Study and characterization of morphogeometric parameters to assist diagnosis of keratoconus
Background In case of significant imperfections on the cornea, data acquisition is difficult and a significant level of missing data could require the interpolation of important areas of the cornea, resulting in a very ambiguous model. The development of methods to define in vivo customised geometri...
Ausführliche Beschreibung
Autor*in: |
Cavas-Martínez, Francisco [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Biomedical engineering online - London : BioMed Central, 2002, 17(2018), Suppl 1 vom: 20. Nov. |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2018 ; number:Suppl 1 ; day:20 ; month:11 |
Links: |
---|
DOI / URN: |
10.1186/s12938-018-0564-7 |
---|
Katalog-ID: |
SPR028700090 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR028700090 | ||
003 | DE-627 | ||
005 | 20230519093646.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12938-018-0564-7 |2 doi | |
035 | |a (DE-627)SPR028700090 | ||
035 | |a (SPR)s12938-018-0564-7-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Cavas-Martínez, Francisco |e verfasserin |4 aut | |
245 | 1 | 0 | |a Study and characterization of morphogeometric parameters to assist diagnosis of keratoconus |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2018 | ||
520 | |a Background In case of significant imperfections on the cornea, data acquisition is difficult and a significant level of missing data could require the interpolation of important areas of the cornea, resulting in a very ambiguous model. The development of methods to define in vivo customised geometric properties of the cornea based only on real raw data is extremely useful to diagnose and assess the progression of diseases directly related to the corneal architecture. The present work tries to improve the prognostic of corneal ectasia creating a 3D customised model of the cornea and analysing different geometric variables from this model to determine which variables or combination of them could be defined as an indicator of susceptibility to develop keratoconus. Methods A corneal geometric reconstruction was performed using zonal functions and retrospective Scheimpflug tomography data from 187 eyes of 187 patients. Morphology of healthy and keratoconic corneas was characterized by means of geometric variables. The performance of these variables as predictors of a new geometric marker was assessed and their correlations were analysed. Results The more representative variable to classify the corneal anomalies related to keratoconus was posterior apex deviation (area under receiver operating characteristic curve > 0.899; p < 0.0001). However, the strongest correlations in both healthy and pathological corneas were provided by the metrics directly related to the thickness, as deviations of the anterior/posterior minimum thickness points. Conclusions The presented morphogeometric approach based on the analysis and custom geometric modelling of the cornea demonstrates to be useful for the characterization and diagnosis of keratoconus disease, stating that geometrical deformation is an effective marker of the ectatic disease’s progression. | ||
650 | 4 | |a Keratoconus |7 (dpeaa)DE-He213 | |
650 | 4 | |a Scheimpflug |7 (dpeaa)DE-He213 | |
650 | 4 | |a Surface reconstruction |7 (dpeaa)DE-He213 | |
700 | 1 | |a Fernández-Pacheco, Daniel G. |4 aut | |
700 | 1 | |a Parras, Dolores |4 aut | |
700 | 1 | |a Cañavate, Francisco J. F. |4 aut | |
700 | 1 | |a Bataille, Laurent |4 aut | |
700 | 1 | |a Alió, Jorge |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Biomedical engineering online |d London : BioMed Central, 2002 |g 17(2018), Suppl 1 vom: 20. Nov. |w (DE-627)35210547X |w (DE-600)2084374-4 |x 1475-925X |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2018 |g number:Suppl 1 |g day:20 |g month:11 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12938-018-0564-7 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 17 |j 2018 |e Suppl 1 |b 20 |c 11 |
author_variant |
f c m fcm d g f p dgf dgfp d p dp f j f c fjf fjfc l b lb j a ja |
---|---|
matchkey_str |
article:1475925X:2018----::tdadhrceiainfopoemtiprmtrtassd |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1186/s12938-018-0564-7 doi (DE-627)SPR028700090 (SPR)s12938-018-0564-7-e DE-627 ger DE-627 rakwb eng Cavas-Martínez, Francisco verfasserin aut Study and characterization of morphogeometric parameters to assist diagnosis of keratoconus 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Background In case of significant imperfections on the cornea, data acquisition is difficult and a significant level of missing data could require the interpolation of important areas of the cornea, resulting in a very ambiguous model. The development of methods to define in vivo customised geometric properties of the cornea based only on real raw data is extremely useful to diagnose and assess the progression of diseases directly related to the corneal architecture. The present work tries to improve the prognostic of corneal ectasia creating a 3D customised model of the cornea and analysing different geometric variables from this model to determine which variables or combination of them could be defined as an indicator of susceptibility to develop keratoconus. Methods A corneal geometric reconstruction was performed using zonal functions and retrospective Scheimpflug tomography data from 187 eyes of 187 patients. Morphology of healthy and keratoconic corneas was characterized by means of geometric variables. The performance of these variables as predictors of a new geometric marker was assessed and their correlations were analysed. Results The more representative variable to classify the corneal anomalies related to keratoconus was posterior apex deviation (area under receiver operating characteristic curve > 0.899; p < 0.0001). However, the strongest correlations in both healthy and pathological corneas were provided by the metrics directly related to the thickness, as deviations of the anterior/posterior minimum thickness points. Conclusions The presented morphogeometric approach based on the analysis and custom geometric modelling of the cornea demonstrates to be useful for the characterization and diagnosis of keratoconus disease, stating that geometrical deformation is an effective marker of the ectatic disease’s progression. Keratoconus (dpeaa)DE-He213 Scheimpflug (dpeaa)DE-He213 Surface reconstruction (dpeaa)DE-He213 Fernández-Pacheco, Daniel G. aut Parras, Dolores aut Cañavate, Francisco J. F. aut Bataille, Laurent aut Alió, Jorge aut Enthalten in Biomedical engineering online London : BioMed Central, 2002 17(2018), Suppl 1 vom: 20. Nov. (DE-627)35210547X (DE-600)2084374-4 1475-925X nnns volume:17 year:2018 number:Suppl 1 day:20 month:11 https://dx.doi.org/10.1186/s12938-018-0564-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2018 Suppl 1 20 11 |
spelling |
10.1186/s12938-018-0564-7 doi (DE-627)SPR028700090 (SPR)s12938-018-0564-7-e DE-627 ger DE-627 rakwb eng Cavas-Martínez, Francisco verfasserin aut Study and characterization of morphogeometric parameters to assist diagnosis of keratoconus 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Background In case of significant imperfections on the cornea, data acquisition is difficult and a significant level of missing data could require the interpolation of important areas of the cornea, resulting in a very ambiguous model. The development of methods to define in vivo customised geometric properties of the cornea based only on real raw data is extremely useful to diagnose and assess the progression of diseases directly related to the corneal architecture. The present work tries to improve the prognostic of corneal ectasia creating a 3D customised model of the cornea and analysing different geometric variables from this model to determine which variables or combination of them could be defined as an indicator of susceptibility to develop keratoconus. Methods A corneal geometric reconstruction was performed using zonal functions and retrospective Scheimpflug tomography data from 187 eyes of 187 patients. Morphology of healthy and keratoconic corneas was characterized by means of geometric variables. The performance of these variables as predictors of a new geometric marker was assessed and their correlations were analysed. Results The more representative variable to classify the corneal anomalies related to keratoconus was posterior apex deviation (area under receiver operating characteristic curve > 0.899; p < 0.0001). However, the strongest correlations in both healthy and pathological corneas were provided by the metrics directly related to the thickness, as deviations of the anterior/posterior minimum thickness points. Conclusions The presented morphogeometric approach based on the analysis and custom geometric modelling of the cornea demonstrates to be useful for the characterization and diagnosis of keratoconus disease, stating that geometrical deformation is an effective marker of the ectatic disease’s progression. Keratoconus (dpeaa)DE-He213 Scheimpflug (dpeaa)DE-He213 Surface reconstruction (dpeaa)DE-He213 Fernández-Pacheco, Daniel G. aut Parras, Dolores aut Cañavate, Francisco J. F. aut Bataille, Laurent aut Alió, Jorge aut Enthalten in Biomedical engineering online London : BioMed Central, 2002 17(2018), Suppl 1 vom: 20. Nov. (DE-627)35210547X (DE-600)2084374-4 1475-925X nnns volume:17 year:2018 number:Suppl 1 day:20 month:11 https://dx.doi.org/10.1186/s12938-018-0564-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2018 Suppl 1 20 11 |
allfields_unstemmed |
10.1186/s12938-018-0564-7 doi (DE-627)SPR028700090 (SPR)s12938-018-0564-7-e DE-627 ger DE-627 rakwb eng Cavas-Martínez, Francisco verfasserin aut Study and characterization of morphogeometric parameters to assist diagnosis of keratoconus 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Background In case of significant imperfections on the cornea, data acquisition is difficult and a significant level of missing data could require the interpolation of important areas of the cornea, resulting in a very ambiguous model. The development of methods to define in vivo customised geometric properties of the cornea based only on real raw data is extremely useful to diagnose and assess the progression of diseases directly related to the corneal architecture. The present work tries to improve the prognostic of corneal ectasia creating a 3D customised model of the cornea and analysing different geometric variables from this model to determine which variables or combination of them could be defined as an indicator of susceptibility to develop keratoconus. Methods A corneal geometric reconstruction was performed using zonal functions and retrospective Scheimpflug tomography data from 187 eyes of 187 patients. Morphology of healthy and keratoconic corneas was characterized by means of geometric variables. The performance of these variables as predictors of a new geometric marker was assessed and their correlations were analysed. Results The more representative variable to classify the corneal anomalies related to keratoconus was posterior apex deviation (area under receiver operating characteristic curve > 0.899; p < 0.0001). However, the strongest correlations in both healthy and pathological corneas were provided by the metrics directly related to the thickness, as deviations of the anterior/posterior minimum thickness points. Conclusions The presented morphogeometric approach based on the analysis and custom geometric modelling of the cornea demonstrates to be useful for the characterization and diagnosis of keratoconus disease, stating that geometrical deformation is an effective marker of the ectatic disease’s progression. Keratoconus (dpeaa)DE-He213 Scheimpflug (dpeaa)DE-He213 Surface reconstruction (dpeaa)DE-He213 Fernández-Pacheco, Daniel G. aut Parras, Dolores aut Cañavate, Francisco J. F. aut Bataille, Laurent aut Alió, Jorge aut Enthalten in Biomedical engineering online London : BioMed Central, 2002 17(2018), Suppl 1 vom: 20. Nov. (DE-627)35210547X (DE-600)2084374-4 1475-925X nnns volume:17 year:2018 number:Suppl 1 day:20 month:11 https://dx.doi.org/10.1186/s12938-018-0564-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2018 Suppl 1 20 11 |
allfieldsGer |
10.1186/s12938-018-0564-7 doi (DE-627)SPR028700090 (SPR)s12938-018-0564-7-e DE-627 ger DE-627 rakwb eng Cavas-Martínez, Francisco verfasserin aut Study and characterization of morphogeometric parameters to assist diagnosis of keratoconus 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Background In case of significant imperfections on the cornea, data acquisition is difficult and a significant level of missing data could require the interpolation of important areas of the cornea, resulting in a very ambiguous model. The development of methods to define in vivo customised geometric properties of the cornea based only on real raw data is extremely useful to diagnose and assess the progression of diseases directly related to the corneal architecture. The present work tries to improve the prognostic of corneal ectasia creating a 3D customised model of the cornea and analysing different geometric variables from this model to determine which variables or combination of them could be defined as an indicator of susceptibility to develop keratoconus. Methods A corneal geometric reconstruction was performed using zonal functions and retrospective Scheimpflug tomography data from 187 eyes of 187 patients. Morphology of healthy and keratoconic corneas was characterized by means of geometric variables. The performance of these variables as predictors of a new geometric marker was assessed and their correlations were analysed. Results The more representative variable to classify the corneal anomalies related to keratoconus was posterior apex deviation (area under receiver operating characteristic curve > 0.899; p < 0.0001). However, the strongest correlations in both healthy and pathological corneas were provided by the metrics directly related to the thickness, as deviations of the anterior/posterior minimum thickness points. Conclusions The presented morphogeometric approach based on the analysis and custom geometric modelling of the cornea demonstrates to be useful for the characterization and diagnosis of keratoconus disease, stating that geometrical deformation is an effective marker of the ectatic disease’s progression. Keratoconus (dpeaa)DE-He213 Scheimpflug (dpeaa)DE-He213 Surface reconstruction (dpeaa)DE-He213 Fernández-Pacheco, Daniel G. aut Parras, Dolores aut Cañavate, Francisco J. F. aut Bataille, Laurent aut Alió, Jorge aut Enthalten in Biomedical engineering online London : BioMed Central, 2002 17(2018), Suppl 1 vom: 20. Nov. (DE-627)35210547X (DE-600)2084374-4 1475-925X nnns volume:17 year:2018 number:Suppl 1 day:20 month:11 https://dx.doi.org/10.1186/s12938-018-0564-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2018 Suppl 1 20 11 |
allfieldsSound |
10.1186/s12938-018-0564-7 doi (DE-627)SPR028700090 (SPR)s12938-018-0564-7-e DE-627 ger DE-627 rakwb eng Cavas-Martínez, Francisco verfasserin aut Study and characterization of morphogeometric parameters to assist diagnosis of keratoconus 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Background In case of significant imperfections on the cornea, data acquisition is difficult and a significant level of missing data could require the interpolation of important areas of the cornea, resulting in a very ambiguous model. The development of methods to define in vivo customised geometric properties of the cornea based only on real raw data is extremely useful to diagnose and assess the progression of diseases directly related to the corneal architecture. The present work tries to improve the prognostic of corneal ectasia creating a 3D customised model of the cornea and analysing different geometric variables from this model to determine which variables or combination of them could be defined as an indicator of susceptibility to develop keratoconus. Methods A corneal geometric reconstruction was performed using zonal functions and retrospective Scheimpflug tomography data from 187 eyes of 187 patients. Morphology of healthy and keratoconic corneas was characterized by means of geometric variables. The performance of these variables as predictors of a new geometric marker was assessed and their correlations were analysed. Results The more representative variable to classify the corneal anomalies related to keratoconus was posterior apex deviation (area under receiver operating characteristic curve > 0.899; p < 0.0001). However, the strongest correlations in both healthy and pathological corneas were provided by the metrics directly related to the thickness, as deviations of the anterior/posterior minimum thickness points. Conclusions The presented morphogeometric approach based on the analysis and custom geometric modelling of the cornea demonstrates to be useful for the characterization and diagnosis of keratoconus disease, stating that geometrical deformation is an effective marker of the ectatic disease’s progression. Keratoconus (dpeaa)DE-He213 Scheimpflug (dpeaa)DE-He213 Surface reconstruction (dpeaa)DE-He213 Fernández-Pacheco, Daniel G. aut Parras, Dolores aut Cañavate, Francisco J. F. aut Bataille, Laurent aut Alió, Jorge aut Enthalten in Biomedical engineering online London : BioMed Central, 2002 17(2018), Suppl 1 vom: 20. Nov. (DE-627)35210547X (DE-600)2084374-4 1475-925X nnns volume:17 year:2018 number:Suppl 1 day:20 month:11 https://dx.doi.org/10.1186/s12938-018-0564-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2018 Suppl 1 20 11 |
language |
English |
source |
Enthalten in Biomedical engineering online 17(2018), Suppl 1 vom: 20. Nov. volume:17 year:2018 number:Suppl 1 day:20 month:11 |
sourceStr |
Enthalten in Biomedical engineering online 17(2018), Suppl 1 vom: 20. Nov. volume:17 year:2018 number:Suppl 1 day:20 month:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Keratoconus Scheimpflug Surface reconstruction |
isfreeaccess_bool |
true |
container_title |
Biomedical engineering online |
authorswithroles_txt_mv |
Cavas-Martínez, Francisco @@aut@@ Fernández-Pacheco, Daniel G. @@aut@@ Parras, Dolores @@aut@@ Cañavate, Francisco J. F. @@aut@@ Bataille, Laurent @@aut@@ Alió, Jorge @@aut@@ |
publishDateDaySort_date |
2018-11-20T00:00:00Z |
hierarchy_top_id |
35210547X |
id |
SPR028700090 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR028700090</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519093646.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12938-018-0564-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR028700090</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12938-018-0564-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cavas-Martínez, Francisco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study and characterization of morphogeometric parameters to assist diagnosis of keratoconus</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background In case of significant imperfections on the cornea, data acquisition is difficult and a significant level of missing data could require the interpolation of important areas of the cornea, resulting in a very ambiguous model. The development of methods to define in vivo customised geometric properties of the cornea based only on real raw data is extremely useful to diagnose and assess the progression of diseases directly related to the corneal architecture. The present work tries to improve the prognostic of corneal ectasia creating a 3D customised model of the cornea and analysing different geometric variables from this model to determine which variables or combination of them could be defined as an indicator of susceptibility to develop keratoconus. Methods A corneal geometric reconstruction was performed using zonal functions and retrospective Scheimpflug tomography data from 187 eyes of 187 patients. Morphology of healthy and keratoconic corneas was characterized by means of geometric variables. The performance of these variables as predictors of a new geometric marker was assessed and their correlations were analysed. Results The more representative variable to classify the corneal anomalies related to keratoconus was posterior apex deviation (area under receiver operating characteristic curve > 0.899; p < 0.0001). However, the strongest correlations in both healthy and pathological corneas were provided by the metrics directly related to the thickness, as deviations of the anterior/posterior minimum thickness points. Conclusions The presented morphogeometric approach based on the analysis and custom geometric modelling of the cornea demonstrates to be useful for the characterization and diagnosis of keratoconus disease, stating that geometrical deformation is an effective marker of the ectatic disease’s progression.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Keratoconus</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scheimpflug</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface reconstruction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fernández-Pacheco, Daniel G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Parras, Dolores</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cañavate, Francisco J. F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bataille, Laurent</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alió, Jorge</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Biomedical engineering online</subfield><subfield code="d">London : BioMed Central, 2002</subfield><subfield code="g">17(2018), Suppl 1 vom: 20. Nov.</subfield><subfield code="w">(DE-627)35210547X</subfield><subfield code="w">(DE-600)2084374-4</subfield><subfield code="x">1475-925X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:Suppl 1</subfield><subfield code="g">day:20</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12938-018-0564-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2018</subfield><subfield code="e">Suppl 1</subfield><subfield code="b">20</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
author |
Cavas-Martínez, Francisco |
spellingShingle |
Cavas-Martínez, Francisco misc Keratoconus misc Scheimpflug misc Surface reconstruction Study and characterization of morphogeometric parameters to assist diagnosis of keratoconus |
authorStr |
Cavas-Martínez, Francisco |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)35210547X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1475-925X |
topic_title |
Study and characterization of morphogeometric parameters to assist diagnosis of keratoconus Keratoconus (dpeaa)DE-He213 Scheimpflug (dpeaa)DE-He213 Surface reconstruction (dpeaa)DE-He213 |
topic |
misc Keratoconus misc Scheimpflug misc Surface reconstruction |
topic_unstemmed |
misc Keratoconus misc Scheimpflug misc Surface reconstruction |
topic_browse |
misc Keratoconus misc Scheimpflug misc Surface reconstruction |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Biomedical engineering online |
hierarchy_parent_id |
35210547X |
hierarchy_top_title |
Biomedical engineering online |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)35210547X (DE-600)2084374-4 |
title |
Study and characterization of morphogeometric parameters to assist diagnosis of keratoconus |
ctrlnum |
(DE-627)SPR028700090 (SPR)s12938-018-0564-7-e |
title_full |
Study and characterization of morphogeometric parameters to assist diagnosis of keratoconus |
author_sort |
Cavas-Martínez, Francisco |
journal |
Biomedical engineering online |
journalStr |
Biomedical engineering online |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Cavas-Martínez, Francisco Fernández-Pacheco, Daniel G. Parras, Dolores Cañavate, Francisco J. F. Bataille, Laurent Alió, Jorge |
container_volume |
17 |
format_se |
Elektronische Aufsätze |
author-letter |
Cavas-Martínez, Francisco |
doi_str_mv |
10.1186/s12938-018-0564-7 |
title_sort |
study and characterization of morphogeometric parameters to assist diagnosis of keratoconus |
title_auth |
Study and characterization of morphogeometric parameters to assist diagnosis of keratoconus |
abstract |
Background In case of significant imperfections on the cornea, data acquisition is difficult and a significant level of missing data could require the interpolation of important areas of the cornea, resulting in a very ambiguous model. The development of methods to define in vivo customised geometric properties of the cornea based only on real raw data is extremely useful to diagnose and assess the progression of diseases directly related to the corneal architecture. The present work tries to improve the prognostic of corneal ectasia creating a 3D customised model of the cornea and analysing different geometric variables from this model to determine which variables or combination of them could be defined as an indicator of susceptibility to develop keratoconus. Methods A corneal geometric reconstruction was performed using zonal functions and retrospective Scheimpflug tomography data from 187 eyes of 187 patients. Morphology of healthy and keratoconic corneas was characterized by means of geometric variables. The performance of these variables as predictors of a new geometric marker was assessed and their correlations were analysed. Results The more representative variable to classify the corneal anomalies related to keratoconus was posterior apex deviation (area under receiver operating characteristic curve > 0.899; p < 0.0001). However, the strongest correlations in both healthy and pathological corneas were provided by the metrics directly related to the thickness, as deviations of the anterior/posterior minimum thickness points. Conclusions The presented morphogeometric approach based on the analysis and custom geometric modelling of the cornea demonstrates to be useful for the characterization and diagnosis of keratoconus disease, stating that geometrical deformation is an effective marker of the ectatic disease’s progression. © The Author(s) 2018 |
abstractGer |
Background In case of significant imperfections on the cornea, data acquisition is difficult and a significant level of missing data could require the interpolation of important areas of the cornea, resulting in a very ambiguous model. The development of methods to define in vivo customised geometric properties of the cornea based only on real raw data is extremely useful to diagnose and assess the progression of diseases directly related to the corneal architecture. The present work tries to improve the prognostic of corneal ectasia creating a 3D customised model of the cornea and analysing different geometric variables from this model to determine which variables or combination of them could be defined as an indicator of susceptibility to develop keratoconus. Methods A corneal geometric reconstruction was performed using zonal functions and retrospective Scheimpflug tomography data from 187 eyes of 187 patients. Morphology of healthy and keratoconic corneas was characterized by means of geometric variables. The performance of these variables as predictors of a new geometric marker was assessed and their correlations were analysed. Results The more representative variable to classify the corneal anomalies related to keratoconus was posterior apex deviation (area under receiver operating characteristic curve > 0.899; p < 0.0001). However, the strongest correlations in both healthy and pathological corneas were provided by the metrics directly related to the thickness, as deviations of the anterior/posterior minimum thickness points. Conclusions The presented morphogeometric approach based on the analysis and custom geometric modelling of the cornea demonstrates to be useful for the characterization and diagnosis of keratoconus disease, stating that geometrical deformation is an effective marker of the ectatic disease’s progression. © The Author(s) 2018 |
abstract_unstemmed |
Background In case of significant imperfections on the cornea, data acquisition is difficult and a significant level of missing data could require the interpolation of important areas of the cornea, resulting in a very ambiguous model. The development of methods to define in vivo customised geometric properties of the cornea based only on real raw data is extremely useful to diagnose and assess the progression of diseases directly related to the corneal architecture. The present work tries to improve the prognostic of corneal ectasia creating a 3D customised model of the cornea and analysing different geometric variables from this model to determine which variables or combination of them could be defined as an indicator of susceptibility to develop keratoconus. Methods A corneal geometric reconstruction was performed using zonal functions and retrospective Scheimpflug tomography data from 187 eyes of 187 patients. Morphology of healthy and keratoconic corneas was characterized by means of geometric variables. The performance of these variables as predictors of a new geometric marker was assessed and their correlations were analysed. Results The more representative variable to classify the corneal anomalies related to keratoconus was posterior apex deviation (area under receiver operating characteristic curve > 0.899; p < 0.0001). However, the strongest correlations in both healthy and pathological corneas were provided by the metrics directly related to the thickness, as deviations of the anterior/posterior minimum thickness points. Conclusions The presented morphogeometric approach based on the analysis and custom geometric modelling of the cornea demonstrates to be useful for the characterization and diagnosis of keratoconus disease, stating that geometrical deformation is an effective marker of the ectatic disease’s progression. © The Author(s) 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
Suppl 1 |
title_short |
Study and characterization of morphogeometric parameters to assist diagnosis of keratoconus |
url |
https://dx.doi.org/10.1186/s12938-018-0564-7 |
remote_bool |
true |
author2 |
Fernández-Pacheco, Daniel G. Parras, Dolores Cañavate, Francisco J. F. Bataille, Laurent Alió, Jorge |
author2Str |
Fernández-Pacheco, Daniel G. Parras, Dolores Cañavate, Francisco J. F. Bataille, Laurent Alió, Jorge |
ppnlink |
35210547X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12938-018-0564-7 |
up_date |
2024-07-03T21:10:12.426Z |
_version_ |
1803593724652945408 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR028700090</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519093646.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12938-018-0564-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR028700090</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12938-018-0564-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cavas-Martínez, Francisco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study and characterization of morphogeometric parameters to assist diagnosis of keratoconus</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background In case of significant imperfections on the cornea, data acquisition is difficult and a significant level of missing data could require the interpolation of important areas of the cornea, resulting in a very ambiguous model. The development of methods to define in vivo customised geometric properties of the cornea based only on real raw data is extremely useful to diagnose and assess the progression of diseases directly related to the corneal architecture. The present work tries to improve the prognostic of corneal ectasia creating a 3D customised model of the cornea and analysing different geometric variables from this model to determine which variables or combination of them could be defined as an indicator of susceptibility to develop keratoconus. Methods A corneal geometric reconstruction was performed using zonal functions and retrospective Scheimpflug tomography data from 187 eyes of 187 patients. Morphology of healthy and keratoconic corneas was characterized by means of geometric variables. The performance of these variables as predictors of a new geometric marker was assessed and their correlations were analysed. Results The more representative variable to classify the corneal anomalies related to keratoconus was posterior apex deviation (area under receiver operating characteristic curve > 0.899; p < 0.0001). However, the strongest correlations in both healthy and pathological corneas were provided by the metrics directly related to the thickness, as deviations of the anterior/posterior minimum thickness points. Conclusions The presented morphogeometric approach based on the analysis and custom geometric modelling of the cornea demonstrates to be useful for the characterization and diagnosis of keratoconus disease, stating that geometrical deformation is an effective marker of the ectatic disease’s progression.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Keratoconus</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scheimpflug</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface reconstruction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fernández-Pacheco, Daniel G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Parras, Dolores</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cañavate, Francisco J. F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bataille, Laurent</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alió, Jorge</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Biomedical engineering online</subfield><subfield code="d">London : BioMed Central, 2002</subfield><subfield code="g">17(2018), Suppl 1 vom: 20. Nov.</subfield><subfield code="w">(DE-627)35210547X</subfield><subfield code="w">(DE-600)2084374-4</subfield><subfield code="x">1475-925X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:Suppl 1</subfield><subfield code="g">day:20</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12938-018-0564-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2018</subfield><subfield code="e">Suppl 1</subfield><subfield code="b">20</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
score |
7.4005556 |