Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate l-pipecolic acid in Escherichia coli
Background The six-carbon circular non-proteinogenic compound l-pipecolic acid is an important chiral drug intermediate with many applications in the pharmaceutical industry. In the present study, we developed a metabolically engineered strain of Escherichia coli for the overproduction of l-pipecoli...
Ausführliche Beschreibung
Autor*in: |
Ying, Hanxiao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Microbial cell factories - London : Biomed Central, 2002, 16(2017), 1 vom: 27. März |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2017 ; number:1 ; day:27 ; month:03 |
Links: |
---|
DOI / URN: |
10.1186/s12934-017-0666-0 |
---|
Katalog-ID: |
SPR028570928 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR028570928 | ||
003 | DE-627 | ||
005 | 20230519204949.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12934-017-0666-0 |2 doi | |
035 | |a (DE-627)SPR028570928 | ||
035 | |a (SPR)s12934-017-0666-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Ying, Hanxiao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate l-pipecolic acid in Escherichia coli |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2017 | ||
520 | |a Background The six-carbon circular non-proteinogenic compound l-pipecolic acid is an important chiral drug intermediate with many applications in the pharmaceutical industry. In the present study, we developed a metabolically engineered strain of Escherichia coli for the overproduction of l-pipecolic acid from glucose. Results The metabolic pathway from l-lysine to l-pipecolic acid was constructed initially by introducing lysine cyclodeaminase (LCD). Next, l-lysine metabolic flux from glucose was amplified by the plasmid-based overexpression of dapA, lysC, and lysA under the control of the strong trc promoter to increase the biosynthetic pool of the precursor l-lysine. Additionally, since the catalytic efficiency of the key enzyme LCD is limited by the cofactor $ NAD^{+} $, the intracellular pyridine nucleotide concentration was rebalanced by expressing the pntAB gene encoding the transhydrogenase, which elevated the proportion of LCD with bound $ NAD^{+} $ and enhanced l-pipecolic acid production significantly. Further, optimization of $ Fe^{2+} $ and surfactant in the fermentation process resulted in 5.33 g/L l-pipecolic acid, with a yield of 0.13 g/g of glucose via fed-batch cultivation. Conclusions We expanded the metabolic pathway for the synthesis of the chiral pharmaceutical intermediate l-pipecolic acid in E. coli. Using the engineered E. coli, a fast and efficient fermentative production of l-pipecolic acid was achieved. This strategy could be applied to the biosynthesis of other commercially and industrially important chiral compounds containing piperidine rings. | ||
650 | 4 | |a Chiral intermediate biosynthesis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Lysine cyclodeaminase |7 (dpeaa)DE-He213 | |
650 | 4 | |a -Pipecolic acid |7 (dpeaa)DE-He213 | |
650 | 4 | |a Metabolic engineering |7 (dpeaa)DE-He213 | |
650 | 4 | |a Cofactor engineering |7 (dpeaa)DE-He213 | |
700 | 1 | |a Tao, Sha |4 aut | |
700 | 1 | |a Wang, Jing |4 aut | |
700 | 1 | |a Ma, Weichao |4 aut | |
700 | 1 | |a Chen, Kequan |4 aut | |
700 | 1 | |a Wang, Xin |4 aut | |
700 | 1 | |a Ouyang, Pingkai |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Microbial cell factories |d London : Biomed Central, 2002 |g 16(2017), 1 vom: 27. März |w (DE-627)355987651 |w (DE-600)2091377-1 |x 1475-2859 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2017 |g number:1 |g day:27 |g month:03 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12934-017-0666-0 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 16 |j 2017 |e 1 |b 27 |c 03 |
author_variant |
h y hy s t st j w jw w m wm k c kc x w xw p o po |
---|---|
matchkey_str |
article:14752859:2017----::xadnmtblcahafreooisnhssfhciapamcuiaitreitl |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1186/s12934-017-0666-0 doi (DE-627)SPR028570928 (SPR)s12934-017-0666-0-e DE-627 ger DE-627 rakwb eng Ying, Hanxiao verfasserin aut Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate l-pipecolic acid in Escherichia coli 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2017 Background The six-carbon circular non-proteinogenic compound l-pipecolic acid is an important chiral drug intermediate with many applications in the pharmaceutical industry. In the present study, we developed a metabolically engineered strain of Escherichia coli for the overproduction of l-pipecolic acid from glucose. Results The metabolic pathway from l-lysine to l-pipecolic acid was constructed initially by introducing lysine cyclodeaminase (LCD). Next, l-lysine metabolic flux from glucose was amplified by the plasmid-based overexpression of dapA, lysC, and lysA under the control of the strong trc promoter to increase the biosynthetic pool of the precursor l-lysine. Additionally, since the catalytic efficiency of the key enzyme LCD is limited by the cofactor $ NAD^{+} $, the intracellular pyridine nucleotide concentration was rebalanced by expressing the pntAB gene encoding the transhydrogenase, which elevated the proportion of LCD with bound $ NAD^{+} $ and enhanced l-pipecolic acid production significantly. Further, optimization of $ Fe^{2+} $ and surfactant in the fermentation process resulted in 5.33 g/L l-pipecolic acid, with a yield of 0.13 g/g of glucose via fed-batch cultivation. Conclusions We expanded the metabolic pathway for the synthesis of the chiral pharmaceutical intermediate l-pipecolic acid in E. coli. Using the engineered E. coli, a fast and efficient fermentative production of l-pipecolic acid was achieved. This strategy could be applied to the biosynthesis of other commercially and industrially important chiral compounds containing piperidine rings. Chiral intermediate biosynthesis (dpeaa)DE-He213 Lysine cyclodeaminase (dpeaa)DE-He213 -Pipecolic acid (dpeaa)DE-He213 Metabolic engineering (dpeaa)DE-He213 Cofactor engineering (dpeaa)DE-He213 Tao, Sha aut Wang, Jing aut Ma, Weichao aut Chen, Kequan aut Wang, Xin aut Ouyang, Pingkai aut Enthalten in Microbial cell factories London : Biomed Central, 2002 16(2017), 1 vom: 27. März (DE-627)355987651 (DE-600)2091377-1 1475-2859 nnns volume:16 year:2017 number:1 day:27 month:03 https://dx.doi.org/10.1186/s12934-017-0666-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2017 1 27 03 |
spelling |
10.1186/s12934-017-0666-0 doi (DE-627)SPR028570928 (SPR)s12934-017-0666-0-e DE-627 ger DE-627 rakwb eng Ying, Hanxiao verfasserin aut Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate l-pipecolic acid in Escherichia coli 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2017 Background The six-carbon circular non-proteinogenic compound l-pipecolic acid is an important chiral drug intermediate with many applications in the pharmaceutical industry. In the present study, we developed a metabolically engineered strain of Escherichia coli for the overproduction of l-pipecolic acid from glucose. Results The metabolic pathway from l-lysine to l-pipecolic acid was constructed initially by introducing lysine cyclodeaminase (LCD). Next, l-lysine metabolic flux from glucose was amplified by the plasmid-based overexpression of dapA, lysC, and lysA under the control of the strong trc promoter to increase the biosynthetic pool of the precursor l-lysine. Additionally, since the catalytic efficiency of the key enzyme LCD is limited by the cofactor $ NAD^{+} $, the intracellular pyridine nucleotide concentration was rebalanced by expressing the pntAB gene encoding the transhydrogenase, which elevated the proportion of LCD with bound $ NAD^{+} $ and enhanced l-pipecolic acid production significantly. Further, optimization of $ Fe^{2+} $ and surfactant in the fermentation process resulted in 5.33 g/L l-pipecolic acid, with a yield of 0.13 g/g of glucose via fed-batch cultivation. Conclusions We expanded the metabolic pathway for the synthesis of the chiral pharmaceutical intermediate l-pipecolic acid in E. coli. Using the engineered E. coli, a fast and efficient fermentative production of l-pipecolic acid was achieved. This strategy could be applied to the biosynthesis of other commercially and industrially important chiral compounds containing piperidine rings. Chiral intermediate biosynthesis (dpeaa)DE-He213 Lysine cyclodeaminase (dpeaa)DE-He213 -Pipecolic acid (dpeaa)DE-He213 Metabolic engineering (dpeaa)DE-He213 Cofactor engineering (dpeaa)DE-He213 Tao, Sha aut Wang, Jing aut Ma, Weichao aut Chen, Kequan aut Wang, Xin aut Ouyang, Pingkai aut Enthalten in Microbial cell factories London : Biomed Central, 2002 16(2017), 1 vom: 27. März (DE-627)355987651 (DE-600)2091377-1 1475-2859 nnns volume:16 year:2017 number:1 day:27 month:03 https://dx.doi.org/10.1186/s12934-017-0666-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2017 1 27 03 |
allfields_unstemmed |
10.1186/s12934-017-0666-0 doi (DE-627)SPR028570928 (SPR)s12934-017-0666-0-e DE-627 ger DE-627 rakwb eng Ying, Hanxiao verfasserin aut Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate l-pipecolic acid in Escherichia coli 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2017 Background The six-carbon circular non-proteinogenic compound l-pipecolic acid is an important chiral drug intermediate with many applications in the pharmaceutical industry. In the present study, we developed a metabolically engineered strain of Escherichia coli for the overproduction of l-pipecolic acid from glucose. Results The metabolic pathway from l-lysine to l-pipecolic acid was constructed initially by introducing lysine cyclodeaminase (LCD). Next, l-lysine metabolic flux from glucose was amplified by the plasmid-based overexpression of dapA, lysC, and lysA under the control of the strong trc promoter to increase the biosynthetic pool of the precursor l-lysine. Additionally, since the catalytic efficiency of the key enzyme LCD is limited by the cofactor $ NAD^{+} $, the intracellular pyridine nucleotide concentration was rebalanced by expressing the pntAB gene encoding the transhydrogenase, which elevated the proportion of LCD with bound $ NAD^{+} $ and enhanced l-pipecolic acid production significantly. Further, optimization of $ Fe^{2+} $ and surfactant in the fermentation process resulted in 5.33 g/L l-pipecolic acid, with a yield of 0.13 g/g of glucose via fed-batch cultivation. Conclusions We expanded the metabolic pathway for the synthesis of the chiral pharmaceutical intermediate l-pipecolic acid in E. coli. Using the engineered E. coli, a fast and efficient fermentative production of l-pipecolic acid was achieved. This strategy could be applied to the biosynthesis of other commercially and industrially important chiral compounds containing piperidine rings. Chiral intermediate biosynthesis (dpeaa)DE-He213 Lysine cyclodeaminase (dpeaa)DE-He213 -Pipecolic acid (dpeaa)DE-He213 Metabolic engineering (dpeaa)DE-He213 Cofactor engineering (dpeaa)DE-He213 Tao, Sha aut Wang, Jing aut Ma, Weichao aut Chen, Kequan aut Wang, Xin aut Ouyang, Pingkai aut Enthalten in Microbial cell factories London : Biomed Central, 2002 16(2017), 1 vom: 27. März (DE-627)355987651 (DE-600)2091377-1 1475-2859 nnns volume:16 year:2017 number:1 day:27 month:03 https://dx.doi.org/10.1186/s12934-017-0666-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2017 1 27 03 |
allfieldsGer |
10.1186/s12934-017-0666-0 doi (DE-627)SPR028570928 (SPR)s12934-017-0666-0-e DE-627 ger DE-627 rakwb eng Ying, Hanxiao verfasserin aut Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate l-pipecolic acid in Escherichia coli 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2017 Background The six-carbon circular non-proteinogenic compound l-pipecolic acid is an important chiral drug intermediate with many applications in the pharmaceutical industry. In the present study, we developed a metabolically engineered strain of Escherichia coli for the overproduction of l-pipecolic acid from glucose. Results The metabolic pathway from l-lysine to l-pipecolic acid was constructed initially by introducing lysine cyclodeaminase (LCD). Next, l-lysine metabolic flux from glucose was amplified by the plasmid-based overexpression of dapA, lysC, and lysA under the control of the strong trc promoter to increase the biosynthetic pool of the precursor l-lysine. Additionally, since the catalytic efficiency of the key enzyme LCD is limited by the cofactor $ NAD^{+} $, the intracellular pyridine nucleotide concentration was rebalanced by expressing the pntAB gene encoding the transhydrogenase, which elevated the proportion of LCD with bound $ NAD^{+} $ and enhanced l-pipecolic acid production significantly. Further, optimization of $ Fe^{2+} $ and surfactant in the fermentation process resulted in 5.33 g/L l-pipecolic acid, with a yield of 0.13 g/g of glucose via fed-batch cultivation. Conclusions We expanded the metabolic pathway for the synthesis of the chiral pharmaceutical intermediate l-pipecolic acid in E. coli. Using the engineered E. coli, a fast and efficient fermentative production of l-pipecolic acid was achieved. This strategy could be applied to the biosynthesis of other commercially and industrially important chiral compounds containing piperidine rings. Chiral intermediate biosynthesis (dpeaa)DE-He213 Lysine cyclodeaminase (dpeaa)DE-He213 -Pipecolic acid (dpeaa)DE-He213 Metabolic engineering (dpeaa)DE-He213 Cofactor engineering (dpeaa)DE-He213 Tao, Sha aut Wang, Jing aut Ma, Weichao aut Chen, Kequan aut Wang, Xin aut Ouyang, Pingkai aut Enthalten in Microbial cell factories London : Biomed Central, 2002 16(2017), 1 vom: 27. März (DE-627)355987651 (DE-600)2091377-1 1475-2859 nnns volume:16 year:2017 number:1 day:27 month:03 https://dx.doi.org/10.1186/s12934-017-0666-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2017 1 27 03 |
allfieldsSound |
10.1186/s12934-017-0666-0 doi (DE-627)SPR028570928 (SPR)s12934-017-0666-0-e DE-627 ger DE-627 rakwb eng Ying, Hanxiao verfasserin aut Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate l-pipecolic acid in Escherichia coli 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2017 Background The six-carbon circular non-proteinogenic compound l-pipecolic acid is an important chiral drug intermediate with many applications in the pharmaceutical industry. In the present study, we developed a metabolically engineered strain of Escherichia coli for the overproduction of l-pipecolic acid from glucose. Results The metabolic pathway from l-lysine to l-pipecolic acid was constructed initially by introducing lysine cyclodeaminase (LCD). Next, l-lysine metabolic flux from glucose was amplified by the plasmid-based overexpression of dapA, lysC, and lysA under the control of the strong trc promoter to increase the biosynthetic pool of the precursor l-lysine. Additionally, since the catalytic efficiency of the key enzyme LCD is limited by the cofactor $ NAD^{+} $, the intracellular pyridine nucleotide concentration was rebalanced by expressing the pntAB gene encoding the transhydrogenase, which elevated the proportion of LCD with bound $ NAD^{+} $ and enhanced l-pipecolic acid production significantly. Further, optimization of $ Fe^{2+} $ and surfactant in the fermentation process resulted in 5.33 g/L l-pipecolic acid, with a yield of 0.13 g/g of glucose via fed-batch cultivation. Conclusions We expanded the metabolic pathway for the synthesis of the chiral pharmaceutical intermediate l-pipecolic acid in E. coli. Using the engineered E. coli, a fast and efficient fermentative production of l-pipecolic acid was achieved. This strategy could be applied to the biosynthesis of other commercially and industrially important chiral compounds containing piperidine rings. Chiral intermediate biosynthesis (dpeaa)DE-He213 Lysine cyclodeaminase (dpeaa)DE-He213 -Pipecolic acid (dpeaa)DE-He213 Metabolic engineering (dpeaa)DE-He213 Cofactor engineering (dpeaa)DE-He213 Tao, Sha aut Wang, Jing aut Ma, Weichao aut Chen, Kequan aut Wang, Xin aut Ouyang, Pingkai aut Enthalten in Microbial cell factories London : Biomed Central, 2002 16(2017), 1 vom: 27. März (DE-627)355987651 (DE-600)2091377-1 1475-2859 nnns volume:16 year:2017 number:1 day:27 month:03 https://dx.doi.org/10.1186/s12934-017-0666-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2017 1 27 03 |
language |
English |
source |
Enthalten in Microbial cell factories 16(2017), 1 vom: 27. März volume:16 year:2017 number:1 day:27 month:03 |
sourceStr |
Enthalten in Microbial cell factories 16(2017), 1 vom: 27. März volume:16 year:2017 number:1 day:27 month:03 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Chiral intermediate biosynthesis Lysine cyclodeaminase -Pipecolic acid Metabolic engineering Cofactor engineering |
isfreeaccess_bool |
true |
container_title |
Microbial cell factories |
authorswithroles_txt_mv |
Ying, Hanxiao @@aut@@ Tao, Sha @@aut@@ Wang, Jing @@aut@@ Ma, Weichao @@aut@@ Chen, Kequan @@aut@@ Wang, Xin @@aut@@ Ouyang, Pingkai @@aut@@ |
publishDateDaySort_date |
2017-03-27T00:00:00Z |
hierarchy_top_id |
355987651 |
id |
SPR028570928 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR028570928</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519204949.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12934-017-0666-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR028570928</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12934-017-0666-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ying, Hanxiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate l-pipecolic acid in Escherichia coli</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The six-carbon circular non-proteinogenic compound l-pipecolic acid is an important chiral drug intermediate with many applications in the pharmaceutical industry. In the present study, we developed a metabolically engineered strain of Escherichia coli for the overproduction of l-pipecolic acid from glucose. Results The metabolic pathway from l-lysine to l-pipecolic acid was constructed initially by introducing lysine cyclodeaminase (LCD). Next, l-lysine metabolic flux from glucose was amplified by the plasmid-based overexpression of dapA, lysC, and lysA under the control of the strong trc promoter to increase the biosynthetic pool of the precursor l-lysine. Additionally, since the catalytic efficiency of the key enzyme LCD is limited by the cofactor $ NAD^{+} $, the intracellular pyridine nucleotide concentration was rebalanced by expressing the pntAB gene encoding the transhydrogenase, which elevated the proportion of LCD with bound $ NAD^{+} $ and enhanced l-pipecolic acid production significantly. Further, optimization of $ Fe^{2+} $ and surfactant in the fermentation process resulted in 5.33 g/L l-pipecolic acid, with a yield of 0.13 g/g of glucose via fed-batch cultivation. Conclusions We expanded the metabolic pathway for the synthesis of the chiral pharmaceutical intermediate l-pipecolic acid in E. coli. Using the engineered E. coli, a fast and efficient fermentative production of l-pipecolic acid was achieved. This strategy could be applied to the biosynthesis of other commercially and industrially important chiral compounds containing piperidine rings.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chiral intermediate biosynthesis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lysine cyclodeaminase</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-Pipecolic acid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metabolic engineering</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cofactor engineering</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tao, Sha</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Weichao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Kequan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ouyang, Pingkai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Microbial cell factories</subfield><subfield code="d">London : Biomed Central, 2002</subfield><subfield code="g">16(2017), 1 vom: 27. März</subfield><subfield code="w">(DE-627)355987651</subfield><subfield code="w">(DE-600)2091377-1</subfield><subfield code="x">1475-2859</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">day:27</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12934-017-0666-0</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="b">27</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
author |
Ying, Hanxiao |
spellingShingle |
Ying, Hanxiao misc Chiral intermediate biosynthesis misc Lysine cyclodeaminase misc -Pipecolic acid misc Metabolic engineering misc Cofactor engineering Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate l-pipecolic acid in Escherichia coli |
authorStr |
Ying, Hanxiao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)355987651 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1475-2859 |
topic_title |
Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate l-pipecolic acid in Escherichia coli Chiral intermediate biosynthesis (dpeaa)DE-He213 Lysine cyclodeaminase (dpeaa)DE-He213 -Pipecolic acid (dpeaa)DE-He213 Metabolic engineering (dpeaa)DE-He213 Cofactor engineering (dpeaa)DE-He213 |
topic |
misc Chiral intermediate biosynthesis misc Lysine cyclodeaminase misc -Pipecolic acid misc Metabolic engineering misc Cofactor engineering |
topic_unstemmed |
misc Chiral intermediate biosynthesis misc Lysine cyclodeaminase misc -Pipecolic acid misc Metabolic engineering misc Cofactor engineering |
topic_browse |
misc Chiral intermediate biosynthesis misc Lysine cyclodeaminase misc -Pipecolic acid misc Metabolic engineering misc Cofactor engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Microbial cell factories |
hierarchy_parent_id |
355987651 |
hierarchy_top_title |
Microbial cell factories |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)355987651 (DE-600)2091377-1 |
title |
Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate l-pipecolic acid in Escherichia coli |
ctrlnum |
(DE-627)SPR028570928 (SPR)s12934-017-0666-0-e |
title_full |
Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate l-pipecolic acid in Escherichia coli |
author_sort |
Ying, Hanxiao |
journal |
Microbial cell factories |
journalStr |
Microbial cell factories |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
author_browse |
Ying, Hanxiao Tao, Sha Wang, Jing Ma, Weichao Chen, Kequan Wang, Xin Ouyang, Pingkai |
container_volume |
16 |
format_se |
Elektronische Aufsätze |
author-letter |
Ying, Hanxiao |
doi_str_mv |
10.1186/s12934-017-0666-0 |
title_sort |
expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate l-pipecolic acid in escherichia coli |
title_auth |
Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate l-pipecolic acid in Escherichia coli |
abstract |
Background The six-carbon circular non-proteinogenic compound l-pipecolic acid is an important chiral drug intermediate with many applications in the pharmaceutical industry. In the present study, we developed a metabolically engineered strain of Escherichia coli for the overproduction of l-pipecolic acid from glucose. Results The metabolic pathway from l-lysine to l-pipecolic acid was constructed initially by introducing lysine cyclodeaminase (LCD). Next, l-lysine metabolic flux from glucose was amplified by the plasmid-based overexpression of dapA, lysC, and lysA under the control of the strong trc promoter to increase the biosynthetic pool of the precursor l-lysine. Additionally, since the catalytic efficiency of the key enzyme LCD is limited by the cofactor $ NAD^{+} $, the intracellular pyridine nucleotide concentration was rebalanced by expressing the pntAB gene encoding the transhydrogenase, which elevated the proportion of LCD with bound $ NAD^{+} $ and enhanced l-pipecolic acid production significantly. Further, optimization of $ Fe^{2+} $ and surfactant in the fermentation process resulted in 5.33 g/L l-pipecolic acid, with a yield of 0.13 g/g of glucose via fed-batch cultivation. Conclusions We expanded the metabolic pathway for the synthesis of the chiral pharmaceutical intermediate l-pipecolic acid in E. coli. Using the engineered E. coli, a fast and efficient fermentative production of l-pipecolic acid was achieved. This strategy could be applied to the biosynthesis of other commercially and industrially important chiral compounds containing piperidine rings. © The Author(s) 2017 |
abstractGer |
Background The six-carbon circular non-proteinogenic compound l-pipecolic acid is an important chiral drug intermediate with many applications in the pharmaceutical industry. In the present study, we developed a metabolically engineered strain of Escherichia coli for the overproduction of l-pipecolic acid from glucose. Results The metabolic pathway from l-lysine to l-pipecolic acid was constructed initially by introducing lysine cyclodeaminase (LCD). Next, l-lysine metabolic flux from glucose was amplified by the plasmid-based overexpression of dapA, lysC, and lysA under the control of the strong trc promoter to increase the biosynthetic pool of the precursor l-lysine. Additionally, since the catalytic efficiency of the key enzyme LCD is limited by the cofactor $ NAD^{+} $, the intracellular pyridine nucleotide concentration was rebalanced by expressing the pntAB gene encoding the transhydrogenase, which elevated the proportion of LCD with bound $ NAD^{+} $ and enhanced l-pipecolic acid production significantly. Further, optimization of $ Fe^{2+} $ and surfactant in the fermentation process resulted in 5.33 g/L l-pipecolic acid, with a yield of 0.13 g/g of glucose via fed-batch cultivation. Conclusions We expanded the metabolic pathway for the synthesis of the chiral pharmaceutical intermediate l-pipecolic acid in E. coli. Using the engineered E. coli, a fast and efficient fermentative production of l-pipecolic acid was achieved. This strategy could be applied to the biosynthesis of other commercially and industrially important chiral compounds containing piperidine rings. © The Author(s) 2017 |
abstract_unstemmed |
Background The six-carbon circular non-proteinogenic compound l-pipecolic acid is an important chiral drug intermediate with many applications in the pharmaceutical industry. In the present study, we developed a metabolically engineered strain of Escherichia coli for the overproduction of l-pipecolic acid from glucose. Results The metabolic pathway from l-lysine to l-pipecolic acid was constructed initially by introducing lysine cyclodeaminase (LCD). Next, l-lysine metabolic flux from glucose was amplified by the plasmid-based overexpression of dapA, lysC, and lysA under the control of the strong trc promoter to increase the biosynthetic pool of the precursor l-lysine. Additionally, since the catalytic efficiency of the key enzyme LCD is limited by the cofactor $ NAD^{+} $, the intracellular pyridine nucleotide concentration was rebalanced by expressing the pntAB gene encoding the transhydrogenase, which elevated the proportion of LCD with bound $ NAD^{+} $ and enhanced l-pipecolic acid production significantly. Further, optimization of $ Fe^{2+} $ and surfactant in the fermentation process resulted in 5.33 g/L l-pipecolic acid, with a yield of 0.13 g/g of glucose via fed-batch cultivation. Conclusions We expanded the metabolic pathway for the synthesis of the chiral pharmaceutical intermediate l-pipecolic acid in E. coli. Using the engineered E. coli, a fast and efficient fermentative production of l-pipecolic acid was achieved. This strategy could be applied to the biosynthesis of other commercially and industrially important chiral compounds containing piperidine rings. © The Author(s) 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate l-pipecolic acid in Escherichia coli |
url |
https://dx.doi.org/10.1186/s12934-017-0666-0 |
remote_bool |
true |
author2 |
Tao, Sha Wang, Jing Ma, Weichao Chen, Kequan Wang, Xin Ouyang, Pingkai |
author2Str |
Tao, Sha Wang, Jing Ma, Weichao Chen, Kequan Wang, Xin Ouyang, Pingkai |
ppnlink |
355987651 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12934-017-0666-0 |
up_date |
2024-07-03T20:17:53.099Z |
_version_ |
1803590432824754176 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR028570928</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519204949.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12934-017-0666-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR028570928</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12934-017-0666-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ying, Hanxiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate l-pipecolic acid in Escherichia coli</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The six-carbon circular non-proteinogenic compound l-pipecolic acid is an important chiral drug intermediate with many applications in the pharmaceutical industry. In the present study, we developed a metabolically engineered strain of Escherichia coli for the overproduction of l-pipecolic acid from glucose. Results The metabolic pathway from l-lysine to l-pipecolic acid was constructed initially by introducing lysine cyclodeaminase (LCD). Next, l-lysine metabolic flux from glucose was amplified by the plasmid-based overexpression of dapA, lysC, and lysA under the control of the strong trc promoter to increase the biosynthetic pool of the precursor l-lysine. Additionally, since the catalytic efficiency of the key enzyme LCD is limited by the cofactor $ NAD^{+} $, the intracellular pyridine nucleotide concentration was rebalanced by expressing the pntAB gene encoding the transhydrogenase, which elevated the proportion of LCD with bound $ NAD^{+} $ and enhanced l-pipecolic acid production significantly. Further, optimization of $ Fe^{2+} $ and surfactant in the fermentation process resulted in 5.33 g/L l-pipecolic acid, with a yield of 0.13 g/g of glucose via fed-batch cultivation. Conclusions We expanded the metabolic pathway for the synthesis of the chiral pharmaceutical intermediate l-pipecolic acid in E. coli. Using the engineered E. coli, a fast and efficient fermentative production of l-pipecolic acid was achieved. This strategy could be applied to the biosynthesis of other commercially and industrially important chiral compounds containing piperidine rings.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chiral intermediate biosynthesis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lysine cyclodeaminase</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-Pipecolic acid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metabolic engineering</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cofactor engineering</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tao, Sha</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Weichao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Kequan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ouyang, Pingkai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Microbial cell factories</subfield><subfield code="d">London : Biomed Central, 2002</subfield><subfield code="g">16(2017), 1 vom: 27. März</subfield><subfield code="w">(DE-627)355987651</subfield><subfield code="w">(DE-600)2091377-1</subfield><subfield code="x">1475-2859</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">day:27</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12934-017-0666-0</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="b">27</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
score |
7.401189 |