Identification of important interacting proteins (IIPs) in Plasmodium falciparum using large-scale interaction network analysis and in-silico knock-out studies
Background Plasmodium falciparum causes the most severe form of malaria and affects 3.2 million people annually. Due to the increasing incidence of resistance to existing drugs, there is a growing need to discover new and more effective drugs against malaria. Despite the global importance of P. falc...
Ausführliche Beschreibung
Autor*in: |
Bhattacharyya, Madhumita [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Bhattacharyya and Chakrabarti; licensee BioMed Central. 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Malaria journal - London : BioMed Central, 2002, 14(2015), 1 vom: 08. Feb. |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2015 ; number:1 ; day:08 ; month:02 |
Links: |
---|
DOI / URN: |
10.1186/s12936-015-0562-1 |
---|
Katalog-ID: |
SPR02863862X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR02863862X | ||
003 | DE-627 | ||
005 | 20230520011538.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12936-015-0562-1 |2 doi | |
035 | |a (DE-627)SPR02863862X | ||
035 | |a (SPR)s12936-015-0562-1-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Bhattacharyya, Madhumita |e verfasserin |4 aut | |
245 | 1 | 0 | |a Identification of important interacting proteins (IIPs) in Plasmodium falciparum using large-scale interaction network analysis and in-silico knock-out studies |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Bhattacharyya and Chakrabarti; licensee BioMed Central. 2015 | ||
520 | |a Background Plasmodium falciparum causes the most severe form of malaria and affects 3.2 million people annually. Due to the increasing incidence of resistance to existing drugs, there is a growing need to discover new and more effective drugs against malaria. Despite the global importance of P. falciparum, vast majority of its proteins are uncharacterized experimentally. Application of newer approaches using several “omics” data has become successful for exploring the biological interactions underlying cellular processes. Till date not many system level study has been published using P. falciparum protein protein interaction. Hence, the purpose of this study is to develop a standardized pipeline for structural, functional, and topographical analysis of large scale protein protein interaction network (PPIN) in order to identify proteins important for network topology and integrity. Here, P. falciparum PPIN has been utilized as a model for better understanding of the molecular mechanisms of survival and pathogenesis of malaria parasite. Methods Various graph theoretical approaches were implemented to identify highly interacting hub and central proteins that are crucial for network integrity. Further, potential network perturbing proteins via an in-silico knock-out (KO) analysis to isolate important interacting proteins (IIPs), which in principle, can elicit significant impact on the global and local environments of the P. falciparum interaction network. Results 177 hubs and 132 central proteins were identified from the malarial (proteins: 1607; interactions: 4750) PPI networks. Using the in-silico knock-out exercise 131 and 99 global and local network perturbing proteins were also identified. Finally, 271 proteins from P. falciparum were shortlisted as important interacting proteins (IIPs), which not only play crucial role in intra-pathogen network integrity, stage specificity but also interact with various human proteins involved in multiple metabolic pathways within the host cell. These IIPs could be used as potential drug targets in malarial research. Conclusion Graph theoretical analysis of PPIN can be a very useful approach to identify proteins that are important for regulation of the interactions required for an organism’s survival. Important interacting proteins (IIPs) identified using P. falciparum PPIN provides a useful dataset containing probable candidates for future drug target analysis. | ||
650 | 4 | |a Centrality analysis |7 (dpeaa)DE-He213 | |
650 | 4 | |a IIPs |7 (dpeaa)DE-He213 | |
650 | 4 | |a Graph theory |7 (dpeaa)DE-He213 | |
650 | 4 | |a Host pathogen interaction |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hubs |7 (dpeaa)DE-He213 | |
700 | 1 | |a Chakrabarti, Saikat |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Malaria journal |d London : BioMed Central, 2002 |g 14(2015), 1 vom: 08. Feb. |w (DE-627)355986582 |w (DE-600)2091229-8 |x 1475-2875 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2015 |g number:1 |g day:08 |g month:02 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12936-015-0562-1 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2015 |e 1 |b 08 |c 02 |
author_variant |
m b mb s c sc |
---|---|
matchkey_str |
article:14752875:2015----::dniiainfmotnitrcigrtisisnlsoimacprmsnlreclitrcinewr |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1186/s12936-015-0562-1 doi (DE-627)SPR02863862X (SPR)s12936-015-0562-1-e DE-627 ger DE-627 rakwb eng Bhattacharyya, Madhumita verfasserin aut Identification of important interacting proteins (IIPs) in Plasmodium falciparum using large-scale interaction network analysis and in-silico knock-out studies 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Bhattacharyya and Chakrabarti; licensee BioMed Central. 2015 Background Plasmodium falciparum causes the most severe form of malaria and affects 3.2 million people annually. Due to the increasing incidence of resistance to existing drugs, there is a growing need to discover new and more effective drugs against malaria. Despite the global importance of P. falciparum, vast majority of its proteins are uncharacterized experimentally. Application of newer approaches using several “omics” data has become successful for exploring the biological interactions underlying cellular processes. Till date not many system level study has been published using P. falciparum protein protein interaction. Hence, the purpose of this study is to develop a standardized pipeline for structural, functional, and topographical analysis of large scale protein protein interaction network (PPIN) in order to identify proteins important for network topology and integrity. Here, P. falciparum PPIN has been utilized as a model for better understanding of the molecular mechanisms of survival and pathogenesis of malaria parasite. Methods Various graph theoretical approaches were implemented to identify highly interacting hub and central proteins that are crucial for network integrity. Further, potential network perturbing proteins via an in-silico knock-out (KO) analysis to isolate important interacting proteins (IIPs), which in principle, can elicit significant impact on the global and local environments of the P. falciparum interaction network. Results 177 hubs and 132 central proteins were identified from the malarial (proteins: 1607; interactions: 4750) PPI networks. Using the in-silico knock-out exercise 131 and 99 global and local network perturbing proteins were also identified. Finally, 271 proteins from P. falciparum were shortlisted as important interacting proteins (IIPs), which not only play crucial role in intra-pathogen network integrity, stage specificity but also interact with various human proteins involved in multiple metabolic pathways within the host cell. These IIPs could be used as potential drug targets in malarial research. Conclusion Graph theoretical analysis of PPIN can be a very useful approach to identify proteins that are important for regulation of the interactions required for an organism’s survival. Important interacting proteins (IIPs) identified using P. falciparum PPIN provides a useful dataset containing probable candidates for future drug target analysis. Centrality analysis (dpeaa)DE-He213 IIPs (dpeaa)DE-He213 Graph theory (dpeaa)DE-He213 Host pathogen interaction (dpeaa)DE-He213 Hubs (dpeaa)DE-He213 Chakrabarti, Saikat aut Enthalten in Malaria journal London : BioMed Central, 2002 14(2015), 1 vom: 08. Feb. (DE-627)355986582 (DE-600)2091229-8 1475-2875 nnns volume:14 year:2015 number:1 day:08 month:02 https://dx.doi.org/10.1186/s12936-015-0562-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2015 1 08 02 |
spelling |
10.1186/s12936-015-0562-1 doi (DE-627)SPR02863862X (SPR)s12936-015-0562-1-e DE-627 ger DE-627 rakwb eng Bhattacharyya, Madhumita verfasserin aut Identification of important interacting proteins (IIPs) in Plasmodium falciparum using large-scale interaction network analysis and in-silico knock-out studies 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Bhattacharyya and Chakrabarti; licensee BioMed Central. 2015 Background Plasmodium falciparum causes the most severe form of malaria and affects 3.2 million people annually. Due to the increasing incidence of resistance to existing drugs, there is a growing need to discover new and more effective drugs against malaria. Despite the global importance of P. falciparum, vast majority of its proteins are uncharacterized experimentally. Application of newer approaches using several “omics” data has become successful for exploring the biological interactions underlying cellular processes. Till date not many system level study has been published using P. falciparum protein protein interaction. Hence, the purpose of this study is to develop a standardized pipeline for structural, functional, and topographical analysis of large scale protein protein interaction network (PPIN) in order to identify proteins important for network topology and integrity. Here, P. falciparum PPIN has been utilized as a model for better understanding of the molecular mechanisms of survival and pathogenesis of malaria parasite. Methods Various graph theoretical approaches were implemented to identify highly interacting hub and central proteins that are crucial for network integrity. Further, potential network perturbing proteins via an in-silico knock-out (KO) analysis to isolate important interacting proteins (IIPs), which in principle, can elicit significant impact on the global and local environments of the P. falciparum interaction network. Results 177 hubs and 132 central proteins were identified from the malarial (proteins: 1607; interactions: 4750) PPI networks. Using the in-silico knock-out exercise 131 and 99 global and local network perturbing proteins were also identified. Finally, 271 proteins from P. falciparum were shortlisted as important interacting proteins (IIPs), which not only play crucial role in intra-pathogen network integrity, stage specificity but also interact with various human proteins involved in multiple metabolic pathways within the host cell. These IIPs could be used as potential drug targets in malarial research. Conclusion Graph theoretical analysis of PPIN can be a very useful approach to identify proteins that are important for regulation of the interactions required for an organism’s survival. Important interacting proteins (IIPs) identified using P. falciparum PPIN provides a useful dataset containing probable candidates for future drug target analysis. Centrality analysis (dpeaa)DE-He213 IIPs (dpeaa)DE-He213 Graph theory (dpeaa)DE-He213 Host pathogen interaction (dpeaa)DE-He213 Hubs (dpeaa)DE-He213 Chakrabarti, Saikat aut Enthalten in Malaria journal London : BioMed Central, 2002 14(2015), 1 vom: 08. Feb. (DE-627)355986582 (DE-600)2091229-8 1475-2875 nnns volume:14 year:2015 number:1 day:08 month:02 https://dx.doi.org/10.1186/s12936-015-0562-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2015 1 08 02 |
allfields_unstemmed |
10.1186/s12936-015-0562-1 doi (DE-627)SPR02863862X (SPR)s12936-015-0562-1-e DE-627 ger DE-627 rakwb eng Bhattacharyya, Madhumita verfasserin aut Identification of important interacting proteins (IIPs) in Plasmodium falciparum using large-scale interaction network analysis and in-silico knock-out studies 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Bhattacharyya and Chakrabarti; licensee BioMed Central. 2015 Background Plasmodium falciparum causes the most severe form of malaria and affects 3.2 million people annually. Due to the increasing incidence of resistance to existing drugs, there is a growing need to discover new and more effective drugs against malaria. Despite the global importance of P. falciparum, vast majority of its proteins are uncharacterized experimentally. Application of newer approaches using several “omics” data has become successful for exploring the biological interactions underlying cellular processes. Till date not many system level study has been published using P. falciparum protein protein interaction. Hence, the purpose of this study is to develop a standardized pipeline for structural, functional, and topographical analysis of large scale protein protein interaction network (PPIN) in order to identify proteins important for network topology and integrity. Here, P. falciparum PPIN has been utilized as a model for better understanding of the molecular mechanisms of survival and pathogenesis of malaria parasite. Methods Various graph theoretical approaches were implemented to identify highly interacting hub and central proteins that are crucial for network integrity. Further, potential network perturbing proteins via an in-silico knock-out (KO) analysis to isolate important interacting proteins (IIPs), which in principle, can elicit significant impact on the global and local environments of the P. falciparum interaction network. Results 177 hubs and 132 central proteins were identified from the malarial (proteins: 1607; interactions: 4750) PPI networks. Using the in-silico knock-out exercise 131 and 99 global and local network perturbing proteins were also identified. Finally, 271 proteins from P. falciparum were shortlisted as important interacting proteins (IIPs), which not only play crucial role in intra-pathogen network integrity, stage specificity but also interact with various human proteins involved in multiple metabolic pathways within the host cell. These IIPs could be used as potential drug targets in malarial research. Conclusion Graph theoretical analysis of PPIN can be a very useful approach to identify proteins that are important for regulation of the interactions required for an organism’s survival. Important interacting proteins (IIPs) identified using P. falciparum PPIN provides a useful dataset containing probable candidates for future drug target analysis. Centrality analysis (dpeaa)DE-He213 IIPs (dpeaa)DE-He213 Graph theory (dpeaa)DE-He213 Host pathogen interaction (dpeaa)DE-He213 Hubs (dpeaa)DE-He213 Chakrabarti, Saikat aut Enthalten in Malaria journal London : BioMed Central, 2002 14(2015), 1 vom: 08. Feb. (DE-627)355986582 (DE-600)2091229-8 1475-2875 nnns volume:14 year:2015 number:1 day:08 month:02 https://dx.doi.org/10.1186/s12936-015-0562-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2015 1 08 02 |
allfieldsGer |
10.1186/s12936-015-0562-1 doi (DE-627)SPR02863862X (SPR)s12936-015-0562-1-e DE-627 ger DE-627 rakwb eng Bhattacharyya, Madhumita verfasserin aut Identification of important interacting proteins (IIPs) in Plasmodium falciparum using large-scale interaction network analysis and in-silico knock-out studies 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Bhattacharyya and Chakrabarti; licensee BioMed Central. 2015 Background Plasmodium falciparum causes the most severe form of malaria and affects 3.2 million people annually. Due to the increasing incidence of resistance to existing drugs, there is a growing need to discover new and more effective drugs against malaria. Despite the global importance of P. falciparum, vast majority of its proteins are uncharacterized experimentally. Application of newer approaches using several “omics” data has become successful for exploring the biological interactions underlying cellular processes. Till date not many system level study has been published using P. falciparum protein protein interaction. Hence, the purpose of this study is to develop a standardized pipeline for structural, functional, and topographical analysis of large scale protein protein interaction network (PPIN) in order to identify proteins important for network topology and integrity. Here, P. falciparum PPIN has been utilized as a model for better understanding of the molecular mechanisms of survival and pathogenesis of malaria parasite. Methods Various graph theoretical approaches were implemented to identify highly interacting hub and central proteins that are crucial for network integrity. Further, potential network perturbing proteins via an in-silico knock-out (KO) analysis to isolate important interacting proteins (IIPs), which in principle, can elicit significant impact on the global and local environments of the P. falciparum interaction network. Results 177 hubs and 132 central proteins were identified from the malarial (proteins: 1607; interactions: 4750) PPI networks. Using the in-silico knock-out exercise 131 and 99 global and local network perturbing proteins were also identified. Finally, 271 proteins from P. falciparum were shortlisted as important interacting proteins (IIPs), which not only play crucial role in intra-pathogen network integrity, stage specificity but also interact with various human proteins involved in multiple metabolic pathways within the host cell. These IIPs could be used as potential drug targets in malarial research. Conclusion Graph theoretical analysis of PPIN can be a very useful approach to identify proteins that are important for regulation of the interactions required for an organism’s survival. Important interacting proteins (IIPs) identified using P. falciparum PPIN provides a useful dataset containing probable candidates for future drug target analysis. Centrality analysis (dpeaa)DE-He213 IIPs (dpeaa)DE-He213 Graph theory (dpeaa)DE-He213 Host pathogen interaction (dpeaa)DE-He213 Hubs (dpeaa)DE-He213 Chakrabarti, Saikat aut Enthalten in Malaria journal London : BioMed Central, 2002 14(2015), 1 vom: 08. Feb. (DE-627)355986582 (DE-600)2091229-8 1475-2875 nnns volume:14 year:2015 number:1 day:08 month:02 https://dx.doi.org/10.1186/s12936-015-0562-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2015 1 08 02 |
allfieldsSound |
10.1186/s12936-015-0562-1 doi (DE-627)SPR02863862X (SPR)s12936-015-0562-1-e DE-627 ger DE-627 rakwb eng Bhattacharyya, Madhumita verfasserin aut Identification of important interacting proteins (IIPs) in Plasmodium falciparum using large-scale interaction network analysis and in-silico knock-out studies 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Bhattacharyya and Chakrabarti; licensee BioMed Central. 2015 Background Plasmodium falciparum causes the most severe form of malaria and affects 3.2 million people annually. Due to the increasing incidence of resistance to existing drugs, there is a growing need to discover new and more effective drugs against malaria. Despite the global importance of P. falciparum, vast majority of its proteins are uncharacterized experimentally. Application of newer approaches using several “omics” data has become successful for exploring the biological interactions underlying cellular processes. Till date not many system level study has been published using P. falciparum protein protein interaction. Hence, the purpose of this study is to develop a standardized pipeline for structural, functional, and topographical analysis of large scale protein protein interaction network (PPIN) in order to identify proteins important for network topology and integrity. Here, P. falciparum PPIN has been utilized as a model for better understanding of the molecular mechanisms of survival and pathogenesis of malaria parasite. Methods Various graph theoretical approaches were implemented to identify highly interacting hub and central proteins that are crucial for network integrity. Further, potential network perturbing proteins via an in-silico knock-out (KO) analysis to isolate important interacting proteins (IIPs), which in principle, can elicit significant impact on the global and local environments of the P. falciparum interaction network. Results 177 hubs and 132 central proteins were identified from the malarial (proteins: 1607; interactions: 4750) PPI networks. Using the in-silico knock-out exercise 131 and 99 global and local network perturbing proteins were also identified. Finally, 271 proteins from P. falciparum were shortlisted as important interacting proteins (IIPs), which not only play crucial role in intra-pathogen network integrity, stage specificity but also interact with various human proteins involved in multiple metabolic pathways within the host cell. These IIPs could be used as potential drug targets in malarial research. Conclusion Graph theoretical analysis of PPIN can be a very useful approach to identify proteins that are important for regulation of the interactions required for an organism’s survival. Important interacting proteins (IIPs) identified using P. falciparum PPIN provides a useful dataset containing probable candidates for future drug target analysis. Centrality analysis (dpeaa)DE-He213 IIPs (dpeaa)DE-He213 Graph theory (dpeaa)DE-He213 Host pathogen interaction (dpeaa)DE-He213 Hubs (dpeaa)DE-He213 Chakrabarti, Saikat aut Enthalten in Malaria journal London : BioMed Central, 2002 14(2015), 1 vom: 08. Feb. (DE-627)355986582 (DE-600)2091229-8 1475-2875 nnns volume:14 year:2015 number:1 day:08 month:02 https://dx.doi.org/10.1186/s12936-015-0562-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2015 1 08 02 |
language |
English |
source |
Enthalten in Malaria journal 14(2015), 1 vom: 08. Feb. volume:14 year:2015 number:1 day:08 month:02 |
sourceStr |
Enthalten in Malaria journal 14(2015), 1 vom: 08. Feb. volume:14 year:2015 number:1 day:08 month:02 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Centrality analysis IIPs Graph theory Host pathogen interaction Hubs |
isfreeaccess_bool |
true |
container_title |
Malaria journal |
authorswithroles_txt_mv |
Bhattacharyya, Madhumita @@aut@@ Chakrabarti, Saikat @@aut@@ |
publishDateDaySort_date |
2015-02-08T00:00:00Z |
hierarchy_top_id |
355986582 |
id |
SPR02863862X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR02863862X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520011538.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12936-015-0562-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR02863862X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12936-015-0562-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bhattacharyya, Madhumita</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Identification of important interacting proteins (IIPs) in Plasmodium falciparum using large-scale interaction network analysis and in-silico knock-out studies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Bhattacharyya and Chakrabarti; licensee BioMed Central. 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Plasmodium falciparum causes the most severe form of malaria and affects 3.2 million people annually. Due to the increasing incidence of resistance to existing drugs, there is a growing need to discover new and more effective drugs against malaria. Despite the global importance of P. falciparum, vast majority of its proteins are uncharacterized experimentally. Application of newer approaches using several “omics” data has become successful for exploring the biological interactions underlying cellular processes. Till date not many system level study has been published using P. falciparum protein protein interaction. Hence, the purpose of this study is to develop a standardized pipeline for structural, functional, and topographical analysis of large scale protein protein interaction network (PPIN) in order to identify proteins important for network topology and integrity. Here, P. falciparum PPIN has been utilized as a model for better understanding of the molecular mechanisms of survival and pathogenesis of malaria parasite. Methods Various graph theoretical approaches were implemented to identify highly interacting hub and central proteins that are crucial for network integrity. Further, potential network perturbing proteins via an in-silico knock-out (KO) analysis to isolate important interacting proteins (IIPs), which in principle, can elicit significant impact on the global and local environments of the P. falciparum interaction network. Results 177 hubs and 132 central proteins were identified from the malarial (proteins: 1607; interactions: 4750) PPI networks. Using the in-silico knock-out exercise 131 and 99 global and local network perturbing proteins were also identified. Finally, 271 proteins from P. falciparum were shortlisted as important interacting proteins (IIPs), which not only play crucial role in intra-pathogen network integrity, stage specificity but also interact with various human proteins involved in multiple metabolic pathways within the host cell. These IIPs could be used as potential drug targets in malarial research. Conclusion Graph theoretical analysis of PPIN can be a very useful approach to identify proteins that are important for regulation of the interactions required for an organism’s survival. Important interacting proteins (IIPs) identified using P. falciparum PPIN provides a useful dataset containing probable candidates for future drug target analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Centrality analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IIPs</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph theory</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Host pathogen interaction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hubs</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chakrabarti, Saikat</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Malaria journal</subfield><subfield code="d">London : BioMed Central, 2002</subfield><subfield code="g">14(2015), 1 vom: 08. Feb.</subfield><subfield code="w">(DE-627)355986582</subfield><subfield code="w">(DE-600)2091229-8</subfield><subfield code="x">1475-2875</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:08</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12936-015-0562-1</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">08</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
author |
Bhattacharyya, Madhumita |
spellingShingle |
Bhattacharyya, Madhumita misc Centrality analysis misc IIPs misc Graph theory misc Host pathogen interaction misc Hubs Identification of important interacting proteins (IIPs) in Plasmodium falciparum using large-scale interaction network analysis and in-silico knock-out studies |
authorStr |
Bhattacharyya, Madhumita |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)355986582 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1475-2875 |
topic_title |
Identification of important interacting proteins (IIPs) in Plasmodium falciparum using large-scale interaction network analysis and in-silico knock-out studies Centrality analysis (dpeaa)DE-He213 IIPs (dpeaa)DE-He213 Graph theory (dpeaa)DE-He213 Host pathogen interaction (dpeaa)DE-He213 Hubs (dpeaa)DE-He213 |
topic |
misc Centrality analysis misc IIPs misc Graph theory misc Host pathogen interaction misc Hubs |
topic_unstemmed |
misc Centrality analysis misc IIPs misc Graph theory misc Host pathogen interaction misc Hubs |
topic_browse |
misc Centrality analysis misc IIPs misc Graph theory misc Host pathogen interaction misc Hubs |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Malaria journal |
hierarchy_parent_id |
355986582 |
hierarchy_top_title |
Malaria journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)355986582 (DE-600)2091229-8 |
title |
Identification of important interacting proteins (IIPs) in Plasmodium falciparum using large-scale interaction network analysis and in-silico knock-out studies |
ctrlnum |
(DE-627)SPR02863862X (SPR)s12936-015-0562-1-e |
title_full |
Identification of important interacting proteins (IIPs) in Plasmodium falciparum using large-scale interaction network analysis and in-silico knock-out studies |
author_sort |
Bhattacharyya, Madhumita |
journal |
Malaria journal |
journalStr |
Malaria journal |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
author_browse |
Bhattacharyya, Madhumita Chakrabarti, Saikat |
container_volume |
14 |
format_se |
Elektronische Aufsätze |
author-letter |
Bhattacharyya, Madhumita |
doi_str_mv |
10.1186/s12936-015-0562-1 |
title_sort |
identification of important interacting proteins (iips) in plasmodium falciparum using large-scale interaction network analysis and in-silico knock-out studies |
title_auth |
Identification of important interacting proteins (IIPs) in Plasmodium falciparum using large-scale interaction network analysis and in-silico knock-out studies |
abstract |
Background Plasmodium falciparum causes the most severe form of malaria and affects 3.2 million people annually. Due to the increasing incidence of resistance to existing drugs, there is a growing need to discover new and more effective drugs against malaria. Despite the global importance of P. falciparum, vast majority of its proteins are uncharacterized experimentally. Application of newer approaches using several “omics” data has become successful for exploring the biological interactions underlying cellular processes. Till date not many system level study has been published using P. falciparum protein protein interaction. Hence, the purpose of this study is to develop a standardized pipeline for structural, functional, and topographical analysis of large scale protein protein interaction network (PPIN) in order to identify proteins important for network topology and integrity. Here, P. falciparum PPIN has been utilized as a model for better understanding of the molecular mechanisms of survival and pathogenesis of malaria parasite. Methods Various graph theoretical approaches were implemented to identify highly interacting hub and central proteins that are crucial for network integrity. Further, potential network perturbing proteins via an in-silico knock-out (KO) analysis to isolate important interacting proteins (IIPs), which in principle, can elicit significant impact on the global and local environments of the P. falciparum interaction network. Results 177 hubs and 132 central proteins were identified from the malarial (proteins: 1607; interactions: 4750) PPI networks. Using the in-silico knock-out exercise 131 and 99 global and local network perturbing proteins were also identified. Finally, 271 proteins from P. falciparum were shortlisted as important interacting proteins (IIPs), which not only play crucial role in intra-pathogen network integrity, stage specificity but also interact with various human proteins involved in multiple metabolic pathways within the host cell. These IIPs could be used as potential drug targets in malarial research. Conclusion Graph theoretical analysis of PPIN can be a very useful approach to identify proteins that are important for regulation of the interactions required for an organism’s survival. Important interacting proteins (IIPs) identified using P. falciparum PPIN provides a useful dataset containing probable candidates for future drug target analysis. © Bhattacharyya and Chakrabarti; licensee BioMed Central. 2015 |
abstractGer |
Background Plasmodium falciparum causes the most severe form of malaria and affects 3.2 million people annually. Due to the increasing incidence of resistance to existing drugs, there is a growing need to discover new and more effective drugs against malaria. Despite the global importance of P. falciparum, vast majority of its proteins are uncharacterized experimentally. Application of newer approaches using several “omics” data has become successful for exploring the biological interactions underlying cellular processes. Till date not many system level study has been published using P. falciparum protein protein interaction. Hence, the purpose of this study is to develop a standardized pipeline for structural, functional, and topographical analysis of large scale protein protein interaction network (PPIN) in order to identify proteins important for network topology and integrity. Here, P. falciparum PPIN has been utilized as a model for better understanding of the molecular mechanisms of survival and pathogenesis of malaria parasite. Methods Various graph theoretical approaches were implemented to identify highly interacting hub and central proteins that are crucial for network integrity. Further, potential network perturbing proteins via an in-silico knock-out (KO) analysis to isolate important interacting proteins (IIPs), which in principle, can elicit significant impact on the global and local environments of the P. falciparum interaction network. Results 177 hubs and 132 central proteins were identified from the malarial (proteins: 1607; interactions: 4750) PPI networks. Using the in-silico knock-out exercise 131 and 99 global and local network perturbing proteins were also identified. Finally, 271 proteins from P. falciparum were shortlisted as important interacting proteins (IIPs), which not only play crucial role in intra-pathogen network integrity, stage specificity but also interact with various human proteins involved in multiple metabolic pathways within the host cell. These IIPs could be used as potential drug targets in malarial research. Conclusion Graph theoretical analysis of PPIN can be a very useful approach to identify proteins that are important for regulation of the interactions required for an organism’s survival. Important interacting proteins (IIPs) identified using P. falciparum PPIN provides a useful dataset containing probable candidates for future drug target analysis. © Bhattacharyya and Chakrabarti; licensee BioMed Central. 2015 |
abstract_unstemmed |
Background Plasmodium falciparum causes the most severe form of malaria and affects 3.2 million people annually. Due to the increasing incidence of resistance to existing drugs, there is a growing need to discover new and more effective drugs against malaria. Despite the global importance of P. falciparum, vast majority of its proteins are uncharacterized experimentally. Application of newer approaches using several “omics” data has become successful for exploring the biological interactions underlying cellular processes. Till date not many system level study has been published using P. falciparum protein protein interaction. Hence, the purpose of this study is to develop a standardized pipeline for structural, functional, and topographical analysis of large scale protein protein interaction network (PPIN) in order to identify proteins important for network topology and integrity. Here, P. falciparum PPIN has been utilized as a model for better understanding of the molecular mechanisms of survival and pathogenesis of malaria parasite. Methods Various graph theoretical approaches were implemented to identify highly interacting hub and central proteins that are crucial for network integrity. Further, potential network perturbing proteins via an in-silico knock-out (KO) analysis to isolate important interacting proteins (IIPs), which in principle, can elicit significant impact on the global and local environments of the P. falciparum interaction network. Results 177 hubs and 132 central proteins were identified from the malarial (proteins: 1607; interactions: 4750) PPI networks. Using the in-silico knock-out exercise 131 and 99 global and local network perturbing proteins were also identified. Finally, 271 proteins from P. falciparum were shortlisted as important interacting proteins (IIPs), which not only play crucial role in intra-pathogen network integrity, stage specificity but also interact with various human proteins involved in multiple metabolic pathways within the host cell. These IIPs could be used as potential drug targets in malarial research. Conclusion Graph theoretical analysis of PPIN can be a very useful approach to identify proteins that are important for regulation of the interactions required for an organism’s survival. Important interacting proteins (IIPs) identified using P. falciparum PPIN provides a useful dataset containing probable candidates for future drug target analysis. © Bhattacharyya and Chakrabarti; licensee BioMed Central. 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Identification of important interacting proteins (IIPs) in Plasmodium falciparum using large-scale interaction network analysis and in-silico knock-out studies |
url |
https://dx.doi.org/10.1186/s12936-015-0562-1 |
remote_bool |
true |
author2 |
Chakrabarti, Saikat |
author2Str |
Chakrabarti, Saikat |
ppnlink |
355986582 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12936-015-0562-1 |
up_date |
2024-07-03T20:44:25.181Z |
_version_ |
1803592102244777985 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR02863862X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520011538.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12936-015-0562-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR02863862X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12936-015-0562-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bhattacharyya, Madhumita</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Identification of important interacting proteins (IIPs) in Plasmodium falciparum using large-scale interaction network analysis and in-silico knock-out studies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Bhattacharyya and Chakrabarti; licensee BioMed Central. 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Plasmodium falciparum causes the most severe form of malaria and affects 3.2 million people annually. Due to the increasing incidence of resistance to existing drugs, there is a growing need to discover new and more effective drugs against malaria. Despite the global importance of P. falciparum, vast majority of its proteins are uncharacterized experimentally. Application of newer approaches using several “omics” data has become successful for exploring the biological interactions underlying cellular processes. Till date not many system level study has been published using P. falciparum protein protein interaction. Hence, the purpose of this study is to develop a standardized pipeline for structural, functional, and topographical analysis of large scale protein protein interaction network (PPIN) in order to identify proteins important for network topology and integrity. Here, P. falciparum PPIN has been utilized as a model for better understanding of the molecular mechanisms of survival and pathogenesis of malaria parasite. Methods Various graph theoretical approaches were implemented to identify highly interacting hub and central proteins that are crucial for network integrity. Further, potential network perturbing proteins via an in-silico knock-out (KO) analysis to isolate important interacting proteins (IIPs), which in principle, can elicit significant impact on the global and local environments of the P. falciparum interaction network. Results 177 hubs and 132 central proteins were identified from the malarial (proteins: 1607; interactions: 4750) PPI networks. Using the in-silico knock-out exercise 131 and 99 global and local network perturbing proteins were also identified. Finally, 271 proteins from P. falciparum were shortlisted as important interacting proteins (IIPs), which not only play crucial role in intra-pathogen network integrity, stage specificity but also interact with various human proteins involved in multiple metabolic pathways within the host cell. These IIPs could be used as potential drug targets in malarial research. Conclusion Graph theoretical analysis of PPIN can be a very useful approach to identify proteins that are important for regulation of the interactions required for an organism’s survival. Important interacting proteins (IIPs) identified using P. falciparum PPIN provides a useful dataset containing probable candidates for future drug target analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Centrality analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IIPs</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph theory</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Host pathogen interaction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hubs</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chakrabarti, Saikat</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Malaria journal</subfield><subfield code="d">London : BioMed Central, 2002</subfield><subfield code="g">14(2015), 1 vom: 08. Feb.</subfield><subfield code="w">(DE-627)355986582</subfield><subfield code="w">(DE-600)2091229-8</subfield><subfield code="x">1475-2875</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:08</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12936-015-0562-1</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">08</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
score |
7.402815 |