomic Dataset (dpeaa)DE-He213 Reconstructed Graph (dpeaa)DE-He213 Shin, Hyunjung aut Joung, Je-Gun aut Lee, Su-Yeon aut Kim, Ju Han aut Enthalten in BMC systems biology London : BioMed Central, 2007 7(2013), Suppl 3 vom: 16. Okt. (DE-627)522897126 (DE-600)2265490-2 1752-0509 nnns volume:7 year:2013 number:Suppl 3 day:16 month:10 https://dx.doi.org/10.1186/1752-0509-7-S3-S8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2013 Suppl 3 16 10 |
allfieldsSound |
10.1186/1752-0509-7-S3-S8 doi (DE-627)SPR028416686 (SPR)1752-0509-7-S3-S8-e DE-627 ger DE-627 rakwb eng Kim, Dokyoon verfasserin aut Intra-relation reconstruction from inter-relation: miRNA to gene expression 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Kim et al.; licensee BioMed Central Ltd. 2013 Background In computational biology, a novel knowledge has been obtained mostly by identifying 'intra-relation,' the relation between entities on a specific biological level such as from gene expression or from microRNA (miRNA) and many such researches have been successful. However, intra-relations are not fully explaining complex cancer mechanisms because the inter-relation information between different levels of genomic data is missing, e.g. miRNA and its target genes. The 'inter-relation' between different levels of genomic data can be constructed from biological experimental data as well as genomic knowledge. Methods Previously, we have proposed a graph-based framework that integrates with multi-layers of genomic data, copy number alteration, DNA methylation, gene expression, and miRNA expression, for the cancer clinical outcome prediction. However, the limitation of previous work was that we integrated with multi-layers of genomic data without considering of inter-relationship information between genomic features. In this paper, we propose a new integrative framework that combines genomic dataset from gene expression and genomic knowledge from inter-relation between miRNA and gene expression for the clinical outcome prediction as a pilot study. Results In order to demonstrate the validity of the proposed method, the prediction of short-term/long-term survival for 82 patients in glioblastoma multiforme (GBM) was adopted as a base task. Based on our results, the accuracy of our predictive model increases because of incorporation of information fused over genomic dataset from gene expression and genomic knowledge from inter-relation between miRNA and gene expression. Conclusions In the present study, the intra-relation of gene expression was reconstructed from inter-relation between miRNA and gene expression for prediction of short-term/long-term survival of GBM patients. Our finding suggests that the utilization of external knowledge representing miRNA-mediated regulation of gene expression is substantially useful for elucidating the cancer phenotype. miRNA Expression (dpeaa)DE-He213 Original Graph (dpeaa)DE-He213 Copy Number Alteration (dpeaa)DE-He213 Genomic Dataset (dpeaa)DE-He213 Reconstructed Graph (dpeaa)DE-He213 Shin, Hyunjung aut Joung, Je-Gun aut Lee, Su-Yeon aut Kim, Ju Han aut Enthalten in BMC systems biology London : BioMed Central, 2007 7(2013), Suppl 3 vom: 16. Okt. (DE-627)522897126 (DE-600)2265490-2 1752-0509 nnns volume:7 year:2013 number:Suppl 3 day:16 month:10 https://dx.doi.org/10.1186/1752-0509-7-S3-S8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2013 Suppl 3 16 10 |
language |
English |
source |
Enthalten in BMC systems biology 7(2013), Suppl 3 vom: 16. Okt. volume:7 year:2013 number:Suppl 3 day:16 month:10 |
sourceStr |
Enthalten in BMC systems biology 7(2013), Suppl 3 vom: 16. Okt. volume:7 year:2013 number:Suppl 3 day:16 month:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
miRNA Expression Original Graph Copy Number Alteration Genomic Dataset Reconstructed Graph |
isfreeaccess_bool |
true |
container_title |
BMC systems biology |
authorswithroles_txt_mv |
Kim, Dokyoon @@aut@@ Shin, Hyunjung @@aut@@ Joung, Je-Gun @@aut@@ Lee, Su-Yeon @@aut@@ Kim, Ju Han @@aut@@ |
publishDateDaySort_date |
2013-10-16T00:00:00Z |
hierarchy_top_id |
522897126 |
id |
SPR028416686 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR028416686</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519224959.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1752-0509-7-S3-S8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR028416686</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1752-0509-7-S3-S8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kim, Dokyoon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Intra-relation reconstruction from inter-relation: miRNA to gene expression</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kim et al.; licensee BioMed Central Ltd. 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background In computational biology, a novel knowledge has been obtained mostly by identifying 'intra-relation,' the relation between entities on a specific biological level such as from gene expression or from microRNA (miRNA) and many such researches have been successful. However, intra-relations are not fully explaining complex cancer mechanisms because the inter-relation information between different levels of genomic data is missing, e.g. miRNA and its target genes. The 'inter-relation' between different levels of genomic data can be constructed from biological experimental data as well as genomic knowledge. Methods Previously, we have proposed a graph-based framework that integrates with multi-layers of genomic data, copy number alteration, DNA methylation, gene expression, and miRNA expression, for the cancer clinical outcome prediction. However, the limitation of previous work was that we integrated with multi-layers of genomic data without considering of inter-relationship information between genomic features. In this paper, we propose a new integrative framework that combines genomic dataset from gene expression and genomic knowledge from inter-relation between miRNA and gene expression for the clinical outcome prediction as a pilot study. Results In order to demonstrate the validity of the proposed method, the prediction of short-term/long-term survival for 82 patients in glioblastoma multiforme (GBM) was adopted as a base task. Based on our results, the accuracy of our predictive model increases because of incorporation of information fused over genomic dataset from gene expression and genomic knowledge from inter-relation between miRNA and gene expression. Conclusions In the present study, the intra-relation of gene expression was reconstructed from inter-relation between miRNA and gene expression for prediction of short-term/long-term survival of GBM patients. Our finding suggests that the utilization of external knowledge representing miRNA-mediated regulation of gene expression is substantially useful for elucidating the cancer phenotype.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">miRNA Expression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Original Graph</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Copy Number Alteration</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genomic Dataset</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reconstructed Graph</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shin, Hyunjung</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Joung, Je-Gun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Su-Yeon</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Ju Han</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC systems biology</subfield><subfield code="d">London : BioMed Central, 2007</subfield><subfield code="g">7(2013), Suppl 3 vom: 16. Okt.</subfield><subfield code="w">(DE-627)522897126</subfield><subfield code="w">(DE-600)2265490-2</subfield><subfield code="x">1752-0509</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:Suppl 3</subfield><subfield code="g">day:16</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1752-0509-7-S3-S8</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2013</subfield><subfield code="e">Suppl 3</subfield><subfield code="b">16</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
author |
Kim, Dokyoon |
spellingShingle |
Kim, Dokyoon misc miRNA Expression misc Original Graph misc Copy Number Alteration misc Genomic Dataset misc Reconstructed Graph Intra-relation reconstruction from inter-relation: miRNA to gene expression |
authorStr |
Kim, Dokyoon |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)522897126 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1752-0509 |
topic_title |
Intra-relation reconstruction from inter-relation: miRNA to gene expression miRNA Expression (dpeaa)DE-He213 Original Graph (dpeaa)DE-He213 Copy Number Alteration (dpeaa)DE-He213 Genomic Dataset (dpeaa)DE-He213 Reconstructed Graph (dpeaa)DE-He213 |
topic |
misc miRNA Expression misc Original Graph misc Copy Number Alteration misc Genomic Dataset misc Reconstructed Graph |
topic_unstemmed |
misc miRNA Expression misc Original Graph misc Copy Number Alteration misc Genomic Dataset misc Reconstructed Graph |
topic_browse |
misc miRNA Expression misc Original Graph misc Copy Number Alteration misc Genomic Dataset misc Reconstructed Graph |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC systems biology |
hierarchy_parent_id |
522897126 |
hierarchy_top_title |
BMC systems biology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)522897126 (DE-600)2265490-2 |
title |
Intra-relation reconstruction from inter-relation: miRNA to gene expression |
ctrlnum |
(DE-627)SPR028416686 (SPR)1752-0509-7-S3-S8-e |
title_full |
Intra-relation reconstruction from inter-relation: miRNA to gene expression |
author_sort |
Kim, Dokyoon |
journal |
BMC systems biology |
journalStr |
BMC systems biology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
author_browse |
Kim, Dokyoon Shin, Hyunjung Joung, Je-Gun Lee, Su-Yeon Kim, Ju Han |
container_volume |
7 |
format_se |
Elektronische Aufsätze |
author-letter |
Kim, Dokyoon |
doi_str_mv |
10.1186/1752-0509-7-S3-S8 |
title_sort |
intra-relation reconstruction from inter-relation: mirna to gene expression |
title_auth |
Intra-relation reconstruction from inter-relation: miRNA to gene expression |
abstract |
Background In computational biology, a novel knowledge has been obtained mostly by identifying 'intra-relation,' the relation between entities on a specific biological level such as from gene expression or from microRNA (miRNA) and many such researches have been successful. However, intra-relations are not fully explaining complex cancer mechanisms because the inter-relation information between different levels of genomic data is missing, e.g. miRNA and its target genes. The 'inter-relation' between different levels of genomic data can be constructed from biological experimental data as well as genomic knowledge. Methods Previously, we have proposed a graph-based framework that integrates with multi-layers of genomic data, copy number alteration, DNA methylation, gene expression, and miRNA expression, for the cancer clinical outcome prediction. However, the limitation of previous work was that we integrated with multi-layers of genomic data without considering of inter-relationship information between genomic features. In this paper, we propose a new integrative framework that combines genomic dataset from gene expression and genomic knowledge from inter-relation between miRNA and gene expression for the clinical outcome prediction as a pilot study. Results In order to demonstrate the validity of the proposed method, the prediction of short-term/long-term survival for 82 patients in glioblastoma multiforme (GBM) was adopted as a base task. Based on our results, the accuracy of our predictive model increases because of incorporation of information fused over genomic dataset from gene expression and genomic knowledge from inter-relation between miRNA and gene expression. Conclusions In the present study, the intra-relation of gene expression was reconstructed from inter-relation between miRNA and gene expression for prediction of short-term/long-term survival of GBM patients. Our finding suggests that the utilization of external knowledge representing miRNA-mediated regulation of gene expression is substantially useful for elucidating the cancer phenotype. © Kim et al.; licensee BioMed Central Ltd. 2013 |
abstractGer |
Background In computational biology, a novel knowledge has been obtained mostly by identifying 'intra-relation,' the relation between entities on a specific biological level such as from gene expression or from microRNA (miRNA) and many such researches have been successful. However, intra-relations are not fully explaining complex cancer mechanisms because the inter-relation information between different levels of genomic data is missing, e.g. miRNA and its target genes. The 'inter-relation' between different levels of genomic data can be constructed from biological experimental data as well as genomic knowledge. Methods Previously, we have proposed a graph-based framework that integrates with multi-layers of genomic data, copy number alteration, DNA methylation, gene expression, and miRNA expression, for the cancer clinical outcome prediction. However, the limitation of previous work was that we integrated with multi-layers of genomic data without considering of inter-relationship information between genomic features. In this paper, we propose a new integrative framework that combines genomic dataset from gene expression and genomic knowledge from inter-relation between miRNA and gene expression for the clinical outcome prediction as a pilot study. Results In order to demonstrate the validity of the proposed method, the prediction of short-term/long-term survival for 82 patients in glioblastoma multiforme (GBM) was adopted as a base task. Based on our results, the accuracy of our predictive model increases because of incorporation of information fused over genomic dataset from gene expression and genomic knowledge from inter-relation between miRNA and gene expression. Conclusions In the present study, the intra-relation of gene expression was reconstructed from inter-relation between miRNA and gene expression for prediction of short-term/long-term survival of GBM patients. Our finding suggests that the utilization of external knowledge representing miRNA-mediated regulation of gene expression is substantially useful for elucidating the cancer phenotype. © Kim et al.; licensee BioMed Central Ltd. 2013 |
abstract_unstemmed |
Background In computational biology, a novel knowledge has been obtained mostly by identifying 'intra-relation,' the relation between entities on a specific biological level such as from gene expression or from microRNA (miRNA) and many such researches have been successful. However, intra-relations are not fully explaining complex cancer mechanisms because the inter-relation information between different levels of genomic data is missing, e.g. miRNA and its target genes. The 'inter-relation' between different levels of genomic data can be constructed from biological experimental data as well as genomic knowledge. Methods Previously, we have proposed a graph-based framework that integrates with multi-layers of genomic data, copy number alteration, DNA methylation, gene expression, and miRNA expression, for the cancer clinical outcome prediction. However, the limitation of previous work was that we integrated with multi-layers of genomic data without considering of inter-relationship information between genomic features. In this paper, we propose a new integrative framework that combines genomic dataset from gene expression and genomic knowledge from inter-relation between miRNA and gene expression for the clinical outcome prediction as a pilot study. Results In order to demonstrate the validity of the proposed method, the prediction of short-term/long-term survival for 82 patients in glioblastoma multiforme (GBM) was adopted as a base task. Based on our results, the accuracy of our predictive model increases because of incorporation of information fused over genomic dataset from gene expression and genomic knowledge from inter-relation between miRNA and gene expression. Conclusions In the present study, the intra-relation of gene expression was reconstructed from inter-relation between miRNA and gene expression for prediction of short-term/long-term survival of GBM patients. Our finding suggests that the utilization of external knowledge representing miRNA-mediated regulation of gene expression is substantially useful for elucidating the cancer phenotype. © Kim et al.; licensee BioMed Central Ltd. 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
Suppl 3 |
title_short |
Intra-relation reconstruction from inter-relation: miRNA to gene expression |
url |
https://dx.doi.org/10.1186/1752-0509-7-S3-S8 |
remote_bool |
true |
author2 |
Shin, Hyunjung Joung, Je-Gun Lee, Su-Yeon Kim, Ju Han |
author2Str |
Shin, Hyunjung Joung, Je-Gun Lee, Su-Yeon Kim, Ju Han |
ppnlink |
522897126 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1752-0509-7-S3-S8 |
up_date |
2024-07-03T19:21:34.755Z |
_version_ |
1803586890374316032 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR028416686</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519224959.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1752-0509-7-S3-S8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR028416686</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1752-0509-7-S3-S8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kim, Dokyoon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Intra-relation reconstruction from inter-relation: miRNA to gene expression</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kim et al.; licensee BioMed Central Ltd. 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background In computational biology, a novel knowledge has been obtained mostly by identifying 'intra-relation,' the relation between entities on a specific biological level such as from gene expression or from microRNA (miRNA) and many such researches have been successful. However, intra-relations are not fully explaining complex cancer mechanisms because the inter-relation information between different levels of genomic data is missing, e.g. miRNA and its target genes. The 'inter-relation' between different levels of genomic data can be constructed from biological experimental data as well as genomic knowledge. Methods Previously, we have proposed a graph-based framework that integrates with multi-layers of genomic data, copy number alteration, DNA methylation, gene expression, and miRNA expression, for the cancer clinical outcome prediction. However, the limitation of previous work was that we integrated with multi-layers of genomic data without considering of inter-relationship information between genomic features. In this paper, we propose a new integrative framework that combines genomic dataset from gene expression and genomic knowledge from inter-relation between miRNA and gene expression for the clinical outcome prediction as a pilot study. Results In order to demonstrate the validity of the proposed method, the prediction of short-term/long-term survival for 82 patients in glioblastoma multiforme (GBM) was adopted as a base task. Based on our results, the accuracy of our predictive model increases because of incorporation of information fused over genomic dataset from gene expression and genomic knowledge from inter-relation between miRNA and gene expression. Conclusions In the present study, the intra-relation of gene expression was reconstructed from inter-relation between miRNA and gene expression for prediction of short-term/long-term survival of GBM patients. Our finding suggests that the utilization of external knowledge representing miRNA-mediated regulation of gene expression is substantially useful for elucidating the cancer phenotype.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">miRNA Expression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Original Graph</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Copy Number Alteration</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genomic Dataset</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reconstructed Graph</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shin, Hyunjung</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Joung, Je-Gun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Su-Yeon</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Ju Han</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC systems biology</subfield><subfield code="d">London : BioMed Central, 2007</subfield><subfield code="g">7(2013), Suppl 3 vom: 16. Okt.</subfield><subfield code="w">(DE-627)522897126</subfield><subfield code="w">(DE-600)2265490-2</subfield><subfield code="x">1752-0509</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:Suppl 3</subfield><subfield code="g">day:16</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1752-0509-7-S3-S8</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2013</subfield><subfield code="e">Suppl 3</subfield><subfield code="b">16</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
score |
7.401597 |