Levels and patterns of objectively-measured physical activity volume and intensity distribution in UK adolescents: the ROOTS study
Background Few studies have quantified levels of habitual physical activity across the entire intensity range. We aimed to describe variability in total and intensity-specific physical activity levels in UK adolescents across gender, socio-demographic, temporal and body composition strata. Methods P...
Ausführliche Beschreibung
Autor*in: |
Collings, Paul J [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Collings et al.; licensee BioMed Central Ltd. 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of behavioral nutrition and physical activity - London : BioMed Central, 2004, 11(2014), 1 vom: 24. Feb. |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2014 ; number:1 ; day:24 ; month:02 |
Links: |
---|
DOI / URN: |
10.1186/1479-5868-11-23 |
---|
Katalog-ID: |
SPR028921453 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR028921453 | ||
003 | DE-627 | ||
005 | 20230519154339.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1479-5868-11-23 |2 doi | |
035 | |a (DE-627)SPR028921453 | ||
035 | |a (SPR)1479-5868-11-23-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Collings, Paul J |e verfasserin |4 aut | |
245 | 1 | 0 | |a Levels and patterns of objectively-measured physical activity volume and intensity distribution in UK adolescents: the ROOTS study |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Collings et al.; licensee BioMed Central Ltd. 2014 | ||
520 | |a Background Few studies have quantified levels of habitual physical activity across the entire intensity range. We aimed to describe variability in total and intensity-specific physical activity levels in UK adolescents across gender, socio-demographic, temporal and body composition strata. Methods Physical activity energy expenditure and minutes per day (min/d) spent sedentary and in light, moderate, and vigorous intensity physical activity were assessed in 825 adolescents from the ROOTS study (43.5% boys; mean age 15.0 ± 0.30 years), by 4 days of individually calibrated combined heart rate and movement sensing. Measurement days were classified as weekday or weekend and according to the three school terms: summer (April-July), autumn (September-December), and spring (January-March). Gender and age were self-reported and area-level SES determined by postcode data. Body composition was measured by anthropometry and bio-electrical impedance. Variability in physical activity and sedentary time was analysed by linear multilevel modelling, and logistic multilevel regression was used to determine factors associated with physical inactivity (<60 min moderate-to-vigorous intensity physical activity/d). Results During awake hours (15.8 ± 0.9 hrs/d), adolescents primarily engaged in light intensity physical activity (517 min/d) and sedentary time (364 min/d). Boys were consistently more physically active and less sedentary than girls, but gender differences were smaller at weekends, as activity levels in boys dropped more markedly when transitioning from weekday to weekend. Boys were more sedentary on both weekend days compared to during the week, whereas girls were more sedentary on Sunday but less sedentary on Saturday. In both genders light intensity physical activity was lower in spring, while moderate physical activity was lower in autumn and spring terms, compared to the summer term; sedentary time was also higher in spring than summer term. Adolescents with higher fatness engaged in less vigorous intensity physical activity. Factors associated with increased odds of physical inactivity were female gender, both weekend days in boys, and specifically Sunday in girls. Conclusions Physical activity components vary by gender, temporal factors and body composition in UK adolescents. The available data indicate that in adolescence, girls should be the primary targets of interventions designed to increase physical activity levels. | ||
650 | 4 | |a Energy expenditure |7 (dpeaa)DE-He213 | |
650 | 4 | |a Physical activity intensity |7 (dpeaa)DE-He213 | |
650 | 4 | |a Sedentary time |7 (dpeaa)DE-He213 | |
650 | 4 | |a Activity monitoring |7 (dpeaa)DE-He213 | |
650 | 4 | |a Adolescents |7 (dpeaa)DE-He213 | |
700 | 1 | |a Wijndaele, Katrien |4 aut | |
700 | 1 | |a Corder, Kirsten |4 aut | |
700 | 1 | |a Westgate, Kate |4 aut | |
700 | 1 | |a Ridgway, Charlotte L |4 aut | |
700 | 1 | |a Dunn, Valerie |4 aut | |
700 | 1 | |a Goodyer, Ian |4 aut | |
700 | 1 | |a Ekelund, Ulf |4 aut | |
700 | 1 | |a Brage, Soren |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of behavioral nutrition and physical activity |d London : BioMed Central, 2004 |g 11(2014), 1 vom: 24. Feb. |w (DE-627)378572342 |w (DE-600)2134691-4 |x 1479-5868 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2014 |g number:1 |g day:24 |g month:02 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1479-5868-11-23 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4598 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2014 |e 1 |b 24 |c 02 |
author_variant |
p j c pj pjc k w kw k c kc k w kw c l r cl clr v d vd i g ig u e ue s b sb |
---|---|
matchkey_str |
article:14795868:2014----::eesnptenoojcieyesrdhsclciiyouenitniyitiuin |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1186/1479-5868-11-23 doi (DE-627)SPR028921453 (SPR)1479-5868-11-23-e DE-627 ger DE-627 rakwb eng Collings, Paul J verfasserin aut Levels and patterns of objectively-measured physical activity volume and intensity distribution in UK adolescents: the ROOTS study 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Collings et al.; licensee BioMed Central Ltd. 2014 Background Few studies have quantified levels of habitual physical activity across the entire intensity range. We aimed to describe variability in total and intensity-specific physical activity levels in UK adolescents across gender, socio-demographic, temporal and body composition strata. Methods Physical activity energy expenditure and minutes per day (min/d) spent sedentary and in light, moderate, and vigorous intensity physical activity were assessed in 825 adolescents from the ROOTS study (43.5% boys; mean age 15.0 ± 0.30 years), by 4 days of individually calibrated combined heart rate and movement sensing. Measurement days were classified as weekday or weekend and according to the three school terms: summer (April-July), autumn (September-December), and spring (January-March). Gender and age were self-reported and area-level SES determined by postcode data. Body composition was measured by anthropometry and bio-electrical impedance. Variability in physical activity and sedentary time was analysed by linear multilevel modelling, and logistic multilevel regression was used to determine factors associated with physical inactivity (<60 min moderate-to-vigorous intensity physical activity/d). Results During awake hours (15.8 ± 0.9 hrs/d), adolescents primarily engaged in light intensity physical activity (517 min/d) and sedentary time (364 min/d). Boys were consistently more physically active and less sedentary than girls, but gender differences were smaller at weekends, as activity levels in boys dropped more markedly when transitioning from weekday to weekend. Boys were more sedentary on both weekend days compared to during the week, whereas girls were more sedentary on Sunday but less sedentary on Saturday. In both genders light intensity physical activity was lower in spring, while moderate physical activity was lower in autumn and spring terms, compared to the summer term; sedentary time was also higher in spring than summer term. Adolescents with higher fatness engaged in less vigorous intensity physical activity. Factors associated with increased odds of physical inactivity were female gender, both weekend days in boys, and specifically Sunday in girls. Conclusions Physical activity components vary by gender, temporal factors and body composition in UK adolescents. The available data indicate that in adolescence, girls should be the primary targets of interventions designed to increase physical activity levels. Energy expenditure (dpeaa)DE-He213 Physical activity intensity (dpeaa)DE-He213 Sedentary time (dpeaa)DE-He213 Activity monitoring (dpeaa)DE-He213 Adolescents (dpeaa)DE-He213 Wijndaele, Katrien aut Corder, Kirsten aut Westgate, Kate aut Ridgway, Charlotte L aut Dunn, Valerie aut Goodyer, Ian aut Ekelund, Ulf aut Brage, Soren aut Enthalten in International journal of behavioral nutrition and physical activity London : BioMed Central, 2004 11(2014), 1 vom: 24. Feb. (DE-627)378572342 (DE-600)2134691-4 1479-5868 nnns volume:11 year:2014 number:1 day:24 month:02 https://dx.doi.org/10.1186/1479-5868-11-23 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4598 GBV_ILN_4700 AR 11 2014 1 24 02 |
spelling |
10.1186/1479-5868-11-23 doi (DE-627)SPR028921453 (SPR)1479-5868-11-23-e DE-627 ger DE-627 rakwb eng Collings, Paul J verfasserin aut Levels and patterns of objectively-measured physical activity volume and intensity distribution in UK adolescents: the ROOTS study 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Collings et al.; licensee BioMed Central Ltd. 2014 Background Few studies have quantified levels of habitual physical activity across the entire intensity range. We aimed to describe variability in total and intensity-specific physical activity levels in UK adolescents across gender, socio-demographic, temporal and body composition strata. Methods Physical activity energy expenditure and minutes per day (min/d) spent sedentary and in light, moderate, and vigorous intensity physical activity were assessed in 825 adolescents from the ROOTS study (43.5% boys; mean age 15.0 ± 0.30 years), by 4 days of individually calibrated combined heart rate and movement sensing. Measurement days were classified as weekday or weekend and according to the three school terms: summer (April-July), autumn (September-December), and spring (January-March). Gender and age were self-reported and area-level SES determined by postcode data. Body composition was measured by anthropometry and bio-electrical impedance. Variability in physical activity and sedentary time was analysed by linear multilevel modelling, and logistic multilevel regression was used to determine factors associated with physical inactivity (<60 min moderate-to-vigorous intensity physical activity/d). Results During awake hours (15.8 ± 0.9 hrs/d), adolescents primarily engaged in light intensity physical activity (517 min/d) and sedentary time (364 min/d). Boys were consistently more physically active and less sedentary than girls, but gender differences were smaller at weekends, as activity levels in boys dropped more markedly when transitioning from weekday to weekend. Boys were more sedentary on both weekend days compared to during the week, whereas girls were more sedentary on Sunday but less sedentary on Saturday. In both genders light intensity physical activity was lower in spring, while moderate physical activity was lower in autumn and spring terms, compared to the summer term; sedentary time was also higher in spring than summer term. Adolescents with higher fatness engaged in less vigorous intensity physical activity. Factors associated with increased odds of physical inactivity were female gender, both weekend days in boys, and specifically Sunday in girls. Conclusions Physical activity components vary by gender, temporal factors and body composition in UK adolescents. The available data indicate that in adolescence, girls should be the primary targets of interventions designed to increase physical activity levels. Energy expenditure (dpeaa)DE-He213 Physical activity intensity (dpeaa)DE-He213 Sedentary time (dpeaa)DE-He213 Activity monitoring (dpeaa)DE-He213 Adolescents (dpeaa)DE-He213 Wijndaele, Katrien aut Corder, Kirsten aut Westgate, Kate aut Ridgway, Charlotte L aut Dunn, Valerie aut Goodyer, Ian aut Ekelund, Ulf aut Brage, Soren aut Enthalten in International journal of behavioral nutrition and physical activity London : BioMed Central, 2004 11(2014), 1 vom: 24. Feb. (DE-627)378572342 (DE-600)2134691-4 1479-5868 nnns volume:11 year:2014 number:1 day:24 month:02 https://dx.doi.org/10.1186/1479-5868-11-23 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4598 GBV_ILN_4700 AR 11 2014 1 24 02 |
allfields_unstemmed |
10.1186/1479-5868-11-23 doi (DE-627)SPR028921453 (SPR)1479-5868-11-23-e DE-627 ger DE-627 rakwb eng Collings, Paul J verfasserin aut Levels and patterns of objectively-measured physical activity volume and intensity distribution in UK adolescents: the ROOTS study 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Collings et al.; licensee BioMed Central Ltd. 2014 Background Few studies have quantified levels of habitual physical activity across the entire intensity range. We aimed to describe variability in total and intensity-specific physical activity levels in UK adolescents across gender, socio-demographic, temporal and body composition strata. Methods Physical activity energy expenditure and minutes per day (min/d) spent sedentary and in light, moderate, and vigorous intensity physical activity were assessed in 825 adolescents from the ROOTS study (43.5% boys; mean age 15.0 ± 0.30 years), by 4 days of individually calibrated combined heart rate and movement sensing. Measurement days were classified as weekday or weekend and according to the three school terms: summer (April-July), autumn (September-December), and spring (January-March). Gender and age were self-reported and area-level SES determined by postcode data. Body composition was measured by anthropometry and bio-electrical impedance. Variability in physical activity and sedentary time was analysed by linear multilevel modelling, and logistic multilevel regression was used to determine factors associated with physical inactivity (<60 min moderate-to-vigorous intensity physical activity/d). Results During awake hours (15.8 ± 0.9 hrs/d), adolescents primarily engaged in light intensity physical activity (517 min/d) and sedentary time (364 min/d). Boys were consistently more physically active and less sedentary than girls, but gender differences were smaller at weekends, as activity levels in boys dropped more markedly when transitioning from weekday to weekend. Boys were more sedentary on both weekend days compared to during the week, whereas girls were more sedentary on Sunday but less sedentary on Saturday. In both genders light intensity physical activity was lower in spring, while moderate physical activity was lower in autumn and spring terms, compared to the summer term; sedentary time was also higher in spring than summer term. Adolescents with higher fatness engaged in less vigorous intensity physical activity. Factors associated with increased odds of physical inactivity were female gender, both weekend days in boys, and specifically Sunday in girls. Conclusions Physical activity components vary by gender, temporal factors and body composition in UK adolescents. The available data indicate that in adolescence, girls should be the primary targets of interventions designed to increase physical activity levels. Energy expenditure (dpeaa)DE-He213 Physical activity intensity (dpeaa)DE-He213 Sedentary time (dpeaa)DE-He213 Activity monitoring (dpeaa)DE-He213 Adolescents (dpeaa)DE-He213 Wijndaele, Katrien aut Corder, Kirsten aut Westgate, Kate aut Ridgway, Charlotte L aut Dunn, Valerie aut Goodyer, Ian aut Ekelund, Ulf aut Brage, Soren aut Enthalten in International journal of behavioral nutrition and physical activity London : BioMed Central, 2004 11(2014), 1 vom: 24. Feb. (DE-627)378572342 (DE-600)2134691-4 1479-5868 nnns volume:11 year:2014 number:1 day:24 month:02 https://dx.doi.org/10.1186/1479-5868-11-23 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4598 GBV_ILN_4700 AR 11 2014 1 24 02 |
allfieldsGer |
10.1186/1479-5868-11-23 doi (DE-627)SPR028921453 (SPR)1479-5868-11-23-e DE-627 ger DE-627 rakwb eng Collings, Paul J verfasserin aut Levels and patterns of objectively-measured physical activity volume and intensity distribution in UK adolescents: the ROOTS study 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Collings et al.; licensee BioMed Central Ltd. 2014 Background Few studies have quantified levels of habitual physical activity across the entire intensity range. We aimed to describe variability in total and intensity-specific physical activity levels in UK adolescents across gender, socio-demographic, temporal and body composition strata. Methods Physical activity energy expenditure and minutes per day (min/d) spent sedentary and in light, moderate, and vigorous intensity physical activity were assessed in 825 adolescents from the ROOTS study (43.5% boys; mean age 15.0 ± 0.30 years), by 4 days of individually calibrated combined heart rate and movement sensing. Measurement days were classified as weekday or weekend and according to the three school terms: summer (April-July), autumn (September-December), and spring (January-March). Gender and age were self-reported and area-level SES determined by postcode data. Body composition was measured by anthropometry and bio-electrical impedance. Variability in physical activity and sedentary time was analysed by linear multilevel modelling, and logistic multilevel regression was used to determine factors associated with physical inactivity (<60 min moderate-to-vigorous intensity physical activity/d). Results During awake hours (15.8 ± 0.9 hrs/d), adolescents primarily engaged in light intensity physical activity (517 min/d) and sedentary time (364 min/d). Boys were consistently more physically active and less sedentary than girls, but gender differences were smaller at weekends, as activity levels in boys dropped more markedly when transitioning from weekday to weekend. Boys were more sedentary on both weekend days compared to during the week, whereas girls were more sedentary on Sunday but less sedentary on Saturday. In both genders light intensity physical activity was lower in spring, while moderate physical activity was lower in autumn and spring terms, compared to the summer term; sedentary time was also higher in spring than summer term. Adolescents with higher fatness engaged in less vigorous intensity physical activity. Factors associated with increased odds of physical inactivity were female gender, both weekend days in boys, and specifically Sunday in girls. Conclusions Physical activity components vary by gender, temporal factors and body composition in UK adolescents. The available data indicate that in adolescence, girls should be the primary targets of interventions designed to increase physical activity levels. Energy expenditure (dpeaa)DE-He213 Physical activity intensity (dpeaa)DE-He213 Sedentary time (dpeaa)DE-He213 Activity monitoring (dpeaa)DE-He213 Adolescents (dpeaa)DE-He213 Wijndaele, Katrien aut Corder, Kirsten aut Westgate, Kate aut Ridgway, Charlotte L aut Dunn, Valerie aut Goodyer, Ian aut Ekelund, Ulf aut Brage, Soren aut Enthalten in International journal of behavioral nutrition and physical activity London : BioMed Central, 2004 11(2014), 1 vom: 24. Feb. (DE-627)378572342 (DE-600)2134691-4 1479-5868 nnns volume:11 year:2014 number:1 day:24 month:02 https://dx.doi.org/10.1186/1479-5868-11-23 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4598 GBV_ILN_4700 AR 11 2014 1 24 02 |
allfieldsSound |
10.1186/1479-5868-11-23 doi (DE-627)SPR028921453 (SPR)1479-5868-11-23-e DE-627 ger DE-627 rakwb eng Collings, Paul J verfasserin aut Levels and patterns of objectively-measured physical activity volume and intensity distribution in UK adolescents: the ROOTS study 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Collings et al.; licensee BioMed Central Ltd. 2014 Background Few studies have quantified levels of habitual physical activity across the entire intensity range. We aimed to describe variability in total and intensity-specific physical activity levels in UK adolescents across gender, socio-demographic, temporal and body composition strata. Methods Physical activity energy expenditure and minutes per day (min/d) spent sedentary and in light, moderate, and vigorous intensity physical activity were assessed in 825 adolescents from the ROOTS study (43.5% boys; mean age 15.0 ± 0.30 years), by 4 days of individually calibrated combined heart rate and movement sensing. Measurement days were classified as weekday or weekend and according to the three school terms: summer (April-July), autumn (September-December), and spring (January-March). Gender and age were self-reported and area-level SES determined by postcode data. Body composition was measured by anthropometry and bio-electrical impedance. Variability in physical activity and sedentary time was analysed by linear multilevel modelling, and logistic multilevel regression was used to determine factors associated with physical inactivity (<60 min moderate-to-vigorous intensity physical activity/d). Results During awake hours (15.8 ± 0.9 hrs/d), adolescents primarily engaged in light intensity physical activity (517 min/d) and sedentary time (364 min/d). Boys were consistently more physically active and less sedentary than girls, but gender differences were smaller at weekends, as activity levels in boys dropped more markedly when transitioning from weekday to weekend. Boys were more sedentary on both weekend days compared to during the week, whereas girls were more sedentary on Sunday but less sedentary on Saturday. In both genders light intensity physical activity was lower in spring, while moderate physical activity was lower in autumn and spring terms, compared to the summer term; sedentary time was also higher in spring than summer term. Adolescents with higher fatness engaged in less vigorous intensity physical activity. Factors associated with increased odds of physical inactivity were female gender, both weekend days in boys, and specifically Sunday in girls. Conclusions Physical activity components vary by gender, temporal factors and body composition in UK adolescents. The available data indicate that in adolescence, girls should be the primary targets of interventions designed to increase physical activity levels. Energy expenditure (dpeaa)DE-He213 Physical activity intensity (dpeaa)DE-He213 Sedentary time (dpeaa)DE-He213 Activity monitoring (dpeaa)DE-He213 Adolescents (dpeaa)DE-He213 Wijndaele, Katrien aut Corder, Kirsten aut Westgate, Kate aut Ridgway, Charlotte L aut Dunn, Valerie aut Goodyer, Ian aut Ekelund, Ulf aut Brage, Soren aut Enthalten in International journal of behavioral nutrition and physical activity London : BioMed Central, 2004 11(2014), 1 vom: 24. Feb. (DE-627)378572342 (DE-600)2134691-4 1479-5868 nnns volume:11 year:2014 number:1 day:24 month:02 https://dx.doi.org/10.1186/1479-5868-11-23 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4598 GBV_ILN_4700 AR 11 2014 1 24 02 |
language |
English |
source |
Enthalten in International journal of behavioral nutrition and physical activity 11(2014), 1 vom: 24. Feb. volume:11 year:2014 number:1 day:24 month:02 |
sourceStr |
Enthalten in International journal of behavioral nutrition and physical activity 11(2014), 1 vom: 24. Feb. volume:11 year:2014 number:1 day:24 month:02 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Energy expenditure Physical activity intensity Sedentary time Activity monitoring Adolescents |
isfreeaccess_bool |
true |
container_title |
International journal of behavioral nutrition and physical activity |
authorswithroles_txt_mv |
Collings, Paul J @@aut@@ Wijndaele, Katrien @@aut@@ Corder, Kirsten @@aut@@ Westgate, Kate @@aut@@ Ridgway, Charlotte L @@aut@@ Dunn, Valerie @@aut@@ Goodyer, Ian @@aut@@ Ekelund, Ulf @@aut@@ Brage, Soren @@aut@@ |
publishDateDaySort_date |
2014-02-24T00:00:00Z |
hierarchy_top_id |
378572342 |
id |
SPR028921453 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR028921453</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519154339.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1479-5868-11-23</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR028921453</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1479-5868-11-23-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Collings, Paul J</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Levels and patterns of objectively-measured physical activity volume and intensity distribution in UK adolescents: the ROOTS study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Collings et al.; licensee BioMed Central Ltd. 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Few studies have quantified levels of habitual physical activity across the entire intensity range. We aimed to describe variability in total and intensity-specific physical activity levels in UK adolescents across gender, socio-demographic, temporal and body composition strata. Methods Physical activity energy expenditure and minutes per day (min/d) spent sedentary and in light, moderate, and vigorous intensity physical activity were assessed in 825 adolescents from the ROOTS study (43.5% boys; mean age 15.0 ± 0.30 years), by 4 days of individually calibrated combined heart rate and movement sensing. Measurement days were classified as weekday or weekend and according to the three school terms: summer (April-July), autumn (September-December), and spring (January-March). Gender and age were self-reported and area-level SES determined by postcode data. Body composition was measured by anthropometry and bio-electrical impedance. Variability in physical activity and sedentary time was analysed by linear multilevel modelling, and logistic multilevel regression was used to determine factors associated with physical inactivity (<60 min moderate-to-vigorous intensity physical activity/d). Results During awake hours (15.8 ± 0.9 hrs/d), adolescents primarily engaged in light intensity physical activity (517 min/d) and sedentary time (364 min/d). Boys were consistently more physically active and less sedentary than girls, but gender differences were smaller at weekends, as activity levels in boys dropped more markedly when transitioning from weekday to weekend. Boys were more sedentary on both weekend days compared to during the week, whereas girls were more sedentary on Sunday but less sedentary on Saturday. In both genders light intensity physical activity was lower in spring, while moderate physical activity was lower in autumn and spring terms, compared to the summer term; sedentary time was also higher in spring than summer term. Adolescents with higher fatness engaged in less vigorous intensity physical activity. Factors associated with increased odds of physical inactivity were female gender, both weekend days in boys, and specifically Sunday in girls. Conclusions Physical activity components vary by gender, temporal factors and body composition in UK adolescents. The available data indicate that in adolescence, girls should be the primary targets of interventions designed to increase physical activity levels.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy expenditure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physical activity intensity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sedentary time</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Activity monitoring</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adolescents</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wijndaele, Katrien</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Corder, Kirsten</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Westgate, Kate</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ridgway, Charlotte L</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dunn, Valerie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goodyer, Ian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ekelund, Ulf</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brage, Soren</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of behavioral nutrition and physical activity</subfield><subfield code="d">London : BioMed Central, 2004</subfield><subfield code="g">11(2014), 1 vom: 24. Feb.</subfield><subfield code="w">(DE-627)378572342</subfield><subfield code="w">(DE-600)2134691-4</subfield><subfield code="x">1479-5868</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">day:24</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1479-5868-11-23</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4598</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="b">24</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
author |
Collings, Paul J |
spellingShingle |
Collings, Paul J misc Energy expenditure misc Physical activity intensity misc Sedentary time misc Activity monitoring misc Adolescents Levels and patterns of objectively-measured physical activity volume and intensity distribution in UK adolescents: the ROOTS study |
authorStr |
Collings, Paul J |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)378572342 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1479-5868 |
topic_title |
Levels and patterns of objectively-measured physical activity volume and intensity distribution in UK adolescents: the ROOTS study Energy expenditure (dpeaa)DE-He213 Physical activity intensity (dpeaa)DE-He213 Sedentary time (dpeaa)DE-He213 Activity monitoring (dpeaa)DE-He213 Adolescents (dpeaa)DE-He213 |
topic |
misc Energy expenditure misc Physical activity intensity misc Sedentary time misc Activity monitoring misc Adolescents |
topic_unstemmed |
misc Energy expenditure misc Physical activity intensity misc Sedentary time misc Activity monitoring misc Adolescents |
topic_browse |
misc Energy expenditure misc Physical activity intensity misc Sedentary time misc Activity monitoring misc Adolescents |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of behavioral nutrition and physical activity |
hierarchy_parent_id |
378572342 |
hierarchy_top_title |
International journal of behavioral nutrition and physical activity |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)378572342 (DE-600)2134691-4 |
title |
Levels and patterns of objectively-measured physical activity volume and intensity distribution in UK adolescents: the ROOTS study |
ctrlnum |
(DE-627)SPR028921453 (SPR)1479-5868-11-23-e |
title_full |
Levels and patterns of objectively-measured physical activity volume and intensity distribution in UK adolescents: the ROOTS study |
author_sort |
Collings, Paul J |
journal |
International journal of behavioral nutrition and physical activity |
journalStr |
International journal of behavioral nutrition and physical activity |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
author_browse |
Collings, Paul J Wijndaele, Katrien Corder, Kirsten Westgate, Kate Ridgway, Charlotte L Dunn, Valerie Goodyer, Ian Ekelund, Ulf Brage, Soren |
container_volume |
11 |
format_se |
Elektronische Aufsätze |
author-letter |
Collings, Paul J |
doi_str_mv |
10.1186/1479-5868-11-23 |
title_sort |
levels and patterns of objectively-measured physical activity volume and intensity distribution in uk adolescents: the roots study |
title_auth |
Levels and patterns of objectively-measured physical activity volume and intensity distribution in UK adolescents: the ROOTS study |
abstract |
Background Few studies have quantified levels of habitual physical activity across the entire intensity range. We aimed to describe variability in total and intensity-specific physical activity levels in UK adolescents across gender, socio-demographic, temporal and body composition strata. Methods Physical activity energy expenditure and minutes per day (min/d) spent sedentary and in light, moderate, and vigorous intensity physical activity were assessed in 825 adolescents from the ROOTS study (43.5% boys; mean age 15.0 ± 0.30 years), by 4 days of individually calibrated combined heart rate and movement sensing. Measurement days were classified as weekday or weekend and according to the three school terms: summer (April-July), autumn (September-December), and spring (January-March). Gender and age were self-reported and area-level SES determined by postcode data. Body composition was measured by anthropometry and bio-electrical impedance. Variability in physical activity and sedentary time was analysed by linear multilevel modelling, and logistic multilevel regression was used to determine factors associated with physical inactivity (<60 min moderate-to-vigorous intensity physical activity/d). Results During awake hours (15.8 ± 0.9 hrs/d), adolescents primarily engaged in light intensity physical activity (517 min/d) and sedentary time (364 min/d). Boys were consistently more physically active and less sedentary than girls, but gender differences were smaller at weekends, as activity levels in boys dropped more markedly when transitioning from weekday to weekend. Boys were more sedentary on both weekend days compared to during the week, whereas girls were more sedentary on Sunday but less sedentary on Saturday. In both genders light intensity physical activity was lower in spring, while moderate physical activity was lower in autumn and spring terms, compared to the summer term; sedentary time was also higher in spring than summer term. Adolescents with higher fatness engaged in less vigorous intensity physical activity. Factors associated with increased odds of physical inactivity were female gender, both weekend days in boys, and specifically Sunday in girls. Conclusions Physical activity components vary by gender, temporal factors and body composition in UK adolescents. The available data indicate that in adolescence, girls should be the primary targets of interventions designed to increase physical activity levels. © Collings et al.; licensee BioMed Central Ltd. 2014 |
abstractGer |
Background Few studies have quantified levels of habitual physical activity across the entire intensity range. We aimed to describe variability in total and intensity-specific physical activity levels in UK adolescents across gender, socio-demographic, temporal and body composition strata. Methods Physical activity energy expenditure and minutes per day (min/d) spent sedentary and in light, moderate, and vigorous intensity physical activity were assessed in 825 adolescents from the ROOTS study (43.5% boys; mean age 15.0 ± 0.30 years), by 4 days of individually calibrated combined heart rate and movement sensing. Measurement days were classified as weekday or weekend and according to the three school terms: summer (April-July), autumn (September-December), and spring (January-March). Gender and age were self-reported and area-level SES determined by postcode data. Body composition was measured by anthropometry and bio-electrical impedance. Variability in physical activity and sedentary time was analysed by linear multilevel modelling, and logistic multilevel regression was used to determine factors associated with physical inactivity (<60 min moderate-to-vigorous intensity physical activity/d). Results During awake hours (15.8 ± 0.9 hrs/d), adolescents primarily engaged in light intensity physical activity (517 min/d) and sedentary time (364 min/d). Boys were consistently more physically active and less sedentary than girls, but gender differences were smaller at weekends, as activity levels in boys dropped more markedly when transitioning from weekday to weekend. Boys were more sedentary on both weekend days compared to during the week, whereas girls were more sedentary on Sunday but less sedentary on Saturday. In both genders light intensity physical activity was lower in spring, while moderate physical activity was lower in autumn and spring terms, compared to the summer term; sedentary time was also higher in spring than summer term. Adolescents with higher fatness engaged in less vigorous intensity physical activity. Factors associated with increased odds of physical inactivity were female gender, both weekend days in boys, and specifically Sunday in girls. Conclusions Physical activity components vary by gender, temporal factors and body composition in UK adolescents. The available data indicate that in adolescence, girls should be the primary targets of interventions designed to increase physical activity levels. © Collings et al.; licensee BioMed Central Ltd. 2014 |
abstract_unstemmed |
Background Few studies have quantified levels of habitual physical activity across the entire intensity range. We aimed to describe variability in total and intensity-specific physical activity levels in UK adolescents across gender, socio-demographic, temporal and body composition strata. Methods Physical activity energy expenditure and minutes per day (min/d) spent sedentary and in light, moderate, and vigorous intensity physical activity were assessed in 825 adolescents from the ROOTS study (43.5% boys; mean age 15.0 ± 0.30 years), by 4 days of individually calibrated combined heart rate and movement sensing. Measurement days were classified as weekday or weekend and according to the three school terms: summer (April-July), autumn (September-December), and spring (January-March). Gender and age were self-reported and area-level SES determined by postcode data. Body composition was measured by anthropometry and bio-electrical impedance. Variability in physical activity and sedentary time was analysed by linear multilevel modelling, and logistic multilevel regression was used to determine factors associated with physical inactivity (<60 min moderate-to-vigorous intensity physical activity/d). Results During awake hours (15.8 ± 0.9 hrs/d), adolescents primarily engaged in light intensity physical activity (517 min/d) and sedentary time (364 min/d). Boys were consistently more physically active and less sedentary than girls, but gender differences were smaller at weekends, as activity levels in boys dropped more markedly when transitioning from weekday to weekend. Boys were more sedentary on both weekend days compared to during the week, whereas girls were more sedentary on Sunday but less sedentary on Saturday. In both genders light intensity physical activity was lower in spring, while moderate physical activity was lower in autumn and spring terms, compared to the summer term; sedentary time was also higher in spring than summer term. Adolescents with higher fatness engaged in less vigorous intensity physical activity. Factors associated with increased odds of physical inactivity were female gender, both weekend days in boys, and specifically Sunday in girls. Conclusions Physical activity components vary by gender, temporal factors and body composition in UK adolescents. The available data indicate that in adolescence, girls should be the primary targets of interventions designed to increase physical activity levels. © Collings et al.; licensee BioMed Central Ltd. 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4598 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Levels and patterns of objectively-measured physical activity volume and intensity distribution in UK adolescents: the ROOTS study |
url |
https://dx.doi.org/10.1186/1479-5868-11-23 |
remote_bool |
true |
author2 |
Wijndaele, Katrien Corder, Kirsten Westgate, Kate Ridgway, Charlotte L Dunn, Valerie Goodyer, Ian Ekelund, Ulf Brage, Soren |
author2Str |
Wijndaele, Katrien Corder, Kirsten Westgate, Kate Ridgway, Charlotte L Dunn, Valerie Goodyer, Ian Ekelund, Ulf Brage, Soren |
ppnlink |
378572342 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1479-5868-11-23 |
up_date |
2024-07-03T22:31:25.499Z |
_version_ |
1803598834443485184 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR028921453</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519154339.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1479-5868-11-23</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR028921453</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1479-5868-11-23-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Collings, Paul J</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Levels and patterns of objectively-measured physical activity volume and intensity distribution in UK adolescents: the ROOTS study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Collings et al.; licensee BioMed Central Ltd. 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Few studies have quantified levels of habitual physical activity across the entire intensity range. We aimed to describe variability in total and intensity-specific physical activity levels in UK adolescents across gender, socio-demographic, temporal and body composition strata. Methods Physical activity energy expenditure and minutes per day (min/d) spent sedentary and in light, moderate, and vigorous intensity physical activity were assessed in 825 adolescents from the ROOTS study (43.5% boys; mean age 15.0 ± 0.30 years), by 4 days of individually calibrated combined heart rate and movement sensing. Measurement days were classified as weekday or weekend and according to the three school terms: summer (April-July), autumn (September-December), and spring (January-March). Gender and age were self-reported and area-level SES determined by postcode data. Body composition was measured by anthropometry and bio-electrical impedance. Variability in physical activity and sedentary time was analysed by linear multilevel modelling, and logistic multilevel regression was used to determine factors associated with physical inactivity (<60 min moderate-to-vigorous intensity physical activity/d). Results During awake hours (15.8 ± 0.9 hrs/d), adolescents primarily engaged in light intensity physical activity (517 min/d) and sedentary time (364 min/d). Boys were consistently more physically active and less sedentary than girls, but gender differences were smaller at weekends, as activity levels in boys dropped more markedly when transitioning from weekday to weekend. Boys were more sedentary on both weekend days compared to during the week, whereas girls were more sedentary on Sunday but less sedentary on Saturday. In both genders light intensity physical activity was lower in spring, while moderate physical activity was lower in autumn and spring terms, compared to the summer term; sedentary time was also higher in spring than summer term. Adolescents with higher fatness engaged in less vigorous intensity physical activity. Factors associated with increased odds of physical inactivity were female gender, both weekend days in boys, and specifically Sunday in girls. Conclusions Physical activity components vary by gender, temporal factors and body composition in UK adolescents. The available data indicate that in adolescence, girls should be the primary targets of interventions designed to increase physical activity levels.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy expenditure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physical activity intensity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sedentary time</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Activity monitoring</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adolescents</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wijndaele, Katrien</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Corder, Kirsten</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Westgate, Kate</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ridgway, Charlotte L</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dunn, Valerie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goodyer, Ian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ekelund, Ulf</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brage, Soren</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of behavioral nutrition and physical activity</subfield><subfield code="d">London : BioMed Central, 2004</subfield><subfield code="g">11(2014), 1 vom: 24. Feb.</subfield><subfield code="w">(DE-627)378572342</subfield><subfield code="w">(DE-600)2134691-4</subfield><subfield code="x">1479-5868</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">day:24</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1479-5868-11-23</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4598</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="b">24</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
score |
7.4022093 |