Joint screening of ultrahigh dimensional variables for family-based genetic studies
Background Mixed models are a useful tool for evaluating the association between an outcome variable and genetic variables from a family-based genetic study, taking into account the kinship coefficients. When there are ultrahigh dimensional genetic variables (ie, p ≫ n), it is challenging to fit any...
Ausführliche Beschreibung
Autor*in: |
Datta, Subha [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Anmerkung: |
© The Author(s). 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC proceedings - London : BioMed Central, 2007, 12(2018), Suppl 9 vom: 17. Sept. |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2018 ; number:Suppl 9 ; day:17 ; month:09 |
Links: |
---|
DOI / URN: |
10.1186/s12919-018-0120-2 |
---|
Katalog-ID: |
SPR028463641 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR028463641 | ||
003 | DE-627 | ||
005 | 20230519084646.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12919-018-0120-2 |2 doi | |
035 | |a (DE-627)SPR028463641 | ||
035 | |a (SPR)s12919-018-0120-2-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Datta, Subha |e verfasserin |4 aut | |
245 | 1 | 0 | |a Joint screening of ultrahigh dimensional variables for family-based genetic studies |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s). 2018 | ||
520 | |a Background Mixed models are a useful tool for evaluating the association between an outcome variable and genetic variables from a family-based genetic study, taking into account the kinship coefficients. When there are ultrahigh dimensional genetic variables (ie, p ≫ n), it is challenging to fit any mixed effect model. Methods We propose a two-stage strategy, screening genetic variables in the first stage and then fitting the mixed effect model in the second stage to those variables that survive the screening. For the screening stage, we can use the sure independence screening (SIS) procedure, which fits the mixed effect model to one genetic variable at a time. Because the SIS procedure may fail to identify those marginally unimportant but jointly important genetic variables, we propose a joint screening (JS) procedure that screens all the genetic variables simultaneously. We evaluate the performance of the proposed JS procedure via a simulation study and an application to the GAW20 data. Results We perform the proposed JS procedure on the GAW20 representative simulated data set (n = 680 participant(s) and p = 463,995 CpG cytosine-phosphate-guanine [CpG] sites) and select the top d = ⌊n/ log(n)⌋ variables. Then we fit the mixed model using these top variables. Under significance level, 5%, 43 CpG sites are found to be significant. Some diagnostic analyses based on the residuals show the fitted mixed model is appropriate. Conclusions Although the GAW20 data set is ultrahigh dimensional and family-based having within group variances, we were successful in performing subset selection using a two-step strategy that is computationally simple and easy to understand. | ||
700 | 1 | |a Fang, Yixin |4 aut | |
700 | 1 | |a Loh, Ji Meng |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC proceedings |d London : BioMed Central, 2007 |g 12(2018), Suppl 9 vom: 17. Sept. |w (DE-627)559080840 |w (DE-600)2411867-9 |x 1753-6561 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2018 |g number:Suppl 9 |g day:17 |g month:09 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12919-018-0120-2 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2018 |e Suppl 9 |b 17 |c 09 |
author_variant |
s d sd y f yf j m l jm jml |
---|---|
matchkey_str |
article:17536561:2018----::onsreigflrhgdmninlaibefraiy |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1186/s12919-018-0120-2 doi (DE-627)SPR028463641 (SPR)s12919-018-0120-2-e DE-627 ger DE-627 rakwb eng Datta, Subha verfasserin aut Joint screening of ultrahigh dimensional variables for family-based genetic studies 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2018 Background Mixed models are a useful tool for evaluating the association between an outcome variable and genetic variables from a family-based genetic study, taking into account the kinship coefficients. When there are ultrahigh dimensional genetic variables (ie, p ≫ n), it is challenging to fit any mixed effect model. Methods We propose a two-stage strategy, screening genetic variables in the first stage and then fitting the mixed effect model in the second stage to those variables that survive the screening. For the screening stage, we can use the sure independence screening (SIS) procedure, which fits the mixed effect model to one genetic variable at a time. Because the SIS procedure may fail to identify those marginally unimportant but jointly important genetic variables, we propose a joint screening (JS) procedure that screens all the genetic variables simultaneously. We evaluate the performance of the proposed JS procedure via a simulation study and an application to the GAW20 data. Results We perform the proposed JS procedure on the GAW20 representative simulated data set (n = 680 participant(s) and p = 463,995 CpG cytosine-phosphate-guanine [CpG] sites) and select the top d = ⌊n/ log(n)⌋ variables. Then we fit the mixed model using these top variables. Under significance level, 5%, 43 CpG sites are found to be significant. Some diagnostic analyses based on the residuals show the fitted mixed model is appropriate. Conclusions Although the GAW20 data set is ultrahigh dimensional and family-based having within group variances, we were successful in performing subset selection using a two-step strategy that is computationally simple and easy to understand. Fang, Yixin aut Loh, Ji Meng aut Enthalten in BMC proceedings London : BioMed Central, 2007 12(2018), Suppl 9 vom: 17. Sept. (DE-627)559080840 (DE-600)2411867-9 1753-6561 nnns volume:12 year:2018 number:Suppl 9 day:17 month:09 https://dx.doi.org/10.1186/s12919-018-0120-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2018 Suppl 9 17 09 |
spelling |
10.1186/s12919-018-0120-2 doi (DE-627)SPR028463641 (SPR)s12919-018-0120-2-e DE-627 ger DE-627 rakwb eng Datta, Subha verfasserin aut Joint screening of ultrahigh dimensional variables for family-based genetic studies 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2018 Background Mixed models are a useful tool for evaluating the association between an outcome variable and genetic variables from a family-based genetic study, taking into account the kinship coefficients. When there are ultrahigh dimensional genetic variables (ie, p ≫ n), it is challenging to fit any mixed effect model. Methods We propose a two-stage strategy, screening genetic variables in the first stage and then fitting the mixed effect model in the second stage to those variables that survive the screening. For the screening stage, we can use the sure independence screening (SIS) procedure, which fits the mixed effect model to one genetic variable at a time. Because the SIS procedure may fail to identify those marginally unimportant but jointly important genetic variables, we propose a joint screening (JS) procedure that screens all the genetic variables simultaneously. We evaluate the performance of the proposed JS procedure via a simulation study and an application to the GAW20 data. Results We perform the proposed JS procedure on the GAW20 representative simulated data set (n = 680 participant(s) and p = 463,995 CpG cytosine-phosphate-guanine [CpG] sites) and select the top d = ⌊n/ log(n)⌋ variables. Then we fit the mixed model using these top variables. Under significance level, 5%, 43 CpG sites are found to be significant. Some diagnostic analyses based on the residuals show the fitted mixed model is appropriate. Conclusions Although the GAW20 data set is ultrahigh dimensional and family-based having within group variances, we were successful in performing subset selection using a two-step strategy that is computationally simple and easy to understand. Fang, Yixin aut Loh, Ji Meng aut Enthalten in BMC proceedings London : BioMed Central, 2007 12(2018), Suppl 9 vom: 17. Sept. (DE-627)559080840 (DE-600)2411867-9 1753-6561 nnns volume:12 year:2018 number:Suppl 9 day:17 month:09 https://dx.doi.org/10.1186/s12919-018-0120-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2018 Suppl 9 17 09 |
allfields_unstemmed |
10.1186/s12919-018-0120-2 doi (DE-627)SPR028463641 (SPR)s12919-018-0120-2-e DE-627 ger DE-627 rakwb eng Datta, Subha verfasserin aut Joint screening of ultrahigh dimensional variables for family-based genetic studies 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2018 Background Mixed models are a useful tool for evaluating the association between an outcome variable and genetic variables from a family-based genetic study, taking into account the kinship coefficients. When there are ultrahigh dimensional genetic variables (ie, p ≫ n), it is challenging to fit any mixed effect model. Methods We propose a two-stage strategy, screening genetic variables in the first stage and then fitting the mixed effect model in the second stage to those variables that survive the screening. For the screening stage, we can use the sure independence screening (SIS) procedure, which fits the mixed effect model to one genetic variable at a time. Because the SIS procedure may fail to identify those marginally unimportant but jointly important genetic variables, we propose a joint screening (JS) procedure that screens all the genetic variables simultaneously. We evaluate the performance of the proposed JS procedure via a simulation study and an application to the GAW20 data. Results We perform the proposed JS procedure on the GAW20 representative simulated data set (n = 680 participant(s) and p = 463,995 CpG cytosine-phosphate-guanine [CpG] sites) and select the top d = ⌊n/ log(n)⌋ variables. Then we fit the mixed model using these top variables. Under significance level, 5%, 43 CpG sites are found to be significant. Some diagnostic analyses based on the residuals show the fitted mixed model is appropriate. Conclusions Although the GAW20 data set is ultrahigh dimensional and family-based having within group variances, we were successful in performing subset selection using a two-step strategy that is computationally simple and easy to understand. Fang, Yixin aut Loh, Ji Meng aut Enthalten in BMC proceedings London : BioMed Central, 2007 12(2018), Suppl 9 vom: 17. Sept. (DE-627)559080840 (DE-600)2411867-9 1753-6561 nnns volume:12 year:2018 number:Suppl 9 day:17 month:09 https://dx.doi.org/10.1186/s12919-018-0120-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2018 Suppl 9 17 09 |
allfieldsGer |
10.1186/s12919-018-0120-2 doi (DE-627)SPR028463641 (SPR)s12919-018-0120-2-e DE-627 ger DE-627 rakwb eng Datta, Subha verfasserin aut Joint screening of ultrahigh dimensional variables for family-based genetic studies 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2018 Background Mixed models are a useful tool for evaluating the association between an outcome variable and genetic variables from a family-based genetic study, taking into account the kinship coefficients. When there are ultrahigh dimensional genetic variables (ie, p ≫ n), it is challenging to fit any mixed effect model. Methods We propose a two-stage strategy, screening genetic variables in the first stage and then fitting the mixed effect model in the second stage to those variables that survive the screening. For the screening stage, we can use the sure independence screening (SIS) procedure, which fits the mixed effect model to one genetic variable at a time. Because the SIS procedure may fail to identify those marginally unimportant but jointly important genetic variables, we propose a joint screening (JS) procedure that screens all the genetic variables simultaneously. We evaluate the performance of the proposed JS procedure via a simulation study and an application to the GAW20 data. Results We perform the proposed JS procedure on the GAW20 representative simulated data set (n = 680 participant(s) and p = 463,995 CpG cytosine-phosphate-guanine [CpG] sites) and select the top d = ⌊n/ log(n)⌋ variables. Then we fit the mixed model using these top variables. Under significance level, 5%, 43 CpG sites are found to be significant. Some diagnostic analyses based on the residuals show the fitted mixed model is appropriate. Conclusions Although the GAW20 data set is ultrahigh dimensional and family-based having within group variances, we were successful in performing subset selection using a two-step strategy that is computationally simple and easy to understand. Fang, Yixin aut Loh, Ji Meng aut Enthalten in BMC proceedings London : BioMed Central, 2007 12(2018), Suppl 9 vom: 17. Sept. (DE-627)559080840 (DE-600)2411867-9 1753-6561 nnns volume:12 year:2018 number:Suppl 9 day:17 month:09 https://dx.doi.org/10.1186/s12919-018-0120-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2018 Suppl 9 17 09 |
allfieldsSound |
10.1186/s12919-018-0120-2 doi (DE-627)SPR028463641 (SPR)s12919-018-0120-2-e DE-627 ger DE-627 rakwb eng Datta, Subha verfasserin aut Joint screening of ultrahigh dimensional variables for family-based genetic studies 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2018 Background Mixed models are a useful tool for evaluating the association between an outcome variable and genetic variables from a family-based genetic study, taking into account the kinship coefficients. When there are ultrahigh dimensional genetic variables (ie, p ≫ n), it is challenging to fit any mixed effect model. Methods We propose a two-stage strategy, screening genetic variables in the first stage and then fitting the mixed effect model in the second stage to those variables that survive the screening. For the screening stage, we can use the sure independence screening (SIS) procedure, which fits the mixed effect model to one genetic variable at a time. Because the SIS procedure may fail to identify those marginally unimportant but jointly important genetic variables, we propose a joint screening (JS) procedure that screens all the genetic variables simultaneously. We evaluate the performance of the proposed JS procedure via a simulation study and an application to the GAW20 data. Results We perform the proposed JS procedure on the GAW20 representative simulated data set (n = 680 participant(s) and p = 463,995 CpG cytosine-phosphate-guanine [CpG] sites) and select the top d = ⌊n/ log(n)⌋ variables. Then we fit the mixed model using these top variables. Under significance level, 5%, 43 CpG sites are found to be significant. Some diagnostic analyses based on the residuals show the fitted mixed model is appropriate. Conclusions Although the GAW20 data set is ultrahigh dimensional and family-based having within group variances, we were successful in performing subset selection using a two-step strategy that is computationally simple and easy to understand. Fang, Yixin aut Loh, Ji Meng aut Enthalten in BMC proceedings London : BioMed Central, 2007 12(2018), Suppl 9 vom: 17. Sept. (DE-627)559080840 (DE-600)2411867-9 1753-6561 nnns volume:12 year:2018 number:Suppl 9 day:17 month:09 https://dx.doi.org/10.1186/s12919-018-0120-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2018 Suppl 9 17 09 |
language |
English |
source |
Enthalten in BMC proceedings 12(2018), Suppl 9 vom: 17. Sept. volume:12 year:2018 number:Suppl 9 day:17 month:09 |
sourceStr |
Enthalten in BMC proceedings 12(2018), Suppl 9 vom: 17. Sept. volume:12 year:2018 number:Suppl 9 day:17 month:09 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
isfreeaccess_bool |
true |
container_title |
BMC proceedings |
authorswithroles_txt_mv |
Datta, Subha @@aut@@ Fang, Yixin @@aut@@ Loh, Ji Meng @@aut@@ |
publishDateDaySort_date |
2018-09-17T00:00:00Z |
hierarchy_top_id |
559080840 |
id |
SPR028463641 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR028463641</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519084646.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12919-018-0120-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR028463641</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12919-018-0120-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Datta, Subha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Joint screening of ultrahigh dimensional variables for family-based genetic studies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Mixed models are a useful tool for evaluating the association between an outcome variable and genetic variables from a family-based genetic study, taking into account the kinship coefficients. When there are ultrahigh dimensional genetic variables (ie, p ≫ n), it is challenging to fit any mixed effect model. Methods We propose a two-stage strategy, screening genetic variables in the first stage and then fitting the mixed effect model in the second stage to those variables that survive the screening. For the screening stage, we can use the sure independence screening (SIS) procedure, which fits the mixed effect model to one genetic variable at a time. Because the SIS procedure may fail to identify those marginally unimportant but jointly important genetic variables, we propose a joint screening (JS) procedure that screens all the genetic variables simultaneously. We evaluate the performance of the proposed JS procedure via a simulation study and an application to the GAW20 data. Results We perform the proposed JS procedure on the GAW20 representative simulated data set (n = 680 participant(s) and p = 463,995 CpG cytosine-phosphate-guanine [CpG] sites) and select the top d = ⌊n/ log(n)⌋ variables. Then we fit the mixed model using these top variables. Under significance level, 5%, 43 CpG sites are found to be significant. Some diagnostic analyses based on the residuals show the fitted mixed model is appropriate. Conclusions Although the GAW20 data set is ultrahigh dimensional and family-based having within group variances, we were successful in performing subset selection using a two-step strategy that is computationally simple and easy to understand.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Yixin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Loh, Ji Meng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC proceedings</subfield><subfield code="d">London : BioMed Central, 2007</subfield><subfield code="g">12(2018), Suppl 9 vom: 17. Sept.</subfield><subfield code="w">(DE-627)559080840</subfield><subfield code="w">(DE-600)2411867-9</subfield><subfield code="x">1753-6561</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:Suppl 9</subfield><subfield code="g">day:17</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12919-018-0120-2</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2018</subfield><subfield code="e">Suppl 9</subfield><subfield code="b">17</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
author |
Datta, Subha |
spellingShingle |
Datta, Subha Joint screening of ultrahigh dimensional variables for family-based genetic studies |
authorStr |
Datta, Subha |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)559080840 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1753-6561 |
topic_title |
Joint screening of ultrahigh dimensional variables for family-based genetic studies |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC proceedings |
hierarchy_parent_id |
559080840 |
hierarchy_top_title |
BMC proceedings |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)559080840 (DE-600)2411867-9 |
title |
Joint screening of ultrahigh dimensional variables for family-based genetic studies |
ctrlnum |
(DE-627)SPR028463641 (SPR)s12919-018-0120-2-e |
title_full |
Joint screening of ultrahigh dimensional variables for family-based genetic studies |
author_sort |
Datta, Subha |
journal |
BMC proceedings |
journalStr |
BMC proceedings |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Datta, Subha Fang, Yixin Loh, Ji Meng |
container_volume |
12 |
format_se |
Elektronische Aufsätze |
author-letter |
Datta, Subha |
doi_str_mv |
10.1186/s12919-018-0120-2 |
title_sort |
joint screening of ultrahigh dimensional variables for family-based genetic studies |
title_auth |
Joint screening of ultrahigh dimensional variables for family-based genetic studies |
abstract |
Background Mixed models are a useful tool for evaluating the association between an outcome variable and genetic variables from a family-based genetic study, taking into account the kinship coefficients. When there are ultrahigh dimensional genetic variables (ie, p ≫ n), it is challenging to fit any mixed effect model. Methods We propose a two-stage strategy, screening genetic variables in the first stage and then fitting the mixed effect model in the second stage to those variables that survive the screening. For the screening stage, we can use the sure independence screening (SIS) procedure, which fits the mixed effect model to one genetic variable at a time. Because the SIS procedure may fail to identify those marginally unimportant but jointly important genetic variables, we propose a joint screening (JS) procedure that screens all the genetic variables simultaneously. We evaluate the performance of the proposed JS procedure via a simulation study and an application to the GAW20 data. Results We perform the proposed JS procedure on the GAW20 representative simulated data set (n = 680 participant(s) and p = 463,995 CpG cytosine-phosphate-guanine [CpG] sites) and select the top d = ⌊n/ log(n)⌋ variables. Then we fit the mixed model using these top variables. Under significance level, 5%, 43 CpG sites are found to be significant. Some diagnostic analyses based on the residuals show the fitted mixed model is appropriate. Conclusions Although the GAW20 data set is ultrahigh dimensional and family-based having within group variances, we were successful in performing subset selection using a two-step strategy that is computationally simple and easy to understand. © The Author(s). 2018 |
abstractGer |
Background Mixed models are a useful tool for evaluating the association between an outcome variable and genetic variables from a family-based genetic study, taking into account the kinship coefficients. When there are ultrahigh dimensional genetic variables (ie, p ≫ n), it is challenging to fit any mixed effect model. Methods We propose a two-stage strategy, screening genetic variables in the first stage and then fitting the mixed effect model in the second stage to those variables that survive the screening. For the screening stage, we can use the sure independence screening (SIS) procedure, which fits the mixed effect model to one genetic variable at a time. Because the SIS procedure may fail to identify those marginally unimportant but jointly important genetic variables, we propose a joint screening (JS) procedure that screens all the genetic variables simultaneously. We evaluate the performance of the proposed JS procedure via a simulation study and an application to the GAW20 data. Results We perform the proposed JS procedure on the GAW20 representative simulated data set (n = 680 participant(s) and p = 463,995 CpG cytosine-phosphate-guanine [CpG] sites) and select the top d = ⌊n/ log(n)⌋ variables. Then we fit the mixed model using these top variables. Under significance level, 5%, 43 CpG sites are found to be significant. Some diagnostic analyses based on the residuals show the fitted mixed model is appropriate. Conclusions Although the GAW20 data set is ultrahigh dimensional and family-based having within group variances, we were successful in performing subset selection using a two-step strategy that is computationally simple and easy to understand. © The Author(s). 2018 |
abstract_unstemmed |
Background Mixed models are a useful tool for evaluating the association between an outcome variable and genetic variables from a family-based genetic study, taking into account the kinship coefficients. When there are ultrahigh dimensional genetic variables (ie, p ≫ n), it is challenging to fit any mixed effect model. Methods We propose a two-stage strategy, screening genetic variables in the first stage and then fitting the mixed effect model in the second stage to those variables that survive the screening. For the screening stage, we can use the sure independence screening (SIS) procedure, which fits the mixed effect model to one genetic variable at a time. Because the SIS procedure may fail to identify those marginally unimportant but jointly important genetic variables, we propose a joint screening (JS) procedure that screens all the genetic variables simultaneously. We evaluate the performance of the proposed JS procedure via a simulation study and an application to the GAW20 data. Results We perform the proposed JS procedure on the GAW20 representative simulated data set (n = 680 participant(s) and p = 463,995 CpG cytosine-phosphate-guanine [CpG] sites) and select the top d = ⌊n/ log(n)⌋ variables. Then we fit the mixed model using these top variables. Under significance level, 5%, 43 CpG sites are found to be significant. Some diagnostic analyses based on the residuals show the fitted mixed model is appropriate. Conclusions Although the GAW20 data set is ultrahigh dimensional and family-based having within group variances, we were successful in performing subset selection using a two-step strategy that is computationally simple and easy to understand. © The Author(s). 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
Suppl 9 |
title_short |
Joint screening of ultrahigh dimensional variables for family-based genetic studies |
url |
https://dx.doi.org/10.1186/s12919-018-0120-2 |
remote_bool |
true |
author2 |
Fang, Yixin Loh, Ji Meng |
author2Str |
Fang, Yixin Loh, Ji Meng |
ppnlink |
559080840 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12919-018-0120-2 |
up_date |
2024-07-03T19:35:18.580Z |
_version_ |
1803587754218487808 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR028463641</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519084646.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12919-018-0120-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR028463641</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12919-018-0120-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Datta, Subha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Joint screening of ultrahigh dimensional variables for family-based genetic studies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Mixed models are a useful tool for evaluating the association between an outcome variable and genetic variables from a family-based genetic study, taking into account the kinship coefficients. When there are ultrahigh dimensional genetic variables (ie, p ≫ n), it is challenging to fit any mixed effect model. Methods We propose a two-stage strategy, screening genetic variables in the first stage and then fitting the mixed effect model in the second stage to those variables that survive the screening. For the screening stage, we can use the sure independence screening (SIS) procedure, which fits the mixed effect model to one genetic variable at a time. Because the SIS procedure may fail to identify those marginally unimportant but jointly important genetic variables, we propose a joint screening (JS) procedure that screens all the genetic variables simultaneously. We evaluate the performance of the proposed JS procedure via a simulation study and an application to the GAW20 data. Results We perform the proposed JS procedure on the GAW20 representative simulated data set (n = 680 participant(s) and p = 463,995 CpG cytosine-phosphate-guanine [CpG] sites) and select the top d = ⌊n/ log(n)⌋ variables. Then we fit the mixed model using these top variables. Under significance level, 5%, 43 CpG sites are found to be significant. Some diagnostic analyses based on the residuals show the fitted mixed model is appropriate. Conclusions Although the GAW20 data set is ultrahigh dimensional and family-based having within group variances, we were successful in performing subset selection using a two-step strategy that is computationally simple and easy to understand.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Yixin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Loh, Ji Meng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC proceedings</subfield><subfield code="d">London : BioMed Central, 2007</subfield><subfield code="g">12(2018), Suppl 9 vom: 17. Sept.</subfield><subfield code="w">(DE-627)559080840</subfield><subfield code="w">(DE-600)2411867-9</subfield><subfield code="x">1753-6561</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:Suppl 9</subfield><subfield code="g">day:17</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12919-018-0120-2</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2018</subfield><subfield code="e">Suppl 9</subfield><subfield code="b">17</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
score |
7.3993406 |