Gene analysis for longitudinal family data using random-effects models
Abstract We have extended our recently developed 2-step approach for gene-based analysis to the family design and to the analysis of rare variants. The goal of this approach is to study the joint effect of multiple single-nucleotide polymorphisms that belong to a gene. First, the information in a ge...
Ausführliche Beschreibung
Autor*in: |
Houwing-Duistermaat, Jeanine J [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Houwing-Duistermaat et al.; licensee BioMed Central Ltd. 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC proceedings - London : BioMed Central, 2007, 8(2014), Suppl 1 vom: 17. Juni |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2014 ; number:Suppl 1 ; day:17 ; month:06 |
Links: |
---|
DOI / URN: |
10.1186/1753-6561-8-S1-S88 |
---|
Katalog-ID: |
SPR028454626 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR028454626 | ||
003 | DE-627 | ||
005 | 20230519174200.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1753-6561-8-S1-S88 |2 doi | |
035 | |a (DE-627)SPR028454626 | ||
035 | |a (SPR)1753-6561-8-S1-S88-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Houwing-Duistermaat, Jeanine J |e verfasserin |4 aut | |
245 | 1 | 0 | |a Gene analysis for longitudinal family data using random-effects models |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Houwing-Duistermaat et al.; licensee BioMed Central Ltd. 2014 | ||
520 | |a Abstract We have extended our recently developed 2-step approach for gene-based analysis to the family design and to the analysis of rare variants. The goal of this approach is to study the joint effect of multiple single-nucleotide polymorphisms that belong to a gene. First, the information in a gene is summarized by 2 variables, namely the empirical Bayes estimate capturing common variation and the number of rare variants. By using random effects for the common variants, our approach acknowledges the within-gene correlations. In the second step, the 2 summaries were included as covariates in linear mixed models. To test the null hypothesis of no association, a multivariate Wald test was applied. We analyzed the simulated data sets to assess the performance of the method. Then we applied the method to the real data set and identified a significant association between FRMD4B and diastolic blood pressure (p-value = 8.3 × $ 10^{-12} $). | ||
650 | 4 | |a Linear Mixed Model |7 (dpeaa)DE-He213 | |
650 | 4 | |a Rare Variant |7 (dpeaa)DE-He213 | |
650 | 4 | |a Functional Locus |7 (dpeaa)DE-He213 | |
650 | 4 | |a Gene Summary |7 (dpeaa)DE-He213 | |
650 | 4 | |a Variant Call Format |7 (dpeaa)DE-He213 | |
700 | 1 | |a Helmer, Quinta |4 aut | |
700 | 1 | |a Balliu, Bruna |4 aut | |
700 | 1 | |a van den Akker, Erik |4 aut | |
700 | 1 | |a Tsonaka, Roula |4 aut | |
700 | 1 | |a Uh, Hae-Won |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC proceedings |d London : BioMed Central, 2007 |g 8(2014), Suppl 1 vom: 17. Juni |w (DE-627)559080840 |w (DE-600)2411867-9 |x 1753-6561 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2014 |g number:Suppl 1 |g day:17 |g month:06 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1753-6561-8-S1-S88 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2014 |e Suppl 1 |b 17 |c 06 |
author_variant |
j j h d jjh jjhd q h qh b b bb d a e v dae daev r t rt h w u hwu |
---|---|
matchkey_str |
article:17536561:2014----::eenlssolniuiafmldtuiga |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1186/1753-6561-8-S1-S88 doi (DE-627)SPR028454626 (SPR)1753-6561-8-S1-S88-e DE-627 ger DE-627 rakwb eng Houwing-Duistermaat, Jeanine J verfasserin aut Gene analysis for longitudinal family data using random-effects models 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Houwing-Duistermaat et al.; licensee BioMed Central Ltd. 2014 Abstract We have extended our recently developed 2-step approach for gene-based analysis to the family design and to the analysis of rare variants. The goal of this approach is to study the joint effect of multiple single-nucleotide polymorphisms that belong to a gene. First, the information in a gene is summarized by 2 variables, namely the empirical Bayes estimate capturing common variation and the number of rare variants. By using random effects for the common variants, our approach acknowledges the within-gene correlations. In the second step, the 2 summaries were included as covariates in linear mixed models. To test the null hypothesis of no association, a multivariate Wald test was applied. We analyzed the simulated data sets to assess the performance of the method. Then we applied the method to the real data set and identified a significant association between FRMD4B and diastolic blood pressure (p-value = 8.3 × $ 10^{-12} $). Linear Mixed Model (dpeaa)DE-He213 Rare Variant (dpeaa)DE-He213 Functional Locus (dpeaa)DE-He213 Gene Summary (dpeaa)DE-He213 Variant Call Format (dpeaa)DE-He213 Helmer, Quinta aut Balliu, Bruna aut van den Akker, Erik aut Tsonaka, Roula aut Uh, Hae-Won aut Enthalten in BMC proceedings London : BioMed Central, 2007 8(2014), Suppl 1 vom: 17. Juni (DE-627)559080840 (DE-600)2411867-9 1753-6561 nnns volume:8 year:2014 number:Suppl 1 day:17 month:06 https://dx.doi.org/10.1186/1753-6561-8-S1-S88 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2014 Suppl 1 17 06 |
spelling |
10.1186/1753-6561-8-S1-S88 doi (DE-627)SPR028454626 (SPR)1753-6561-8-S1-S88-e DE-627 ger DE-627 rakwb eng Houwing-Duistermaat, Jeanine J verfasserin aut Gene analysis for longitudinal family data using random-effects models 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Houwing-Duistermaat et al.; licensee BioMed Central Ltd. 2014 Abstract We have extended our recently developed 2-step approach for gene-based analysis to the family design and to the analysis of rare variants. The goal of this approach is to study the joint effect of multiple single-nucleotide polymorphisms that belong to a gene. First, the information in a gene is summarized by 2 variables, namely the empirical Bayes estimate capturing common variation and the number of rare variants. By using random effects for the common variants, our approach acknowledges the within-gene correlations. In the second step, the 2 summaries were included as covariates in linear mixed models. To test the null hypothesis of no association, a multivariate Wald test was applied. We analyzed the simulated data sets to assess the performance of the method. Then we applied the method to the real data set and identified a significant association between FRMD4B and diastolic blood pressure (p-value = 8.3 × $ 10^{-12} $). Linear Mixed Model (dpeaa)DE-He213 Rare Variant (dpeaa)DE-He213 Functional Locus (dpeaa)DE-He213 Gene Summary (dpeaa)DE-He213 Variant Call Format (dpeaa)DE-He213 Helmer, Quinta aut Balliu, Bruna aut van den Akker, Erik aut Tsonaka, Roula aut Uh, Hae-Won aut Enthalten in BMC proceedings London : BioMed Central, 2007 8(2014), Suppl 1 vom: 17. Juni (DE-627)559080840 (DE-600)2411867-9 1753-6561 nnns volume:8 year:2014 number:Suppl 1 day:17 month:06 https://dx.doi.org/10.1186/1753-6561-8-S1-S88 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2014 Suppl 1 17 06 |
allfields_unstemmed |
10.1186/1753-6561-8-S1-S88 doi (DE-627)SPR028454626 (SPR)1753-6561-8-S1-S88-e DE-627 ger DE-627 rakwb eng Houwing-Duistermaat, Jeanine J verfasserin aut Gene analysis for longitudinal family data using random-effects models 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Houwing-Duistermaat et al.; licensee BioMed Central Ltd. 2014 Abstract We have extended our recently developed 2-step approach for gene-based analysis to the family design and to the analysis of rare variants. The goal of this approach is to study the joint effect of multiple single-nucleotide polymorphisms that belong to a gene. First, the information in a gene is summarized by 2 variables, namely the empirical Bayes estimate capturing common variation and the number of rare variants. By using random effects for the common variants, our approach acknowledges the within-gene correlations. In the second step, the 2 summaries were included as covariates in linear mixed models. To test the null hypothesis of no association, a multivariate Wald test was applied. We analyzed the simulated data sets to assess the performance of the method. Then we applied the method to the real data set and identified a significant association between FRMD4B and diastolic blood pressure (p-value = 8.3 × $ 10^{-12} $). Linear Mixed Model (dpeaa)DE-He213 Rare Variant (dpeaa)DE-He213 Functional Locus (dpeaa)DE-He213 Gene Summary (dpeaa)DE-He213 Variant Call Format (dpeaa)DE-He213 Helmer, Quinta aut Balliu, Bruna aut van den Akker, Erik aut Tsonaka, Roula aut Uh, Hae-Won aut Enthalten in BMC proceedings London : BioMed Central, 2007 8(2014), Suppl 1 vom: 17. Juni (DE-627)559080840 (DE-600)2411867-9 1753-6561 nnns volume:8 year:2014 number:Suppl 1 day:17 month:06 https://dx.doi.org/10.1186/1753-6561-8-S1-S88 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2014 Suppl 1 17 06 |
allfieldsGer |
10.1186/1753-6561-8-S1-S88 doi (DE-627)SPR028454626 (SPR)1753-6561-8-S1-S88-e DE-627 ger DE-627 rakwb eng Houwing-Duistermaat, Jeanine J verfasserin aut Gene analysis for longitudinal family data using random-effects models 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Houwing-Duistermaat et al.; licensee BioMed Central Ltd. 2014 Abstract We have extended our recently developed 2-step approach for gene-based analysis to the family design and to the analysis of rare variants. The goal of this approach is to study the joint effect of multiple single-nucleotide polymorphisms that belong to a gene. First, the information in a gene is summarized by 2 variables, namely the empirical Bayes estimate capturing common variation and the number of rare variants. By using random effects for the common variants, our approach acknowledges the within-gene correlations. In the second step, the 2 summaries were included as covariates in linear mixed models. To test the null hypothesis of no association, a multivariate Wald test was applied. We analyzed the simulated data sets to assess the performance of the method. Then we applied the method to the real data set and identified a significant association between FRMD4B and diastolic blood pressure (p-value = 8.3 × $ 10^{-12} $). Linear Mixed Model (dpeaa)DE-He213 Rare Variant (dpeaa)DE-He213 Functional Locus (dpeaa)DE-He213 Gene Summary (dpeaa)DE-He213 Variant Call Format (dpeaa)DE-He213 Helmer, Quinta aut Balliu, Bruna aut van den Akker, Erik aut Tsonaka, Roula aut Uh, Hae-Won aut Enthalten in BMC proceedings London : BioMed Central, 2007 8(2014), Suppl 1 vom: 17. Juni (DE-627)559080840 (DE-600)2411867-9 1753-6561 nnns volume:8 year:2014 number:Suppl 1 day:17 month:06 https://dx.doi.org/10.1186/1753-6561-8-S1-S88 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2014 Suppl 1 17 06 |
allfieldsSound |
10.1186/1753-6561-8-S1-S88 doi (DE-627)SPR028454626 (SPR)1753-6561-8-S1-S88-e DE-627 ger DE-627 rakwb eng Houwing-Duistermaat, Jeanine J verfasserin aut Gene analysis for longitudinal family data using random-effects models 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Houwing-Duistermaat et al.; licensee BioMed Central Ltd. 2014 Abstract We have extended our recently developed 2-step approach for gene-based analysis to the family design and to the analysis of rare variants. The goal of this approach is to study the joint effect of multiple single-nucleotide polymorphisms that belong to a gene. First, the information in a gene is summarized by 2 variables, namely the empirical Bayes estimate capturing common variation and the number of rare variants. By using random effects for the common variants, our approach acknowledges the within-gene correlations. In the second step, the 2 summaries were included as covariates in linear mixed models. To test the null hypothesis of no association, a multivariate Wald test was applied. We analyzed the simulated data sets to assess the performance of the method. Then we applied the method to the real data set and identified a significant association between FRMD4B and diastolic blood pressure (p-value = 8.3 × $ 10^{-12} $). Linear Mixed Model (dpeaa)DE-He213 Rare Variant (dpeaa)DE-He213 Functional Locus (dpeaa)DE-He213 Gene Summary (dpeaa)DE-He213 Variant Call Format (dpeaa)DE-He213 Helmer, Quinta aut Balliu, Bruna aut van den Akker, Erik aut Tsonaka, Roula aut Uh, Hae-Won aut Enthalten in BMC proceedings London : BioMed Central, 2007 8(2014), Suppl 1 vom: 17. Juni (DE-627)559080840 (DE-600)2411867-9 1753-6561 nnns volume:8 year:2014 number:Suppl 1 day:17 month:06 https://dx.doi.org/10.1186/1753-6561-8-S1-S88 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2014 Suppl 1 17 06 |
language |
English |
source |
Enthalten in BMC proceedings 8(2014), Suppl 1 vom: 17. Juni volume:8 year:2014 number:Suppl 1 day:17 month:06 |
sourceStr |
Enthalten in BMC proceedings 8(2014), Suppl 1 vom: 17. Juni volume:8 year:2014 number:Suppl 1 day:17 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Linear Mixed Model Rare Variant Functional Locus Gene Summary Variant Call Format |
isfreeaccess_bool |
true |
container_title |
BMC proceedings |
authorswithroles_txt_mv |
Houwing-Duistermaat, Jeanine J @@aut@@ Helmer, Quinta @@aut@@ Balliu, Bruna @@aut@@ van den Akker, Erik @@aut@@ Tsonaka, Roula @@aut@@ Uh, Hae-Won @@aut@@ |
publishDateDaySort_date |
2014-06-17T00:00:00Z |
hierarchy_top_id |
559080840 |
id |
SPR028454626 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR028454626</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519174200.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1753-6561-8-S1-S88</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR028454626</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1753-6561-8-S1-S88-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Houwing-Duistermaat, Jeanine J</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gene analysis for longitudinal family data using random-effects models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Houwing-Duistermaat et al.; licensee BioMed Central Ltd. 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We have extended our recently developed 2-step approach for gene-based analysis to the family design and to the analysis of rare variants. The goal of this approach is to study the joint effect of multiple single-nucleotide polymorphisms that belong to a gene. First, the information in a gene is summarized by 2 variables, namely the empirical Bayes estimate capturing common variation and the number of rare variants. By using random effects for the common variants, our approach acknowledges the within-gene correlations. In the second step, the 2 summaries were included as covariates in linear mixed models. To test the null hypothesis of no association, a multivariate Wald test was applied. We analyzed the simulated data sets to assess the performance of the method. Then we applied the method to the real data set and identified a significant association between FRMD4B and diastolic blood pressure (p-value = 8.3 × $ 10^{-12} $).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear Mixed Model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rare Variant</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Locus</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gene Summary</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variant Call Format</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Helmer, Quinta</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balliu, Bruna</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van den Akker, Erik</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tsonaka, Roula</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Uh, Hae-Won</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC proceedings</subfield><subfield code="d">London : BioMed Central, 2007</subfield><subfield code="g">8(2014), Suppl 1 vom: 17. Juni</subfield><subfield code="w">(DE-627)559080840</subfield><subfield code="w">(DE-600)2411867-9</subfield><subfield code="x">1753-6561</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:Suppl 1</subfield><subfield code="g">day:17</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1753-6561-8-S1-S88</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2014</subfield><subfield code="e">Suppl 1</subfield><subfield code="b">17</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Houwing-Duistermaat, Jeanine J |
spellingShingle |
Houwing-Duistermaat, Jeanine J misc Linear Mixed Model misc Rare Variant misc Functional Locus misc Gene Summary misc Variant Call Format Gene analysis for longitudinal family data using random-effects models |
authorStr |
Houwing-Duistermaat, Jeanine J |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)559080840 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1753-6561 |
topic_title |
Gene analysis for longitudinal family data using random-effects models Linear Mixed Model (dpeaa)DE-He213 Rare Variant (dpeaa)DE-He213 Functional Locus (dpeaa)DE-He213 Gene Summary (dpeaa)DE-He213 Variant Call Format (dpeaa)DE-He213 |
topic |
misc Linear Mixed Model misc Rare Variant misc Functional Locus misc Gene Summary misc Variant Call Format |
topic_unstemmed |
misc Linear Mixed Model misc Rare Variant misc Functional Locus misc Gene Summary misc Variant Call Format |
topic_browse |
misc Linear Mixed Model misc Rare Variant misc Functional Locus misc Gene Summary misc Variant Call Format |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC proceedings |
hierarchy_parent_id |
559080840 |
hierarchy_top_title |
BMC proceedings |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)559080840 (DE-600)2411867-9 |
title |
Gene analysis for longitudinal family data using random-effects models |
ctrlnum |
(DE-627)SPR028454626 (SPR)1753-6561-8-S1-S88-e |
title_full |
Gene analysis for longitudinal family data using random-effects models |
author_sort |
Houwing-Duistermaat, Jeanine J |
journal |
BMC proceedings |
journalStr |
BMC proceedings |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
author_browse |
Houwing-Duistermaat, Jeanine J Helmer, Quinta Balliu, Bruna van den Akker, Erik Tsonaka, Roula Uh, Hae-Won |
container_volume |
8 |
format_se |
Elektronische Aufsätze |
author-letter |
Houwing-Duistermaat, Jeanine J |
doi_str_mv |
10.1186/1753-6561-8-S1-S88 |
title_sort |
gene analysis for longitudinal family data using random-effects models |
title_auth |
Gene analysis for longitudinal family data using random-effects models |
abstract |
Abstract We have extended our recently developed 2-step approach for gene-based analysis to the family design and to the analysis of rare variants. The goal of this approach is to study the joint effect of multiple single-nucleotide polymorphisms that belong to a gene. First, the information in a gene is summarized by 2 variables, namely the empirical Bayes estimate capturing common variation and the number of rare variants. By using random effects for the common variants, our approach acknowledges the within-gene correlations. In the second step, the 2 summaries were included as covariates in linear mixed models. To test the null hypothesis of no association, a multivariate Wald test was applied. We analyzed the simulated data sets to assess the performance of the method. Then we applied the method to the real data set and identified a significant association between FRMD4B and diastolic blood pressure (p-value = 8.3 × $ 10^{-12} $). © Houwing-Duistermaat et al.; licensee BioMed Central Ltd. 2014 |
abstractGer |
Abstract We have extended our recently developed 2-step approach for gene-based analysis to the family design and to the analysis of rare variants. The goal of this approach is to study the joint effect of multiple single-nucleotide polymorphisms that belong to a gene. First, the information in a gene is summarized by 2 variables, namely the empirical Bayes estimate capturing common variation and the number of rare variants. By using random effects for the common variants, our approach acknowledges the within-gene correlations. In the second step, the 2 summaries were included as covariates in linear mixed models. To test the null hypothesis of no association, a multivariate Wald test was applied. We analyzed the simulated data sets to assess the performance of the method. Then we applied the method to the real data set and identified a significant association between FRMD4B and diastolic blood pressure (p-value = 8.3 × $ 10^{-12} $). © Houwing-Duistermaat et al.; licensee BioMed Central Ltd. 2014 |
abstract_unstemmed |
Abstract We have extended our recently developed 2-step approach for gene-based analysis to the family design and to the analysis of rare variants. The goal of this approach is to study the joint effect of multiple single-nucleotide polymorphisms that belong to a gene. First, the information in a gene is summarized by 2 variables, namely the empirical Bayes estimate capturing common variation and the number of rare variants. By using random effects for the common variants, our approach acknowledges the within-gene correlations. In the second step, the 2 summaries were included as covariates in linear mixed models. To test the null hypothesis of no association, a multivariate Wald test was applied. We analyzed the simulated data sets to assess the performance of the method. Then we applied the method to the real data set and identified a significant association between FRMD4B and diastolic blood pressure (p-value = 8.3 × $ 10^{-12} $). © Houwing-Duistermaat et al.; licensee BioMed Central Ltd. 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
Suppl 1 |
title_short |
Gene analysis for longitudinal family data using random-effects models |
url |
https://dx.doi.org/10.1186/1753-6561-8-S1-S88 |
remote_bool |
true |
author2 |
Helmer, Quinta Balliu, Bruna van den Akker, Erik Tsonaka, Roula Uh, Hae-Won |
author2Str |
Helmer, Quinta Balliu, Bruna van den Akker, Erik Tsonaka, Roula Uh, Hae-Won |
ppnlink |
559080840 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1753-6561-8-S1-S88 |
up_date |
2024-07-03T19:32:48.806Z |
_version_ |
1803587597177454592 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR028454626</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519174200.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1753-6561-8-S1-S88</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR028454626</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1753-6561-8-S1-S88-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Houwing-Duistermaat, Jeanine J</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gene analysis for longitudinal family data using random-effects models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Houwing-Duistermaat et al.; licensee BioMed Central Ltd. 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We have extended our recently developed 2-step approach for gene-based analysis to the family design and to the analysis of rare variants. The goal of this approach is to study the joint effect of multiple single-nucleotide polymorphisms that belong to a gene. First, the information in a gene is summarized by 2 variables, namely the empirical Bayes estimate capturing common variation and the number of rare variants. By using random effects for the common variants, our approach acknowledges the within-gene correlations. In the second step, the 2 summaries were included as covariates in linear mixed models. To test the null hypothesis of no association, a multivariate Wald test was applied. We analyzed the simulated data sets to assess the performance of the method. Then we applied the method to the real data set and identified a significant association between FRMD4B and diastolic blood pressure (p-value = 8.3 × $ 10^{-12} $).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear Mixed Model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rare Variant</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Locus</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gene Summary</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variant Call Format</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Helmer, Quinta</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balliu, Bruna</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van den Akker, Erik</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tsonaka, Roula</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Uh, Hae-Won</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC proceedings</subfield><subfield code="d">London : BioMed Central, 2007</subfield><subfield code="g">8(2014), Suppl 1 vom: 17. Juni</subfield><subfield code="w">(DE-627)559080840</subfield><subfield code="w">(DE-600)2411867-9</subfield><subfield code="x">1753-6561</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:Suppl 1</subfield><subfield code="g">day:17</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1753-6561-8-S1-S88</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2014</subfield><subfield code="e">Suppl 1</subfield><subfield code="b">17</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.4013834 |