Improvement of displacement estimation of breast tissue in ultrasound elastography using the monogenic signal
Background In breast ultrasound elastography, tissues displacements estimation is obtained through a technique that follows the evolution of tissues under stress. However, during the acquisition of B-mode images, tissue displacements are often contaminated with multiplicative noise caused by changes...
Ausführliche Beschreibung
Autor*in: |
Slimi, Taher [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Biomedical engineering online - London : BioMed Central, 2002, 16(2017), 1 vom: 17. Jan. |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2017 ; number:1 ; day:17 ; month:01 |
Links: |
---|
DOI / URN: |
10.1186/s12938-017-0313-3 |
---|
Katalog-ID: |
SPR028696956 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR028696956 | ||
003 | DE-627 | ||
005 | 20230519093638.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12938-017-0313-3 |2 doi | |
035 | |a (DE-627)SPR028696956 | ||
035 | |a (SPR)s12938-017-0313-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Slimi, Taher |e verfasserin |4 aut | |
245 | 1 | 0 | |a Improvement of displacement estimation of breast tissue in ultrasound elastography using the monogenic signal |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2017 | ||
520 | |a Background In breast ultrasound elastography, tissues displacements estimation is obtained through a technique that follows the evolution of tissues under stress. However, during the acquisition of B-mode images, tissue displacements are often contaminated with multiplicative noise caused by changes in the speckle pattern in the tissue. Thus, the application of monogenic signal technique on the B-mode image in order to estimate displacement tissue, result in a presence of amplified noise in the deformation tissue image, which severely obscures the useful information. In this paper, we propose a new method based on the monogenic features, that is to improve the old monogenic signal (OMS) technique by improving the filtering step, so that the use of an effective denoising technique is enough to ensure a good estimation of displacement tissue. Our proposed method is based on the use of a robust filtering technique combined with the monogenic model. Methods Two models of phantom elasticity are used in our test validation sold by CIRS company. In-vivo testing was also performed on the sets of clinical B-mode images to 20 patients including malignant breast tumors. Shrinkage wavelets has been used to eliminate the noise according to the threshold, then a guided filter is introduced to completely filter the image, the monogenic model is used after excerpting the image feature and estimating analytically the displacement tissue. Results Accurate and excellent displacement estimation for breast tissue was observed in proposed method results. By adapting our proposed approach to breast B-mode images, we have shown that it demonstrated a higher performance for displacement estimation; it gives better values in term of standard deviation, higher contrast to noise ratio, greater peak signal-to-noise ratio, excellent structural similarity and much faster speed than OMS and B-spline techniques. The results of the proposed model are encouraging, allowing quick and reliable estimations. Conclusion Although the proposed approach is used in ultrasound domains, it has never been used in the estimation of the breast tissue displacement. In this context, our proposed approach could be a powerful diagnostic tool to be used in breast displacement estimation in ultrasound elastography. | ||
650 | 4 | |a Breast static elastography |7 (dpeaa)DE-He213 | |
650 | 4 | |a Displacement estimation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Monogenic signal |7 (dpeaa)DE-He213 | |
650 | 4 | |a Shrinkage wavelets |7 (dpeaa)DE-He213 | |
700 | 1 | |a Moussa, Ines Marzouk |4 aut | |
700 | 1 | |a Kraiem, Tarek |4 aut | |
700 | 1 | |a Mahjoubi, Halima |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Biomedical engineering online |d London : BioMed Central, 2002 |g 16(2017), 1 vom: 17. Jan. |w (DE-627)35210547X |w (DE-600)2084374-4 |x 1475-925X |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2017 |g number:1 |g day:17 |g month:01 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12938-017-0313-3 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 16 |j 2017 |e 1 |b 17 |c 01 |
author_variant |
t s ts i m m im imm t k tk h m hm |
---|---|
matchkey_str |
article:1475925X:2017----::mrvmnodslcmnetmtoobestsuiutaoneatgah |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1186/s12938-017-0313-3 doi (DE-627)SPR028696956 (SPR)s12938-017-0313-3-e DE-627 ger DE-627 rakwb eng Slimi, Taher verfasserin aut Improvement of displacement estimation of breast tissue in ultrasound elastography using the monogenic signal 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2017 Background In breast ultrasound elastography, tissues displacements estimation is obtained through a technique that follows the evolution of tissues under stress. However, during the acquisition of B-mode images, tissue displacements are often contaminated with multiplicative noise caused by changes in the speckle pattern in the tissue. Thus, the application of monogenic signal technique on the B-mode image in order to estimate displacement tissue, result in a presence of amplified noise in the deformation tissue image, which severely obscures the useful information. In this paper, we propose a new method based on the monogenic features, that is to improve the old monogenic signal (OMS) technique by improving the filtering step, so that the use of an effective denoising technique is enough to ensure a good estimation of displacement tissue. Our proposed method is based on the use of a robust filtering technique combined with the monogenic model. Methods Two models of phantom elasticity are used in our test validation sold by CIRS company. In-vivo testing was also performed on the sets of clinical B-mode images to 20 patients including malignant breast tumors. Shrinkage wavelets has been used to eliminate the noise according to the threshold, then a guided filter is introduced to completely filter the image, the monogenic model is used after excerpting the image feature and estimating analytically the displacement tissue. Results Accurate and excellent displacement estimation for breast tissue was observed in proposed method results. By adapting our proposed approach to breast B-mode images, we have shown that it demonstrated a higher performance for displacement estimation; it gives better values in term of standard deviation, higher contrast to noise ratio, greater peak signal-to-noise ratio, excellent structural similarity and much faster speed than OMS and B-spline techniques. The results of the proposed model are encouraging, allowing quick and reliable estimations. Conclusion Although the proposed approach is used in ultrasound domains, it has never been used in the estimation of the breast tissue displacement. In this context, our proposed approach could be a powerful diagnostic tool to be used in breast displacement estimation in ultrasound elastography. Breast static elastography (dpeaa)DE-He213 Displacement estimation (dpeaa)DE-He213 Monogenic signal (dpeaa)DE-He213 Shrinkage wavelets (dpeaa)DE-He213 Moussa, Ines Marzouk aut Kraiem, Tarek aut Mahjoubi, Halima aut Enthalten in Biomedical engineering online London : BioMed Central, 2002 16(2017), 1 vom: 17. Jan. (DE-627)35210547X (DE-600)2084374-4 1475-925X nnns volume:16 year:2017 number:1 day:17 month:01 https://dx.doi.org/10.1186/s12938-017-0313-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2017 1 17 01 |
spelling |
10.1186/s12938-017-0313-3 doi (DE-627)SPR028696956 (SPR)s12938-017-0313-3-e DE-627 ger DE-627 rakwb eng Slimi, Taher verfasserin aut Improvement of displacement estimation of breast tissue in ultrasound elastography using the monogenic signal 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2017 Background In breast ultrasound elastography, tissues displacements estimation is obtained through a technique that follows the evolution of tissues under stress. However, during the acquisition of B-mode images, tissue displacements are often contaminated with multiplicative noise caused by changes in the speckle pattern in the tissue. Thus, the application of monogenic signal technique on the B-mode image in order to estimate displacement tissue, result in a presence of amplified noise in the deformation tissue image, which severely obscures the useful information. In this paper, we propose a new method based on the monogenic features, that is to improve the old monogenic signal (OMS) technique by improving the filtering step, so that the use of an effective denoising technique is enough to ensure a good estimation of displacement tissue. Our proposed method is based on the use of a robust filtering technique combined with the monogenic model. Methods Two models of phantom elasticity are used in our test validation sold by CIRS company. In-vivo testing was also performed on the sets of clinical B-mode images to 20 patients including malignant breast tumors. Shrinkage wavelets has been used to eliminate the noise according to the threshold, then a guided filter is introduced to completely filter the image, the monogenic model is used after excerpting the image feature and estimating analytically the displacement tissue. Results Accurate and excellent displacement estimation for breast tissue was observed in proposed method results. By adapting our proposed approach to breast B-mode images, we have shown that it demonstrated a higher performance for displacement estimation; it gives better values in term of standard deviation, higher contrast to noise ratio, greater peak signal-to-noise ratio, excellent structural similarity and much faster speed than OMS and B-spline techniques. The results of the proposed model are encouraging, allowing quick and reliable estimations. Conclusion Although the proposed approach is used in ultrasound domains, it has never been used in the estimation of the breast tissue displacement. In this context, our proposed approach could be a powerful diagnostic tool to be used in breast displacement estimation in ultrasound elastography. Breast static elastography (dpeaa)DE-He213 Displacement estimation (dpeaa)DE-He213 Monogenic signal (dpeaa)DE-He213 Shrinkage wavelets (dpeaa)DE-He213 Moussa, Ines Marzouk aut Kraiem, Tarek aut Mahjoubi, Halima aut Enthalten in Biomedical engineering online London : BioMed Central, 2002 16(2017), 1 vom: 17. Jan. (DE-627)35210547X (DE-600)2084374-4 1475-925X nnns volume:16 year:2017 number:1 day:17 month:01 https://dx.doi.org/10.1186/s12938-017-0313-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2017 1 17 01 |
allfields_unstemmed |
10.1186/s12938-017-0313-3 doi (DE-627)SPR028696956 (SPR)s12938-017-0313-3-e DE-627 ger DE-627 rakwb eng Slimi, Taher verfasserin aut Improvement of displacement estimation of breast tissue in ultrasound elastography using the monogenic signal 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2017 Background In breast ultrasound elastography, tissues displacements estimation is obtained through a technique that follows the evolution of tissues under stress. However, during the acquisition of B-mode images, tissue displacements are often contaminated with multiplicative noise caused by changes in the speckle pattern in the tissue. Thus, the application of monogenic signal technique on the B-mode image in order to estimate displacement tissue, result in a presence of amplified noise in the deformation tissue image, which severely obscures the useful information. In this paper, we propose a new method based on the monogenic features, that is to improve the old monogenic signal (OMS) technique by improving the filtering step, so that the use of an effective denoising technique is enough to ensure a good estimation of displacement tissue. Our proposed method is based on the use of a robust filtering technique combined with the monogenic model. Methods Two models of phantom elasticity are used in our test validation sold by CIRS company. In-vivo testing was also performed on the sets of clinical B-mode images to 20 patients including malignant breast tumors. Shrinkage wavelets has been used to eliminate the noise according to the threshold, then a guided filter is introduced to completely filter the image, the monogenic model is used after excerpting the image feature and estimating analytically the displacement tissue. Results Accurate and excellent displacement estimation for breast tissue was observed in proposed method results. By adapting our proposed approach to breast B-mode images, we have shown that it demonstrated a higher performance for displacement estimation; it gives better values in term of standard deviation, higher contrast to noise ratio, greater peak signal-to-noise ratio, excellent structural similarity and much faster speed than OMS and B-spline techniques. The results of the proposed model are encouraging, allowing quick and reliable estimations. Conclusion Although the proposed approach is used in ultrasound domains, it has never been used in the estimation of the breast tissue displacement. In this context, our proposed approach could be a powerful diagnostic tool to be used in breast displacement estimation in ultrasound elastography. Breast static elastography (dpeaa)DE-He213 Displacement estimation (dpeaa)DE-He213 Monogenic signal (dpeaa)DE-He213 Shrinkage wavelets (dpeaa)DE-He213 Moussa, Ines Marzouk aut Kraiem, Tarek aut Mahjoubi, Halima aut Enthalten in Biomedical engineering online London : BioMed Central, 2002 16(2017), 1 vom: 17. Jan. (DE-627)35210547X (DE-600)2084374-4 1475-925X nnns volume:16 year:2017 number:1 day:17 month:01 https://dx.doi.org/10.1186/s12938-017-0313-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2017 1 17 01 |
allfieldsGer |
10.1186/s12938-017-0313-3 doi (DE-627)SPR028696956 (SPR)s12938-017-0313-3-e DE-627 ger DE-627 rakwb eng Slimi, Taher verfasserin aut Improvement of displacement estimation of breast tissue in ultrasound elastography using the monogenic signal 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2017 Background In breast ultrasound elastography, tissues displacements estimation is obtained through a technique that follows the evolution of tissues under stress. However, during the acquisition of B-mode images, tissue displacements are often contaminated with multiplicative noise caused by changes in the speckle pattern in the tissue. Thus, the application of monogenic signal technique on the B-mode image in order to estimate displacement tissue, result in a presence of amplified noise in the deformation tissue image, which severely obscures the useful information. In this paper, we propose a new method based on the monogenic features, that is to improve the old monogenic signal (OMS) technique by improving the filtering step, so that the use of an effective denoising technique is enough to ensure a good estimation of displacement tissue. Our proposed method is based on the use of a robust filtering technique combined with the monogenic model. Methods Two models of phantom elasticity are used in our test validation sold by CIRS company. In-vivo testing was also performed on the sets of clinical B-mode images to 20 patients including malignant breast tumors. Shrinkage wavelets has been used to eliminate the noise according to the threshold, then a guided filter is introduced to completely filter the image, the monogenic model is used after excerpting the image feature and estimating analytically the displacement tissue. Results Accurate and excellent displacement estimation for breast tissue was observed in proposed method results. By adapting our proposed approach to breast B-mode images, we have shown that it demonstrated a higher performance for displacement estimation; it gives better values in term of standard deviation, higher contrast to noise ratio, greater peak signal-to-noise ratio, excellent structural similarity and much faster speed than OMS and B-spline techniques. The results of the proposed model are encouraging, allowing quick and reliable estimations. Conclusion Although the proposed approach is used in ultrasound domains, it has never been used in the estimation of the breast tissue displacement. In this context, our proposed approach could be a powerful diagnostic tool to be used in breast displacement estimation in ultrasound elastography. Breast static elastography (dpeaa)DE-He213 Displacement estimation (dpeaa)DE-He213 Monogenic signal (dpeaa)DE-He213 Shrinkage wavelets (dpeaa)DE-He213 Moussa, Ines Marzouk aut Kraiem, Tarek aut Mahjoubi, Halima aut Enthalten in Biomedical engineering online London : BioMed Central, 2002 16(2017), 1 vom: 17. Jan. (DE-627)35210547X (DE-600)2084374-4 1475-925X nnns volume:16 year:2017 number:1 day:17 month:01 https://dx.doi.org/10.1186/s12938-017-0313-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2017 1 17 01 |
allfieldsSound |
10.1186/s12938-017-0313-3 doi (DE-627)SPR028696956 (SPR)s12938-017-0313-3-e DE-627 ger DE-627 rakwb eng Slimi, Taher verfasserin aut Improvement of displacement estimation of breast tissue in ultrasound elastography using the monogenic signal 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2017 Background In breast ultrasound elastography, tissues displacements estimation is obtained through a technique that follows the evolution of tissues under stress. However, during the acquisition of B-mode images, tissue displacements are often contaminated with multiplicative noise caused by changes in the speckle pattern in the tissue. Thus, the application of monogenic signal technique on the B-mode image in order to estimate displacement tissue, result in a presence of amplified noise in the deformation tissue image, which severely obscures the useful information. In this paper, we propose a new method based on the monogenic features, that is to improve the old monogenic signal (OMS) technique by improving the filtering step, so that the use of an effective denoising technique is enough to ensure a good estimation of displacement tissue. Our proposed method is based on the use of a robust filtering technique combined with the monogenic model. Methods Two models of phantom elasticity are used in our test validation sold by CIRS company. In-vivo testing was also performed on the sets of clinical B-mode images to 20 patients including malignant breast tumors. Shrinkage wavelets has been used to eliminate the noise according to the threshold, then a guided filter is introduced to completely filter the image, the monogenic model is used after excerpting the image feature and estimating analytically the displacement tissue. Results Accurate and excellent displacement estimation for breast tissue was observed in proposed method results. By adapting our proposed approach to breast B-mode images, we have shown that it demonstrated a higher performance for displacement estimation; it gives better values in term of standard deviation, higher contrast to noise ratio, greater peak signal-to-noise ratio, excellent structural similarity and much faster speed than OMS and B-spline techniques. The results of the proposed model are encouraging, allowing quick and reliable estimations. Conclusion Although the proposed approach is used in ultrasound domains, it has never been used in the estimation of the breast tissue displacement. In this context, our proposed approach could be a powerful diagnostic tool to be used in breast displacement estimation in ultrasound elastography. Breast static elastography (dpeaa)DE-He213 Displacement estimation (dpeaa)DE-He213 Monogenic signal (dpeaa)DE-He213 Shrinkage wavelets (dpeaa)DE-He213 Moussa, Ines Marzouk aut Kraiem, Tarek aut Mahjoubi, Halima aut Enthalten in Biomedical engineering online London : BioMed Central, 2002 16(2017), 1 vom: 17. Jan. (DE-627)35210547X (DE-600)2084374-4 1475-925X nnns volume:16 year:2017 number:1 day:17 month:01 https://dx.doi.org/10.1186/s12938-017-0313-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2017 1 17 01 |
language |
English |
source |
Enthalten in Biomedical engineering online 16(2017), 1 vom: 17. Jan. volume:16 year:2017 number:1 day:17 month:01 |
sourceStr |
Enthalten in Biomedical engineering online 16(2017), 1 vom: 17. Jan. volume:16 year:2017 number:1 day:17 month:01 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Breast static elastography Displacement estimation Monogenic signal Shrinkage wavelets |
isfreeaccess_bool |
true |
container_title |
Biomedical engineering online |
authorswithroles_txt_mv |
Slimi, Taher @@aut@@ Moussa, Ines Marzouk @@aut@@ Kraiem, Tarek @@aut@@ Mahjoubi, Halima @@aut@@ |
publishDateDaySort_date |
2017-01-17T00:00:00Z |
hierarchy_top_id |
35210547X |
id |
SPR028696956 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR028696956</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519093638.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12938-017-0313-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR028696956</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12938-017-0313-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Slimi, Taher</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improvement of displacement estimation of breast tissue in ultrasound elastography using the monogenic signal</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background In breast ultrasound elastography, tissues displacements estimation is obtained through a technique that follows the evolution of tissues under stress. However, during the acquisition of B-mode images, tissue displacements are often contaminated with multiplicative noise caused by changes in the speckle pattern in the tissue. Thus, the application of monogenic signal technique on the B-mode image in order to estimate displacement tissue, result in a presence of amplified noise in the deformation tissue image, which severely obscures the useful information. In this paper, we propose a new method based on the monogenic features, that is to improve the old monogenic signal (OMS) technique by improving the filtering step, so that the use of an effective denoising technique is enough to ensure a good estimation of displacement tissue. Our proposed method is based on the use of a robust filtering technique combined with the monogenic model. Methods Two models of phantom elasticity are used in our test validation sold by CIRS company. In-vivo testing was also performed on the sets of clinical B-mode images to 20 patients including malignant breast tumors. Shrinkage wavelets has been used to eliminate the noise according to the threshold, then a guided filter is introduced to completely filter the image, the monogenic model is used after excerpting the image feature and estimating analytically the displacement tissue. Results Accurate and excellent displacement estimation for breast tissue was observed in proposed method results. By adapting our proposed approach to breast B-mode images, we have shown that it demonstrated a higher performance for displacement estimation; it gives better values in term of standard deviation, higher contrast to noise ratio, greater peak signal-to-noise ratio, excellent structural similarity and much faster speed than OMS and B-spline techniques. The results of the proposed model are encouraging, allowing quick and reliable estimations. Conclusion Although the proposed approach is used in ultrasound domains, it has never been used in the estimation of the breast tissue displacement. In this context, our proposed approach could be a powerful diagnostic tool to be used in breast displacement estimation in ultrasound elastography.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breast static elastography</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Displacement estimation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monogenic signal</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shrinkage wavelets</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moussa, Ines Marzouk</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kraiem, Tarek</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mahjoubi, Halima</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Biomedical engineering online</subfield><subfield code="d">London : BioMed Central, 2002</subfield><subfield code="g">16(2017), 1 vom: 17. Jan.</subfield><subfield code="w">(DE-627)35210547X</subfield><subfield code="w">(DE-600)2084374-4</subfield><subfield code="x">1475-925X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">day:17</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12938-017-0313-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="b">17</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
author |
Slimi, Taher |
spellingShingle |
Slimi, Taher misc Breast static elastography misc Displacement estimation misc Monogenic signal misc Shrinkage wavelets Improvement of displacement estimation of breast tissue in ultrasound elastography using the monogenic signal |
authorStr |
Slimi, Taher |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)35210547X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1475-925X |
topic_title |
Improvement of displacement estimation of breast tissue in ultrasound elastography using the monogenic signal Breast static elastography (dpeaa)DE-He213 Displacement estimation (dpeaa)DE-He213 Monogenic signal (dpeaa)DE-He213 Shrinkage wavelets (dpeaa)DE-He213 |
topic |
misc Breast static elastography misc Displacement estimation misc Monogenic signal misc Shrinkage wavelets |
topic_unstemmed |
misc Breast static elastography misc Displacement estimation misc Monogenic signal misc Shrinkage wavelets |
topic_browse |
misc Breast static elastography misc Displacement estimation misc Monogenic signal misc Shrinkage wavelets |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Biomedical engineering online |
hierarchy_parent_id |
35210547X |
hierarchy_top_title |
Biomedical engineering online |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)35210547X (DE-600)2084374-4 |
title |
Improvement of displacement estimation of breast tissue in ultrasound elastography using the monogenic signal |
ctrlnum |
(DE-627)SPR028696956 (SPR)s12938-017-0313-3-e |
title_full |
Improvement of displacement estimation of breast tissue in ultrasound elastography using the monogenic signal |
author_sort |
Slimi, Taher |
journal |
Biomedical engineering online |
journalStr |
Biomedical engineering online |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
author_browse |
Slimi, Taher Moussa, Ines Marzouk Kraiem, Tarek Mahjoubi, Halima |
container_volume |
16 |
format_se |
Elektronische Aufsätze |
author-letter |
Slimi, Taher |
doi_str_mv |
10.1186/s12938-017-0313-3 |
title_sort |
improvement of displacement estimation of breast tissue in ultrasound elastography using the monogenic signal |
title_auth |
Improvement of displacement estimation of breast tissue in ultrasound elastography using the monogenic signal |
abstract |
Background In breast ultrasound elastography, tissues displacements estimation is obtained through a technique that follows the evolution of tissues under stress. However, during the acquisition of B-mode images, tissue displacements are often contaminated with multiplicative noise caused by changes in the speckle pattern in the tissue. Thus, the application of monogenic signal technique on the B-mode image in order to estimate displacement tissue, result in a presence of amplified noise in the deformation tissue image, which severely obscures the useful information. In this paper, we propose a new method based on the monogenic features, that is to improve the old monogenic signal (OMS) technique by improving the filtering step, so that the use of an effective denoising technique is enough to ensure a good estimation of displacement tissue. Our proposed method is based on the use of a robust filtering technique combined with the monogenic model. Methods Two models of phantom elasticity are used in our test validation sold by CIRS company. In-vivo testing was also performed on the sets of clinical B-mode images to 20 patients including malignant breast tumors. Shrinkage wavelets has been used to eliminate the noise according to the threshold, then a guided filter is introduced to completely filter the image, the monogenic model is used after excerpting the image feature and estimating analytically the displacement tissue. Results Accurate and excellent displacement estimation for breast tissue was observed in proposed method results. By adapting our proposed approach to breast B-mode images, we have shown that it demonstrated a higher performance for displacement estimation; it gives better values in term of standard deviation, higher contrast to noise ratio, greater peak signal-to-noise ratio, excellent structural similarity and much faster speed than OMS and B-spline techniques. The results of the proposed model are encouraging, allowing quick and reliable estimations. Conclusion Although the proposed approach is used in ultrasound domains, it has never been used in the estimation of the breast tissue displacement. In this context, our proposed approach could be a powerful diagnostic tool to be used in breast displacement estimation in ultrasound elastography. © The Author(s) 2017 |
abstractGer |
Background In breast ultrasound elastography, tissues displacements estimation is obtained through a technique that follows the evolution of tissues under stress. However, during the acquisition of B-mode images, tissue displacements are often contaminated with multiplicative noise caused by changes in the speckle pattern in the tissue. Thus, the application of monogenic signal technique on the B-mode image in order to estimate displacement tissue, result in a presence of amplified noise in the deformation tissue image, which severely obscures the useful information. In this paper, we propose a new method based on the monogenic features, that is to improve the old monogenic signal (OMS) technique by improving the filtering step, so that the use of an effective denoising technique is enough to ensure a good estimation of displacement tissue. Our proposed method is based on the use of a robust filtering technique combined with the monogenic model. Methods Two models of phantom elasticity are used in our test validation sold by CIRS company. In-vivo testing was also performed on the sets of clinical B-mode images to 20 patients including malignant breast tumors. Shrinkage wavelets has been used to eliminate the noise according to the threshold, then a guided filter is introduced to completely filter the image, the monogenic model is used after excerpting the image feature and estimating analytically the displacement tissue. Results Accurate and excellent displacement estimation for breast tissue was observed in proposed method results. By adapting our proposed approach to breast B-mode images, we have shown that it demonstrated a higher performance for displacement estimation; it gives better values in term of standard deviation, higher contrast to noise ratio, greater peak signal-to-noise ratio, excellent structural similarity and much faster speed than OMS and B-spline techniques. The results of the proposed model are encouraging, allowing quick and reliable estimations. Conclusion Although the proposed approach is used in ultrasound domains, it has never been used in the estimation of the breast tissue displacement. In this context, our proposed approach could be a powerful diagnostic tool to be used in breast displacement estimation in ultrasound elastography. © The Author(s) 2017 |
abstract_unstemmed |
Background In breast ultrasound elastography, tissues displacements estimation is obtained through a technique that follows the evolution of tissues under stress. However, during the acquisition of B-mode images, tissue displacements are often contaminated with multiplicative noise caused by changes in the speckle pattern in the tissue. Thus, the application of monogenic signal technique on the B-mode image in order to estimate displacement tissue, result in a presence of amplified noise in the deformation tissue image, which severely obscures the useful information. In this paper, we propose a new method based on the monogenic features, that is to improve the old monogenic signal (OMS) technique by improving the filtering step, so that the use of an effective denoising technique is enough to ensure a good estimation of displacement tissue. Our proposed method is based on the use of a robust filtering technique combined with the monogenic model. Methods Two models of phantom elasticity are used in our test validation sold by CIRS company. In-vivo testing was also performed on the sets of clinical B-mode images to 20 patients including malignant breast tumors. Shrinkage wavelets has been used to eliminate the noise according to the threshold, then a guided filter is introduced to completely filter the image, the monogenic model is used after excerpting the image feature and estimating analytically the displacement tissue. Results Accurate and excellent displacement estimation for breast tissue was observed in proposed method results. By adapting our proposed approach to breast B-mode images, we have shown that it demonstrated a higher performance for displacement estimation; it gives better values in term of standard deviation, higher contrast to noise ratio, greater peak signal-to-noise ratio, excellent structural similarity and much faster speed than OMS and B-spline techniques. The results of the proposed model are encouraging, allowing quick and reliable estimations. Conclusion Although the proposed approach is used in ultrasound domains, it has never been used in the estimation of the breast tissue displacement. In this context, our proposed approach could be a powerful diagnostic tool to be used in breast displacement estimation in ultrasound elastography. © The Author(s) 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Improvement of displacement estimation of breast tissue in ultrasound elastography using the monogenic signal |
url |
https://dx.doi.org/10.1186/s12938-017-0313-3 |
remote_bool |
true |
author2 |
Moussa, Ines Marzouk Kraiem, Tarek Mahjoubi, Halima |
author2Str |
Moussa, Ines Marzouk Kraiem, Tarek Mahjoubi, Halima |
ppnlink |
35210547X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12938-017-0313-3 |
up_date |
2024-07-03T21:08:59.328Z |
_version_ |
1803593648007282688 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR028696956</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519093638.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12938-017-0313-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR028696956</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12938-017-0313-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Slimi, Taher</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improvement of displacement estimation of breast tissue in ultrasound elastography using the monogenic signal</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background In breast ultrasound elastography, tissues displacements estimation is obtained through a technique that follows the evolution of tissues under stress. However, during the acquisition of B-mode images, tissue displacements are often contaminated with multiplicative noise caused by changes in the speckle pattern in the tissue. Thus, the application of monogenic signal technique on the B-mode image in order to estimate displacement tissue, result in a presence of amplified noise in the deformation tissue image, which severely obscures the useful information. In this paper, we propose a new method based on the monogenic features, that is to improve the old monogenic signal (OMS) technique by improving the filtering step, so that the use of an effective denoising technique is enough to ensure a good estimation of displacement tissue. Our proposed method is based on the use of a robust filtering technique combined with the monogenic model. Methods Two models of phantom elasticity are used in our test validation sold by CIRS company. In-vivo testing was also performed on the sets of clinical B-mode images to 20 patients including malignant breast tumors. Shrinkage wavelets has been used to eliminate the noise according to the threshold, then a guided filter is introduced to completely filter the image, the monogenic model is used after excerpting the image feature and estimating analytically the displacement tissue. Results Accurate and excellent displacement estimation for breast tissue was observed in proposed method results. By adapting our proposed approach to breast B-mode images, we have shown that it demonstrated a higher performance for displacement estimation; it gives better values in term of standard deviation, higher contrast to noise ratio, greater peak signal-to-noise ratio, excellent structural similarity and much faster speed than OMS and B-spline techniques. The results of the proposed model are encouraging, allowing quick and reliable estimations. Conclusion Although the proposed approach is used in ultrasound domains, it has never been used in the estimation of the breast tissue displacement. In this context, our proposed approach could be a powerful diagnostic tool to be used in breast displacement estimation in ultrasound elastography.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breast static elastography</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Displacement estimation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monogenic signal</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shrinkage wavelets</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moussa, Ines Marzouk</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kraiem, Tarek</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mahjoubi, Halima</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Biomedical engineering online</subfield><subfield code="d">London : BioMed Central, 2002</subfield><subfield code="g">16(2017), 1 vom: 17. Jan.</subfield><subfield code="w">(DE-627)35210547X</subfield><subfield code="w">(DE-600)2084374-4</subfield><subfield code="x">1475-925X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">day:17</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12938-017-0313-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="b">17</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
score |
7.3993273 |