Similar folds with different stabilization mechanisms: the cases of prion and doppel proteins
Background Protein misfolding is the main cause of a group of fatal neurodegenerative diseases in humans and animals. In particular, in Prion-related diseases the normal cellular form of the Prion Protein PrP (PrPC) is converted into the infectious PrPScthrough a conformational process during which...
Ausführliche Beschreibung
Autor*in: |
Colacino, Stefano [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2006 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Colacino et al; licensee BioMed Central Ltd. 2006. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
---|
Übergeordnetes Werk: |
Enthalten in: BMC structural biology - London : BioMed Central, 2001, 6(2006), 1 vom: 21. Juli |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2006 ; number:1 ; day:21 ; month:07 |
Links: |
---|
DOI / URN: |
10.1186/1472-6807-6-17 |
---|
Katalog-ID: |
SPR028587111 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR028587111 | ||
003 | DE-627 | ||
005 | 20230519214546.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2006 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1472-6807-6-17 |2 doi | |
035 | |a (DE-627)SPR028587111 | ||
035 | |a (SPR)1472-6807-6-17-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Colacino, Stefano |e verfasserin |4 aut | |
245 | 1 | 0 | |a Similar folds with different stabilization mechanisms: the cases of prion and doppel proteins |
264 | 1 | |c 2006 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Colacino et al; licensee BioMed Central Ltd. 2006. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( | ||
520 | |a Background Protein misfolding is the main cause of a group of fatal neurodegenerative diseases in humans and animals. In particular, in Prion-related diseases the normal cellular form of the Prion Protein PrP (PrPC) is converted into the infectious PrPScthrough a conformational process during which it acquires a high β-sheet content. Doppel is a protein that shares a similar native fold, but lacks the scrapie isoform. Understanding the molecular determinants of these different behaviours is important both for biomedical and biophysical research. Results In this paper, the dynamical and energetic properties of the two proteins in solution is comparatively analyzed by means of long time scale explicit solvent, all-atom molecular dynamics in different temperature conditions. The trajectories are analyzed by means of a recently introduced energy decomposition approach (Tiana et al, Prot. Sci. 2004) aimed at identifying the key residues for the stabilization and folding of the protein. Our analysis shows that Prion and Doppel have two different cores stabilizing the native state and that the relative contribution of the nucleus to the global stability of the protein for Doppel is sensitively higher than for PrP. Moreover, under misfolding conditions the Doppel core is conserved, while the energy stabilization network of PrP is disrupted. Conclusion These observations suggest that different sequences can share similar native topology with different stabilizing interactions and that the sequences of the Prion and Doppel proteins may have diverged under different evolutionary constraints resulting in different folding and stabilization mechanisms. | ||
650 | 4 | |a Prion Protein |7 (dpeaa)DE-He213 | |
650 | 4 | |a Stabilization Energy |7 (dpeaa)DE-He213 | |
650 | 4 | |a Scrapie |7 (dpeaa)DE-He213 | |
650 | 4 | |a Stabilization Core |7 (dpeaa)DE-He213 | |
650 | 4 | |a Principal Eigenvector |7 (dpeaa)DE-He213 | |
700 | 1 | |a Tiana, Guido |4 aut | |
700 | 1 | |a Colombo, Giorgio |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC structural biology |d London : BioMed Central, 2001 |g 6(2006), 1 vom: 21. Juli |w (DE-627)331018810 |w (DE-600)2050440-8 |x 1472-6807 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2006 |g number:1 |g day:21 |g month:07 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1472-6807-6-17 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2006 |e 1 |b 21 |c 07 |
author_variant |
s c sc g t gt g c gc |
---|---|
matchkey_str |
article:14726807:2006----::iiaflsihifrnsaiiainehnsshcssfr |
hierarchy_sort_str |
2006 |
publishDate |
2006 |
allfields |
10.1186/1472-6807-6-17 doi (DE-627)SPR028587111 (SPR)1472-6807-6-17-e DE-627 ger DE-627 rakwb eng Colacino, Stefano verfasserin aut Similar folds with different stabilization mechanisms: the cases of prion and doppel proteins 2006 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Colacino et al; licensee BioMed Central Ltd. 2006. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Protein misfolding is the main cause of a group of fatal neurodegenerative diseases in humans and animals. In particular, in Prion-related diseases the normal cellular form of the Prion Protein PrP (PrPC) is converted into the infectious PrPScthrough a conformational process during which it acquires a high β-sheet content. Doppel is a protein that shares a similar native fold, but lacks the scrapie isoform. Understanding the molecular determinants of these different behaviours is important both for biomedical and biophysical research. Results In this paper, the dynamical and energetic properties of the two proteins in solution is comparatively analyzed by means of long time scale explicit solvent, all-atom molecular dynamics in different temperature conditions. The trajectories are analyzed by means of a recently introduced energy decomposition approach (Tiana et al, Prot. Sci. 2004) aimed at identifying the key residues for the stabilization and folding of the protein. Our analysis shows that Prion and Doppel have two different cores stabilizing the native state and that the relative contribution of the nucleus to the global stability of the protein for Doppel is sensitively higher than for PrP. Moreover, under misfolding conditions the Doppel core is conserved, while the energy stabilization network of PrP is disrupted. Conclusion These observations suggest that different sequences can share similar native topology with different stabilizing interactions and that the sequences of the Prion and Doppel proteins may have diverged under different evolutionary constraints resulting in different folding and stabilization mechanisms. Prion Protein (dpeaa)DE-He213 Stabilization Energy (dpeaa)DE-He213 Scrapie (dpeaa)DE-He213 Stabilization Core (dpeaa)DE-He213 Principal Eigenvector (dpeaa)DE-He213 Tiana, Guido aut Colombo, Giorgio aut Enthalten in BMC structural biology London : BioMed Central, 2001 6(2006), 1 vom: 21. Juli (DE-627)331018810 (DE-600)2050440-8 1472-6807 nnns volume:6 year:2006 number:1 day:21 month:07 https://dx.doi.org/10.1186/1472-6807-6-17 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2006 1 21 07 |
spelling |
10.1186/1472-6807-6-17 doi (DE-627)SPR028587111 (SPR)1472-6807-6-17-e DE-627 ger DE-627 rakwb eng Colacino, Stefano verfasserin aut Similar folds with different stabilization mechanisms: the cases of prion and doppel proteins 2006 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Colacino et al; licensee BioMed Central Ltd. 2006. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Protein misfolding is the main cause of a group of fatal neurodegenerative diseases in humans and animals. In particular, in Prion-related diseases the normal cellular form of the Prion Protein PrP (PrPC) is converted into the infectious PrPScthrough a conformational process during which it acquires a high β-sheet content. Doppel is a protein that shares a similar native fold, but lacks the scrapie isoform. Understanding the molecular determinants of these different behaviours is important both for biomedical and biophysical research. Results In this paper, the dynamical and energetic properties of the two proteins in solution is comparatively analyzed by means of long time scale explicit solvent, all-atom molecular dynamics in different temperature conditions. The trajectories are analyzed by means of a recently introduced energy decomposition approach (Tiana et al, Prot. Sci. 2004) aimed at identifying the key residues for the stabilization and folding of the protein. Our analysis shows that Prion and Doppel have two different cores stabilizing the native state and that the relative contribution of the nucleus to the global stability of the protein for Doppel is sensitively higher than for PrP. Moreover, under misfolding conditions the Doppel core is conserved, while the energy stabilization network of PrP is disrupted. Conclusion These observations suggest that different sequences can share similar native topology with different stabilizing interactions and that the sequences of the Prion and Doppel proteins may have diverged under different evolutionary constraints resulting in different folding and stabilization mechanisms. Prion Protein (dpeaa)DE-He213 Stabilization Energy (dpeaa)DE-He213 Scrapie (dpeaa)DE-He213 Stabilization Core (dpeaa)DE-He213 Principal Eigenvector (dpeaa)DE-He213 Tiana, Guido aut Colombo, Giorgio aut Enthalten in BMC structural biology London : BioMed Central, 2001 6(2006), 1 vom: 21. Juli (DE-627)331018810 (DE-600)2050440-8 1472-6807 nnns volume:6 year:2006 number:1 day:21 month:07 https://dx.doi.org/10.1186/1472-6807-6-17 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2006 1 21 07 |
allfields_unstemmed |
10.1186/1472-6807-6-17 doi (DE-627)SPR028587111 (SPR)1472-6807-6-17-e DE-627 ger DE-627 rakwb eng Colacino, Stefano verfasserin aut Similar folds with different stabilization mechanisms: the cases of prion and doppel proteins 2006 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Colacino et al; licensee BioMed Central Ltd. 2006. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Protein misfolding is the main cause of a group of fatal neurodegenerative diseases in humans and animals. In particular, in Prion-related diseases the normal cellular form of the Prion Protein PrP (PrPC) is converted into the infectious PrPScthrough a conformational process during which it acquires a high β-sheet content. Doppel is a protein that shares a similar native fold, but lacks the scrapie isoform. Understanding the molecular determinants of these different behaviours is important both for biomedical and biophysical research. Results In this paper, the dynamical and energetic properties of the two proteins in solution is comparatively analyzed by means of long time scale explicit solvent, all-atom molecular dynamics in different temperature conditions. The trajectories are analyzed by means of a recently introduced energy decomposition approach (Tiana et al, Prot. Sci. 2004) aimed at identifying the key residues for the stabilization and folding of the protein. Our analysis shows that Prion and Doppel have two different cores stabilizing the native state and that the relative contribution of the nucleus to the global stability of the protein for Doppel is sensitively higher than for PrP. Moreover, under misfolding conditions the Doppel core is conserved, while the energy stabilization network of PrP is disrupted. Conclusion These observations suggest that different sequences can share similar native topology with different stabilizing interactions and that the sequences of the Prion and Doppel proteins may have diverged under different evolutionary constraints resulting in different folding and stabilization mechanisms. Prion Protein (dpeaa)DE-He213 Stabilization Energy (dpeaa)DE-He213 Scrapie (dpeaa)DE-He213 Stabilization Core (dpeaa)DE-He213 Principal Eigenvector (dpeaa)DE-He213 Tiana, Guido aut Colombo, Giorgio aut Enthalten in BMC structural biology London : BioMed Central, 2001 6(2006), 1 vom: 21. Juli (DE-627)331018810 (DE-600)2050440-8 1472-6807 nnns volume:6 year:2006 number:1 day:21 month:07 https://dx.doi.org/10.1186/1472-6807-6-17 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2006 1 21 07 |
allfieldsGer |
10.1186/1472-6807-6-17 doi (DE-627)SPR028587111 (SPR)1472-6807-6-17-e DE-627 ger DE-627 rakwb eng Colacino, Stefano verfasserin aut Similar folds with different stabilization mechanisms: the cases of prion and doppel proteins 2006 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Colacino et al; licensee BioMed Central Ltd. 2006. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Protein misfolding is the main cause of a group of fatal neurodegenerative diseases in humans and animals. In particular, in Prion-related diseases the normal cellular form of the Prion Protein PrP (PrPC) is converted into the infectious PrPScthrough a conformational process during which it acquires a high β-sheet content. Doppel is a protein that shares a similar native fold, but lacks the scrapie isoform. Understanding the molecular determinants of these different behaviours is important both for biomedical and biophysical research. Results In this paper, the dynamical and energetic properties of the two proteins in solution is comparatively analyzed by means of long time scale explicit solvent, all-atom molecular dynamics in different temperature conditions. The trajectories are analyzed by means of a recently introduced energy decomposition approach (Tiana et al, Prot. Sci. 2004) aimed at identifying the key residues for the stabilization and folding of the protein. Our analysis shows that Prion and Doppel have two different cores stabilizing the native state and that the relative contribution of the nucleus to the global stability of the protein for Doppel is sensitively higher than for PrP. Moreover, under misfolding conditions the Doppel core is conserved, while the energy stabilization network of PrP is disrupted. Conclusion These observations suggest that different sequences can share similar native topology with different stabilizing interactions and that the sequences of the Prion and Doppel proteins may have diverged under different evolutionary constraints resulting in different folding and stabilization mechanisms. Prion Protein (dpeaa)DE-He213 Stabilization Energy (dpeaa)DE-He213 Scrapie (dpeaa)DE-He213 Stabilization Core (dpeaa)DE-He213 Principal Eigenvector (dpeaa)DE-He213 Tiana, Guido aut Colombo, Giorgio aut Enthalten in BMC structural biology London : BioMed Central, 2001 6(2006), 1 vom: 21. Juli (DE-627)331018810 (DE-600)2050440-8 1472-6807 nnns volume:6 year:2006 number:1 day:21 month:07 https://dx.doi.org/10.1186/1472-6807-6-17 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2006 1 21 07 |
allfieldsSound |
10.1186/1472-6807-6-17 doi (DE-627)SPR028587111 (SPR)1472-6807-6-17-e DE-627 ger DE-627 rakwb eng Colacino, Stefano verfasserin aut Similar folds with different stabilization mechanisms: the cases of prion and doppel proteins 2006 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Colacino et al; licensee BioMed Central Ltd. 2006. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Protein misfolding is the main cause of a group of fatal neurodegenerative diseases in humans and animals. In particular, in Prion-related diseases the normal cellular form of the Prion Protein PrP (PrPC) is converted into the infectious PrPScthrough a conformational process during which it acquires a high β-sheet content. Doppel is a protein that shares a similar native fold, but lacks the scrapie isoform. Understanding the molecular determinants of these different behaviours is important both for biomedical and biophysical research. Results In this paper, the dynamical and energetic properties of the two proteins in solution is comparatively analyzed by means of long time scale explicit solvent, all-atom molecular dynamics in different temperature conditions. The trajectories are analyzed by means of a recently introduced energy decomposition approach (Tiana et al, Prot. Sci. 2004) aimed at identifying the key residues for the stabilization and folding of the protein. Our analysis shows that Prion and Doppel have two different cores stabilizing the native state and that the relative contribution of the nucleus to the global stability of the protein for Doppel is sensitively higher than for PrP. Moreover, under misfolding conditions the Doppel core is conserved, while the energy stabilization network of PrP is disrupted. Conclusion These observations suggest that different sequences can share similar native topology with different stabilizing interactions and that the sequences of the Prion and Doppel proteins may have diverged under different evolutionary constraints resulting in different folding and stabilization mechanisms. Prion Protein (dpeaa)DE-He213 Stabilization Energy (dpeaa)DE-He213 Scrapie (dpeaa)DE-He213 Stabilization Core (dpeaa)DE-He213 Principal Eigenvector (dpeaa)DE-He213 Tiana, Guido aut Colombo, Giorgio aut Enthalten in BMC structural biology London : BioMed Central, 2001 6(2006), 1 vom: 21. Juli (DE-627)331018810 (DE-600)2050440-8 1472-6807 nnns volume:6 year:2006 number:1 day:21 month:07 https://dx.doi.org/10.1186/1472-6807-6-17 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2006 1 21 07 |
language |
English |
source |
Enthalten in BMC structural biology 6(2006), 1 vom: 21. Juli volume:6 year:2006 number:1 day:21 month:07 |
sourceStr |
Enthalten in BMC structural biology 6(2006), 1 vom: 21. Juli volume:6 year:2006 number:1 day:21 month:07 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Prion Protein Stabilization Energy Scrapie Stabilization Core Principal Eigenvector |
isfreeaccess_bool |
true |
container_title |
BMC structural biology |
authorswithroles_txt_mv |
Colacino, Stefano @@aut@@ Tiana, Guido @@aut@@ Colombo, Giorgio @@aut@@ |
publishDateDaySort_date |
2006-07-21T00:00:00Z |
hierarchy_top_id |
331018810 |
id |
SPR028587111 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR028587111</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519214546.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2006 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1472-6807-6-17</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR028587111</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1472-6807-6-17-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Colacino, Stefano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Similar folds with different stabilization mechanisms: the cases of prion and doppel proteins</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Colacino et al; licensee BioMed Central Ltd. 2006. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Protein misfolding is the main cause of a group of fatal neurodegenerative diseases in humans and animals. In particular, in Prion-related diseases the normal cellular form of the Prion Protein PrP (PrPC) is converted into the infectious PrPScthrough a conformational process during which it acquires a high β-sheet content. Doppel is a protein that shares a similar native fold, but lacks the scrapie isoform. Understanding the molecular determinants of these different behaviours is important both for biomedical and biophysical research. Results In this paper, the dynamical and energetic properties of the two proteins in solution is comparatively analyzed by means of long time scale explicit solvent, all-atom molecular dynamics in different temperature conditions. The trajectories are analyzed by means of a recently introduced energy decomposition approach (Tiana et al, Prot. Sci. 2004) aimed at identifying the key residues for the stabilization and folding of the protein. Our analysis shows that Prion and Doppel have two different cores stabilizing the native state and that the relative contribution of the nucleus to the global stability of the protein for Doppel is sensitively higher than for PrP. Moreover, under misfolding conditions the Doppel core is conserved, while the energy stabilization network of PrP is disrupted. Conclusion These observations suggest that different sequences can share similar native topology with different stabilizing interactions and that the sequences of the Prion and Doppel proteins may have diverged under different evolutionary constraints resulting in different folding and stabilization mechanisms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prion Protein</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stabilization Energy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scrapie</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stabilization Core</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Principal Eigenvector</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tiana, Guido</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Colombo, Giorgio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC structural biology</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">6(2006), 1 vom: 21. Juli</subfield><subfield code="w">(DE-627)331018810</subfield><subfield code="w">(DE-600)2050440-8</subfield><subfield code="x">1472-6807</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:1</subfield><subfield code="g">day:21</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1472-6807-6-17</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2006</subfield><subfield code="e">1</subfield><subfield code="b">21</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
author |
Colacino, Stefano |
spellingShingle |
Colacino, Stefano misc Prion Protein misc Stabilization Energy misc Scrapie misc Stabilization Core misc Principal Eigenvector Similar folds with different stabilization mechanisms: the cases of prion and doppel proteins |
authorStr |
Colacino, Stefano |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331018810 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1472-6807 |
topic_title |
Similar folds with different stabilization mechanisms: the cases of prion and doppel proteins Prion Protein (dpeaa)DE-He213 Stabilization Energy (dpeaa)DE-He213 Scrapie (dpeaa)DE-He213 Stabilization Core (dpeaa)DE-He213 Principal Eigenvector (dpeaa)DE-He213 |
topic |
misc Prion Protein misc Stabilization Energy misc Scrapie misc Stabilization Core misc Principal Eigenvector |
topic_unstemmed |
misc Prion Protein misc Stabilization Energy misc Scrapie misc Stabilization Core misc Principal Eigenvector |
topic_browse |
misc Prion Protein misc Stabilization Energy misc Scrapie misc Stabilization Core misc Principal Eigenvector |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC structural biology |
hierarchy_parent_id |
331018810 |
hierarchy_top_title |
BMC structural biology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)331018810 (DE-600)2050440-8 |
title |
Similar folds with different stabilization mechanisms: the cases of prion and doppel proteins |
ctrlnum |
(DE-627)SPR028587111 (SPR)1472-6807-6-17-e |
title_full |
Similar folds with different stabilization mechanisms: the cases of prion and doppel proteins |
author_sort |
Colacino, Stefano |
journal |
BMC structural biology |
journalStr |
BMC structural biology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2006 |
contenttype_str_mv |
txt |
author_browse |
Colacino, Stefano Tiana, Guido Colombo, Giorgio |
container_volume |
6 |
format_se |
Elektronische Aufsätze |
author-letter |
Colacino, Stefano |
doi_str_mv |
10.1186/1472-6807-6-17 |
title_sort |
similar folds with different stabilization mechanisms: the cases of prion and doppel proteins |
title_auth |
Similar folds with different stabilization mechanisms: the cases of prion and doppel proteins |
abstract |
Background Protein misfolding is the main cause of a group of fatal neurodegenerative diseases in humans and animals. In particular, in Prion-related diseases the normal cellular form of the Prion Protein PrP (PrPC) is converted into the infectious PrPScthrough a conformational process during which it acquires a high β-sheet content. Doppel is a protein that shares a similar native fold, but lacks the scrapie isoform. Understanding the molecular determinants of these different behaviours is important both for biomedical and biophysical research. Results In this paper, the dynamical and energetic properties of the two proteins in solution is comparatively analyzed by means of long time scale explicit solvent, all-atom molecular dynamics in different temperature conditions. The trajectories are analyzed by means of a recently introduced energy decomposition approach (Tiana et al, Prot. Sci. 2004) aimed at identifying the key residues for the stabilization and folding of the protein. Our analysis shows that Prion and Doppel have two different cores stabilizing the native state and that the relative contribution of the nucleus to the global stability of the protein for Doppel is sensitively higher than for PrP. Moreover, under misfolding conditions the Doppel core is conserved, while the energy stabilization network of PrP is disrupted. Conclusion These observations suggest that different sequences can share similar native topology with different stabilizing interactions and that the sequences of the Prion and Doppel proteins may have diverged under different evolutionary constraints resulting in different folding and stabilization mechanisms. © Colacino et al; licensee BioMed Central Ltd. 2006. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
abstractGer |
Background Protein misfolding is the main cause of a group of fatal neurodegenerative diseases in humans and animals. In particular, in Prion-related diseases the normal cellular form of the Prion Protein PrP (PrPC) is converted into the infectious PrPScthrough a conformational process during which it acquires a high β-sheet content. Doppel is a protein that shares a similar native fold, but lacks the scrapie isoform. Understanding the molecular determinants of these different behaviours is important both for biomedical and biophysical research. Results In this paper, the dynamical and energetic properties of the two proteins in solution is comparatively analyzed by means of long time scale explicit solvent, all-atom molecular dynamics in different temperature conditions. The trajectories are analyzed by means of a recently introduced energy decomposition approach (Tiana et al, Prot. Sci. 2004) aimed at identifying the key residues for the stabilization and folding of the protein. Our analysis shows that Prion and Doppel have two different cores stabilizing the native state and that the relative contribution of the nucleus to the global stability of the protein for Doppel is sensitively higher than for PrP. Moreover, under misfolding conditions the Doppel core is conserved, while the energy stabilization network of PrP is disrupted. Conclusion These observations suggest that different sequences can share similar native topology with different stabilizing interactions and that the sequences of the Prion and Doppel proteins may have diverged under different evolutionary constraints resulting in different folding and stabilization mechanisms. © Colacino et al; licensee BioMed Central Ltd. 2006. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
abstract_unstemmed |
Background Protein misfolding is the main cause of a group of fatal neurodegenerative diseases in humans and animals. In particular, in Prion-related diseases the normal cellular form of the Prion Protein PrP (PrPC) is converted into the infectious PrPScthrough a conformational process during which it acquires a high β-sheet content. Doppel is a protein that shares a similar native fold, but lacks the scrapie isoform. Understanding the molecular determinants of these different behaviours is important both for biomedical and biophysical research. Results In this paper, the dynamical and energetic properties of the two proteins in solution is comparatively analyzed by means of long time scale explicit solvent, all-atom molecular dynamics in different temperature conditions. The trajectories are analyzed by means of a recently introduced energy decomposition approach (Tiana et al, Prot. Sci. 2004) aimed at identifying the key residues for the stabilization and folding of the protein. Our analysis shows that Prion and Doppel have two different cores stabilizing the native state and that the relative contribution of the nucleus to the global stability of the protein for Doppel is sensitively higher than for PrP. Moreover, under misfolding conditions the Doppel core is conserved, while the energy stabilization network of PrP is disrupted. Conclusion These observations suggest that different sequences can share similar native topology with different stabilizing interactions and that the sequences of the Prion and Doppel proteins may have diverged under different evolutionary constraints resulting in different folding and stabilization mechanisms. © Colacino et al; licensee BioMed Central Ltd. 2006. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Similar folds with different stabilization mechanisms: the cases of prion and doppel proteins |
url |
https://dx.doi.org/10.1186/1472-6807-6-17 |
remote_bool |
true |
author2 |
Tiana, Guido Colombo, Giorgio |
author2Str |
Tiana, Guido Colombo, Giorgio |
ppnlink |
331018810 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1472-6807-6-17 |
up_date |
2024-07-03T20:23:52.666Z |
_version_ |
1803590809860177920 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR028587111</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519214546.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2006 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1472-6807-6-17</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR028587111</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1472-6807-6-17-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Colacino, Stefano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Similar folds with different stabilization mechanisms: the cases of prion and doppel proteins</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Colacino et al; licensee BioMed Central Ltd. 2006. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Protein misfolding is the main cause of a group of fatal neurodegenerative diseases in humans and animals. In particular, in Prion-related diseases the normal cellular form of the Prion Protein PrP (PrPC) is converted into the infectious PrPScthrough a conformational process during which it acquires a high β-sheet content. Doppel is a protein that shares a similar native fold, but lacks the scrapie isoform. Understanding the molecular determinants of these different behaviours is important both for biomedical and biophysical research. Results In this paper, the dynamical and energetic properties of the two proteins in solution is comparatively analyzed by means of long time scale explicit solvent, all-atom molecular dynamics in different temperature conditions. The trajectories are analyzed by means of a recently introduced energy decomposition approach (Tiana et al, Prot. Sci. 2004) aimed at identifying the key residues for the stabilization and folding of the protein. Our analysis shows that Prion and Doppel have two different cores stabilizing the native state and that the relative contribution of the nucleus to the global stability of the protein for Doppel is sensitively higher than for PrP. Moreover, under misfolding conditions the Doppel core is conserved, while the energy stabilization network of PrP is disrupted. Conclusion These observations suggest that different sequences can share similar native topology with different stabilizing interactions and that the sequences of the Prion and Doppel proteins may have diverged under different evolutionary constraints resulting in different folding and stabilization mechanisms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prion Protein</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stabilization Energy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scrapie</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stabilization Core</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Principal Eigenvector</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tiana, Guido</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Colombo, Giorgio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC structural biology</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">6(2006), 1 vom: 21. Juli</subfield><subfield code="w">(DE-627)331018810</subfield><subfield code="w">(DE-600)2050440-8</subfield><subfield code="x">1472-6807</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:1</subfield><subfield code="g">day:21</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1472-6807-6-17</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2006</subfield><subfield code="e">1</subfield><subfield code="b">21</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
score |
7.400923 |