Physical activity and sedentary behavior patterns and sociodemographic correlates in 116,982 adults from six South American countries: the South American physical activity and sedentary behavior network (SAPASEN)
Background Physical inactivity and sedentary behavior are major concerns for public health. Although global initiatives have been successful in monitoring physical activity (PA) worldwide, there is no systematic action for the monitoring of correlates of these behaviors, especially in low- and middl...
Ausführliche Beschreibung
Autor*in: |
Werneck, André O. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s). 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of behavioral nutrition and physical activity - London : BioMed Central, 2004, 16(2019), 1 vom: 20. Aug. |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2019 ; number:1 ; day:20 ; month:08 |
Links: |
---|
DOI / URN: |
10.1186/s12966-019-0839-9 |
---|
Katalog-ID: |
SPR02892990X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR02892990X | ||
003 | DE-627 | ||
005 | 20230520010958.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12966-019-0839-9 |2 doi | |
035 | |a (DE-627)SPR02892990X | ||
035 | |a (SPR)s12966-019-0839-9-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Werneck, André O. |e verfasserin |0 (orcid)0000-0002-9166-4376 |4 aut | |
245 | 1 | 0 | |a Physical activity and sedentary behavior patterns and sociodemographic correlates in 116,982 adults from six South American countries: the South American physical activity and sedentary behavior network (SAPASEN) |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s). 2019 | ||
520 | |a Background Physical inactivity and sedentary behavior are major concerns for public health. Although global initiatives have been successful in monitoring physical activity (PA) worldwide, there is no systematic action for the monitoring of correlates of these behaviors, especially in low- and middle-income countries. Here we describe the prevalence and distribution of PA domains and sitting time in population sub-groups of six south American countries. Methods Data from the South American Physical Activity and Sedentary Behavior Network (SAPASEN) were used, which includes representative data from Argentina (n = 26,932), Brazil (n = 52,490), Chile (n = 3719), Ecuador (n = 19,851), Peru (n = 8820), and Suriname (n = 5170). Self-reported leisure time (≥150 min/week), (≥150 min/week), transport (≥10 min/week), and occupational PA total (≥10 min/week), as well as sitting time (≥4 h/day) were captured in each national survey. Sex, age, income, and educational status were exposures. Descriptive statistics and harmonized random effect meta-analyses were conducted. Results The prevalence of PA during leisure (Argentina: 29.2% to Peru: 8.6%), transport (Peru: 69.7% to Ecuador: 8.8%), and occupation (Chile: 60.4 to Brazil 18.3%), and ≥4 h/day of sitting time (Peru: 78.8% to Brazil: 14.8%) differed widely between countries. Moreover, total PA ranged between 60.4% (Brazil) and 82.9% (Chile) among men, and between 49.4% (Ecuador) and 74.9% (Chile) among women. Women (low leisure and occupational PA) and those with a higher educational level (low transportation and occupational PA as well as high sitting time) were less active. Concerning total PA, men, young and middle-aged adults of high educational status (college or more) were, respectively, 47% [OR = 0.53 (95% CI = 0.36–0.78), $ I^{2} $ = 76.6%], 25% [OR = 0.75 (95% CI = 0.61-0.93), $ I^{2} $ = 30.4%] and 32% [OR = 0.68 (95% CI = 0.47-1.00), $ I^{2} $ = 80.3%] less likely to be active. Conclusions PA and sitting time present great ranges and tend to vary across sex and educational status in South American countries. Country-specific exploration of trends and population-specific interventions may be warranted. | ||
650 | 4 | |a Sedentary lifestyle |7 (dpeaa)DE-He213 | |
650 | 4 | |a Inequalities |7 (dpeaa)DE-He213 | |
650 | 4 | |a Adult |7 (dpeaa)DE-He213 | |
650 | 4 | |a Exercise |7 (dpeaa)DE-He213 | |
700 | 1 | |a Baldew, Se-Sergio |4 aut | |
700 | 1 | |a Miranda, J. Jaime |4 aut | |
700 | 1 | |a Díaz Arnesto, Oscar |4 aut | |
700 | 1 | |a Stubbs, Brendon |4 aut | |
700 | 1 | |a Silva, Danilo R. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of behavioral nutrition and physical activity |d London : BioMed Central, 2004 |g 16(2019), 1 vom: 20. Aug. |w (DE-627)378572342 |w (DE-600)2134691-4 |x 1479-5868 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2019 |g number:1 |g day:20 |g month:08 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12966-019-0839-9 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4598 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 16 |j 2019 |e 1 |b 20 |c 08 |
author_variant |
a o w ao aow s s b ssb j j m jj jjm a o d ao aod b s bs d r s dr drs |
---|---|
matchkey_str |
article:14795868:2019----::hsclciiynsdnayeairatrsnscoeorpicreaei168autfosxotaeiacutishsuhmrcnh |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1186/s12966-019-0839-9 doi (DE-627)SPR02892990X (SPR)s12966-019-0839-9-e DE-627 ger DE-627 rakwb eng Werneck, André O. verfasserin (orcid)0000-0002-9166-4376 aut Physical activity and sedentary behavior patterns and sociodemographic correlates in 116,982 adults from six South American countries: the South American physical activity and sedentary behavior network (SAPASEN) 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2019 Background Physical inactivity and sedentary behavior are major concerns for public health. Although global initiatives have been successful in monitoring physical activity (PA) worldwide, there is no systematic action for the monitoring of correlates of these behaviors, especially in low- and middle-income countries. Here we describe the prevalence and distribution of PA domains and sitting time in population sub-groups of six south American countries. Methods Data from the South American Physical Activity and Sedentary Behavior Network (SAPASEN) were used, which includes representative data from Argentina (n = 26,932), Brazil (n = 52,490), Chile (n = 3719), Ecuador (n = 19,851), Peru (n = 8820), and Suriname (n = 5170). Self-reported leisure time (≥150 min/week), (≥150 min/week), transport (≥10 min/week), and occupational PA total (≥10 min/week), as well as sitting time (≥4 h/day) were captured in each national survey. Sex, age, income, and educational status were exposures. Descriptive statistics and harmonized random effect meta-analyses were conducted. Results The prevalence of PA during leisure (Argentina: 29.2% to Peru: 8.6%), transport (Peru: 69.7% to Ecuador: 8.8%), and occupation (Chile: 60.4 to Brazil 18.3%), and ≥4 h/day of sitting time (Peru: 78.8% to Brazil: 14.8%) differed widely between countries. Moreover, total PA ranged between 60.4% (Brazil) and 82.9% (Chile) among men, and between 49.4% (Ecuador) and 74.9% (Chile) among women. Women (low leisure and occupational PA) and those with a higher educational level (low transportation and occupational PA as well as high sitting time) were less active. Concerning total PA, men, young and middle-aged adults of high educational status (college or more) were, respectively, 47% [OR = 0.53 (95% CI = 0.36–0.78), $ I^{2} $ = 76.6%], 25% [OR = 0.75 (95% CI = 0.61-0.93), $ I^{2} $ = 30.4%] and 32% [OR = 0.68 (95% CI = 0.47-1.00), $ I^{2} $ = 80.3%] less likely to be active. Conclusions PA and sitting time present great ranges and tend to vary across sex and educational status in South American countries. Country-specific exploration of trends and population-specific interventions may be warranted. Sedentary lifestyle (dpeaa)DE-He213 Inequalities (dpeaa)DE-He213 Adult (dpeaa)DE-He213 Exercise (dpeaa)DE-He213 Baldew, Se-Sergio aut Miranda, J. Jaime aut Díaz Arnesto, Oscar aut Stubbs, Brendon aut Silva, Danilo R. aut Enthalten in International journal of behavioral nutrition and physical activity London : BioMed Central, 2004 16(2019), 1 vom: 20. Aug. (DE-627)378572342 (DE-600)2134691-4 1479-5868 nnns volume:16 year:2019 number:1 day:20 month:08 https://dx.doi.org/10.1186/s12966-019-0839-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4598 GBV_ILN_4700 AR 16 2019 1 20 08 |
spelling |
10.1186/s12966-019-0839-9 doi (DE-627)SPR02892990X (SPR)s12966-019-0839-9-e DE-627 ger DE-627 rakwb eng Werneck, André O. verfasserin (orcid)0000-0002-9166-4376 aut Physical activity and sedentary behavior patterns and sociodemographic correlates in 116,982 adults from six South American countries: the South American physical activity and sedentary behavior network (SAPASEN) 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2019 Background Physical inactivity and sedentary behavior are major concerns for public health. Although global initiatives have been successful in monitoring physical activity (PA) worldwide, there is no systematic action for the monitoring of correlates of these behaviors, especially in low- and middle-income countries. Here we describe the prevalence and distribution of PA domains and sitting time in population sub-groups of six south American countries. Methods Data from the South American Physical Activity and Sedentary Behavior Network (SAPASEN) were used, which includes representative data from Argentina (n = 26,932), Brazil (n = 52,490), Chile (n = 3719), Ecuador (n = 19,851), Peru (n = 8820), and Suriname (n = 5170). Self-reported leisure time (≥150 min/week), (≥150 min/week), transport (≥10 min/week), and occupational PA total (≥10 min/week), as well as sitting time (≥4 h/day) were captured in each national survey. Sex, age, income, and educational status were exposures. Descriptive statistics and harmonized random effect meta-analyses were conducted. Results The prevalence of PA during leisure (Argentina: 29.2% to Peru: 8.6%), transport (Peru: 69.7% to Ecuador: 8.8%), and occupation (Chile: 60.4 to Brazil 18.3%), and ≥4 h/day of sitting time (Peru: 78.8% to Brazil: 14.8%) differed widely between countries. Moreover, total PA ranged between 60.4% (Brazil) and 82.9% (Chile) among men, and between 49.4% (Ecuador) and 74.9% (Chile) among women. Women (low leisure and occupational PA) and those with a higher educational level (low transportation and occupational PA as well as high sitting time) were less active. Concerning total PA, men, young and middle-aged adults of high educational status (college or more) were, respectively, 47% [OR = 0.53 (95% CI = 0.36–0.78), $ I^{2} $ = 76.6%], 25% [OR = 0.75 (95% CI = 0.61-0.93), $ I^{2} $ = 30.4%] and 32% [OR = 0.68 (95% CI = 0.47-1.00), $ I^{2} $ = 80.3%] less likely to be active. Conclusions PA and sitting time present great ranges and tend to vary across sex and educational status in South American countries. Country-specific exploration of trends and population-specific interventions may be warranted. Sedentary lifestyle (dpeaa)DE-He213 Inequalities (dpeaa)DE-He213 Adult (dpeaa)DE-He213 Exercise (dpeaa)DE-He213 Baldew, Se-Sergio aut Miranda, J. Jaime aut Díaz Arnesto, Oscar aut Stubbs, Brendon aut Silva, Danilo R. aut Enthalten in International journal of behavioral nutrition and physical activity London : BioMed Central, 2004 16(2019), 1 vom: 20. Aug. (DE-627)378572342 (DE-600)2134691-4 1479-5868 nnns volume:16 year:2019 number:1 day:20 month:08 https://dx.doi.org/10.1186/s12966-019-0839-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4598 GBV_ILN_4700 AR 16 2019 1 20 08 |
allfields_unstemmed |
10.1186/s12966-019-0839-9 doi (DE-627)SPR02892990X (SPR)s12966-019-0839-9-e DE-627 ger DE-627 rakwb eng Werneck, André O. verfasserin (orcid)0000-0002-9166-4376 aut Physical activity and sedentary behavior patterns and sociodemographic correlates in 116,982 adults from six South American countries: the South American physical activity and sedentary behavior network (SAPASEN) 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2019 Background Physical inactivity and sedentary behavior are major concerns for public health. Although global initiatives have been successful in monitoring physical activity (PA) worldwide, there is no systematic action for the monitoring of correlates of these behaviors, especially in low- and middle-income countries. Here we describe the prevalence and distribution of PA domains and sitting time in population sub-groups of six south American countries. Methods Data from the South American Physical Activity and Sedentary Behavior Network (SAPASEN) were used, which includes representative data from Argentina (n = 26,932), Brazil (n = 52,490), Chile (n = 3719), Ecuador (n = 19,851), Peru (n = 8820), and Suriname (n = 5170). Self-reported leisure time (≥150 min/week), (≥150 min/week), transport (≥10 min/week), and occupational PA total (≥10 min/week), as well as sitting time (≥4 h/day) were captured in each national survey. Sex, age, income, and educational status were exposures. Descriptive statistics and harmonized random effect meta-analyses were conducted. Results The prevalence of PA during leisure (Argentina: 29.2% to Peru: 8.6%), transport (Peru: 69.7% to Ecuador: 8.8%), and occupation (Chile: 60.4 to Brazil 18.3%), and ≥4 h/day of sitting time (Peru: 78.8% to Brazil: 14.8%) differed widely between countries. Moreover, total PA ranged between 60.4% (Brazil) and 82.9% (Chile) among men, and between 49.4% (Ecuador) and 74.9% (Chile) among women. Women (low leisure and occupational PA) and those with a higher educational level (low transportation and occupational PA as well as high sitting time) were less active. Concerning total PA, men, young and middle-aged adults of high educational status (college or more) were, respectively, 47% [OR = 0.53 (95% CI = 0.36–0.78), $ I^{2} $ = 76.6%], 25% [OR = 0.75 (95% CI = 0.61-0.93), $ I^{2} $ = 30.4%] and 32% [OR = 0.68 (95% CI = 0.47-1.00), $ I^{2} $ = 80.3%] less likely to be active. Conclusions PA and sitting time present great ranges and tend to vary across sex and educational status in South American countries. Country-specific exploration of trends and population-specific interventions may be warranted. Sedentary lifestyle (dpeaa)DE-He213 Inequalities (dpeaa)DE-He213 Adult (dpeaa)DE-He213 Exercise (dpeaa)DE-He213 Baldew, Se-Sergio aut Miranda, J. Jaime aut Díaz Arnesto, Oscar aut Stubbs, Brendon aut Silva, Danilo R. aut Enthalten in International journal of behavioral nutrition and physical activity London : BioMed Central, 2004 16(2019), 1 vom: 20. Aug. (DE-627)378572342 (DE-600)2134691-4 1479-5868 nnns volume:16 year:2019 number:1 day:20 month:08 https://dx.doi.org/10.1186/s12966-019-0839-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4598 GBV_ILN_4700 AR 16 2019 1 20 08 |
allfieldsGer |
10.1186/s12966-019-0839-9 doi (DE-627)SPR02892990X (SPR)s12966-019-0839-9-e DE-627 ger DE-627 rakwb eng Werneck, André O. verfasserin (orcid)0000-0002-9166-4376 aut Physical activity and sedentary behavior patterns and sociodemographic correlates in 116,982 adults from six South American countries: the South American physical activity and sedentary behavior network (SAPASEN) 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2019 Background Physical inactivity and sedentary behavior are major concerns for public health. Although global initiatives have been successful in monitoring physical activity (PA) worldwide, there is no systematic action for the monitoring of correlates of these behaviors, especially in low- and middle-income countries. Here we describe the prevalence and distribution of PA domains and sitting time in population sub-groups of six south American countries. Methods Data from the South American Physical Activity and Sedentary Behavior Network (SAPASEN) were used, which includes representative data from Argentina (n = 26,932), Brazil (n = 52,490), Chile (n = 3719), Ecuador (n = 19,851), Peru (n = 8820), and Suriname (n = 5170). Self-reported leisure time (≥150 min/week), (≥150 min/week), transport (≥10 min/week), and occupational PA total (≥10 min/week), as well as sitting time (≥4 h/day) were captured in each national survey. Sex, age, income, and educational status were exposures. Descriptive statistics and harmonized random effect meta-analyses were conducted. Results The prevalence of PA during leisure (Argentina: 29.2% to Peru: 8.6%), transport (Peru: 69.7% to Ecuador: 8.8%), and occupation (Chile: 60.4 to Brazil 18.3%), and ≥4 h/day of sitting time (Peru: 78.8% to Brazil: 14.8%) differed widely between countries. Moreover, total PA ranged between 60.4% (Brazil) and 82.9% (Chile) among men, and between 49.4% (Ecuador) and 74.9% (Chile) among women. Women (low leisure and occupational PA) and those with a higher educational level (low transportation and occupational PA as well as high sitting time) were less active. Concerning total PA, men, young and middle-aged adults of high educational status (college or more) were, respectively, 47% [OR = 0.53 (95% CI = 0.36–0.78), $ I^{2} $ = 76.6%], 25% [OR = 0.75 (95% CI = 0.61-0.93), $ I^{2} $ = 30.4%] and 32% [OR = 0.68 (95% CI = 0.47-1.00), $ I^{2} $ = 80.3%] less likely to be active. Conclusions PA and sitting time present great ranges and tend to vary across sex and educational status in South American countries. Country-specific exploration of trends and population-specific interventions may be warranted. Sedentary lifestyle (dpeaa)DE-He213 Inequalities (dpeaa)DE-He213 Adult (dpeaa)DE-He213 Exercise (dpeaa)DE-He213 Baldew, Se-Sergio aut Miranda, J. Jaime aut Díaz Arnesto, Oscar aut Stubbs, Brendon aut Silva, Danilo R. aut Enthalten in International journal of behavioral nutrition and physical activity London : BioMed Central, 2004 16(2019), 1 vom: 20. Aug. (DE-627)378572342 (DE-600)2134691-4 1479-5868 nnns volume:16 year:2019 number:1 day:20 month:08 https://dx.doi.org/10.1186/s12966-019-0839-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4598 GBV_ILN_4700 AR 16 2019 1 20 08 |
allfieldsSound |
10.1186/s12966-019-0839-9 doi (DE-627)SPR02892990X (SPR)s12966-019-0839-9-e DE-627 ger DE-627 rakwb eng Werneck, André O. verfasserin (orcid)0000-0002-9166-4376 aut Physical activity and sedentary behavior patterns and sociodemographic correlates in 116,982 adults from six South American countries: the South American physical activity and sedentary behavior network (SAPASEN) 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2019 Background Physical inactivity and sedentary behavior are major concerns for public health. Although global initiatives have been successful in monitoring physical activity (PA) worldwide, there is no systematic action for the monitoring of correlates of these behaviors, especially in low- and middle-income countries. Here we describe the prevalence and distribution of PA domains and sitting time in population sub-groups of six south American countries. Methods Data from the South American Physical Activity and Sedentary Behavior Network (SAPASEN) were used, which includes representative data from Argentina (n = 26,932), Brazil (n = 52,490), Chile (n = 3719), Ecuador (n = 19,851), Peru (n = 8820), and Suriname (n = 5170). Self-reported leisure time (≥150 min/week), (≥150 min/week), transport (≥10 min/week), and occupational PA total (≥10 min/week), as well as sitting time (≥4 h/day) were captured in each national survey. Sex, age, income, and educational status were exposures. Descriptive statistics and harmonized random effect meta-analyses were conducted. Results The prevalence of PA during leisure (Argentina: 29.2% to Peru: 8.6%), transport (Peru: 69.7% to Ecuador: 8.8%), and occupation (Chile: 60.4 to Brazil 18.3%), and ≥4 h/day of sitting time (Peru: 78.8% to Brazil: 14.8%) differed widely between countries. Moreover, total PA ranged between 60.4% (Brazil) and 82.9% (Chile) among men, and between 49.4% (Ecuador) and 74.9% (Chile) among women. Women (low leisure and occupational PA) and those with a higher educational level (low transportation and occupational PA as well as high sitting time) were less active. Concerning total PA, men, young and middle-aged adults of high educational status (college or more) were, respectively, 47% [OR = 0.53 (95% CI = 0.36–0.78), $ I^{2} $ = 76.6%], 25% [OR = 0.75 (95% CI = 0.61-0.93), $ I^{2} $ = 30.4%] and 32% [OR = 0.68 (95% CI = 0.47-1.00), $ I^{2} $ = 80.3%] less likely to be active. Conclusions PA and sitting time present great ranges and tend to vary across sex and educational status in South American countries. Country-specific exploration of trends and population-specific interventions may be warranted. Sedentary lifestyle (dpeaa)DE-He213 Inequalities (dpeaa)DE-He213 Adult (dpeaa)DE-He213 Exercise (dpeaa)DE-He213 Baldew, Se-Sergio aut Miranda, J. Jaime aut Díaz Arnesto, Oscar aut Stubbs, Brendon aut Silva, Danilo R. aut Enthalten in International journal of behavioral nutrition and physical activity London : BioMed Central, 2004 16(2019), 1 vom: 20. Aug. (DE-627)378572342 (DE-600)2134691-4 1479-5868 nnns volume:16 year:2019 number:1 day:20 month:08 https://dx.doi.org/10.1186/s12966-019-0839-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4598 GBV_ILN_4700 AR 16 2019 1 20 08 |
language |
English |
source |
Enthalten in International journal of behavioral nutrition and physical activity 16(2019), 1 vom: 20. Aug. volume:16 year:2019 number:1 day:20 month:08 |
sourceStr |
Enthalten in International journal of behavioral nutrition and physical activity 16(2019), 1 vom: 20. Aug. volume:16 year:2019 number:1 day:20 month:08 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Sedentary lifestyle Inequalities Adult Exercise |
isfreeaccess_bool |
true |
container_title |
International journal of behavioral nutrition and physical activity |
authorswithroles_txt_mv |
Werneck, André O. @@aut@@ Baldew, Se-Sergio @@aut@@ Miranda, J. Jaime @@aut@@ Díaz Arnesto, Oscar @@aut@@ Stubbs, Brendon @@aut@@ Silva, Danilo R. @@aut@@ |
publishDateDaySort_date |
2019-08-20T00:00:00Z |
hierarchy_top_id |
378572342 |
id |
SPR02892990X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR02892990X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520010958.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12966-019-0839-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR02892990X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12966-019-0839-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Werneck, André O.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9166-4376</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physical activity and sedentary behavior patterns and sociodemographic correlates in 116,982 adults from six South American countries: the South American physical activity and sedentary behavior network (SAPASEN)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Physical inactivity and sedentary behavior are major concerns for public health. Although global initiatives have been successful in monitoring physical activity (PA) worldwide, there is no systematic action for the monitoring of correlates of these behaviors, especially in low- and middle-income countries. Here we describe the prevalence and distribution of PA domains and sitting time in population sub-groups of six south American countries. Methods Data from the South American Physical Activity and Sedentary Behavior Network (SAPASEN) were used, which includes representative data from Argentina (n = 26,932), Brazil (n = 52,490), Chile (n = 3719), Ecuador (n = 19,851), Peru (n = 8820), and Suriname (n = 5170). Self-reported leisure time (≥150 min/week), (≥150 min/week), transport (≥10 min/week), and occupational PA total (≥10 min/week), as well as sitting time (≥4 h/day) were captured in each national survey. Sex, age, income, and educational status were exposures. Descriptive statistics and harmonized random effect meta-analyses were conducted. Results The prevalence of PA during leisure (Argentina: 29.2% to Peru: 8.6%), transport (Peru: 69.7% to Ecuador: 8.8%), and occupation (Chile: 60.4 to Brazil 18.3%), and ≥4 h/day of sitting time (Peru: 78.8% to Brazil: 14.8%) differed widely between countries. Moreover, total PA ranged between 60.4% (Brazil) and 82.9% (Chile) among men, and between 49.4% (Ecuador) and 74.9% (Chile) among women. Women (low leisure and occupational PA) and those with a higher educational level (low transportation and occupational PA as well as high sitting time) were less active. Concerning total PA, men, young and middle-aged adults of high educational status (college or more) were, respectively, 47% [OR = 0.53 (95% CI = 0.36–0.78), $ I^{2} $ = 76.6%], 25% [OR = 0.75 (95% CI = 0.61-0.93), $ I^{2} $ = 30.4%] and 32% [OR = 0.68 (95% CI = 0.47-1.00), $ I^{2} $ = 80.3%] less likely to be active. Conclusions PA and sitting time present great ranges and tend to vary across sex and educational status in South American countries. Country-specific exploration of trends and population-specific interventions may be warranted.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sedentary lifestyle</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inequalities</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adult</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exercise</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baldew, Se-Sergio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miranda, J. Jaime</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Díaz Arnesto, Oscar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stubbs, Brendon</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Silva, Danilo R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of behavioral nutrition and physical activity</subfield><subfield code="d">London : BioMed Central, 2004</subfield><subfield code="g">16(2019), 1 vom: 20. Aug.</subfield><subfield code="w">(DE-627)378572342</subfield><subfield code="w">(DE-600)2134691-4</subfield><subfield code="x">1479-5868</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:20</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12966-019-0839-9</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4598</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">20</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
author |
Werneck, André O. |
spellingShingle |
Werneck, André O. misc Sedentary lifestyle misc Inequalities misc Adult misc Exercise Physical activity and sedentary behavior patterns and sociodemographic correlates in 116,982 adults from six South American countries: the South American physical activity and sedentary behavior network (SAPASEN) |
authorStr |
Werneck, André O. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)378572342 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1479-5868 |
topic_title |
Physical activity and sedentary behavior patterns and sociodemographic correlates in 116,982 adults from six South American countries: the South American physical activity and sedentary behavior network (SAPASEN) Sedentary lifestyle (dpeaa)DE-He213 Inequalities (dpeaa)DE-He213 Adult (dpeaa)DE-He213 Exercise (dpeaa)DE-He213 |
topic |
misc Sedentary lifestyle misc Inequalities misc Adult misc Exercise |
topic_unstemmed |
misc Sedentary lifestyle misc Inequalities misc Adult misc Exercise |
topic_browse |
misc Sedentary lifestyle misc Inequalities misc Adult misc Exercise |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of behavioral nutrition and physical activity |
hierarchy_parent_id |
378572342 |
hierarchy_top_title |
International journal of behavioral nutrition and physical activity |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)378572342 (DE-600)2134691-4 |
title |
Physical activity and sedentary behavior patterns and sociodemographic correlates in 116,982 adults from six South American countries: the South American physical activity and sedentary behavior network (SAPASEN) |
ctrlnum |
(DE-627)SPR02892990X (SPR)s12966-019-0839-9-e |
title_full |
Physical activity and sedentary behavior patterns and sociodemographic correlates in 116,982 adults from six South American countries: the South American physical activity and sedentary behavior network (SAPASEN) |
author_sort |
Werneck, André O. |
journal |
International journal of behavioral nutrition and physical activity |
journalStr |
International journal of behavioral nutrition and physical activity |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Werneck, André O. Baldew, Se-Sergio Miranda, J. Jaime Díaz Arnesto, Oscar Stubbs, Brendon Silva, Danilo R. |
container_volume |
16 |
format_se |
Elektronische Aufsätze |
author-letter |
Werneck, André O. |
doi_str_mv |
10.1186/s12966-019-0839-9 |
normlink |
(ORCID)0000-0002-9166-4376 |
normlink_prefix_str_mv |
(orcid)0000-0002-9166-4376 |
title_sort |
physical activity and sedentary behavior patterns and sociodemographic correlates in 116,982 adults from six south american countries: the south american physical activity and sedentary behavior network (sapasen) |
title_auth |
Physical activity and sedentary behavior patterns and sociodemographic correlates in 116,982 adults from six South American countries: the South American physical activity and sedentary behavior network (SAPASEN) |
abstract |
Background Physical inactivity and sedentary behavior are major concerns for public health. Although global initiatives have been successful in monitoring physical activity (PA) worldwide, there is no systematic action for the monitoring of correlates of these behaviors, especially in low- and middle-income countries. Here we describe the prevalence and distribution of PA domains and sitting time in population sub-groups of six south American countries. Methods Data from the South American Physical Activity and Sedentary Behavior Network (SAPASEN) were used, which includes representative data from Argentina (n = 26,932), Brazil (n = 52,490), Chile (n = 3719), Ecuador (n = 19,851), Peru (n = 8820), and Suriname (n = 5170). Self-reported leisure time (≥150 min/week), (≥150 min/week), transport (≥10 min/week), and occupational PA total (≥10 min/week), as well as sitting time (≥4 h/day) were captured in each national survey. Sex, age, income, and educational status were exposures. Descriptive statistics and harmonized random effect meta-analyses were conducted. Results The prevalence of PA during leisure (Argentina: 29.2% to Peru: 8.6%), transport (Peru: 69.7% to Ecuador: 8.8%), and occupation (Chile: 60.4 to Brazil 18.3%), and ≥4 h/day of sitting time (Peru: 78.8% to Brazil: 14.8%) differed widely between countries. Moreover, total PA ranged between 60.4% (Brazil) and 82.9% (Chile) among men, and between 49.4% (Ecuador) and 74.9% (Chile) among women. Women (low leisure and occupational PA) and those with a higher educational level (low transportation and occupational PA as well as high sitting time) were less active. Concerning total PA, men, young and middle-aged adults of high educational status (college or more) were, respectively, 47% [OR = 0.53 (95% CI = 0.36–0.78), $ I^{2} $ = 76.6%], 25% [OR = 0.75 (95% CI = 0.61-0.93), $ I^{2} $ = 30.4%] and 32% [OR = 0.68 (95% CI = 0.47-1.00), $ I^{2} $ = 80.3%] less likely to be active. Conclusions PA and sitting time present great ranges and tend to vary across sex and educational status in South American countries. Country-specific exploration of trends and population-specific interventions may be warranted. © The Author(s). 2019 |
abstractGer |
Background Physical inactivity and sedentary behavior are major concerns for public health. Although global initiatives have been successful in monitoring physical activity (PA) worldwide, there is no systematic action for the monitoring of correlates of these behaviors, especially in low- and middle-income countries. Here we describe the prevalence and distribution of PA domains and sitting time in population sub-groups of six south American countries. Methods Data from the South American Physical Activity and Sedentary Behavior Network (SAPASEN) were used, which includes representative data from Argentina (n = 26,932), Brazil (n = 52,490), Chile (n = 3719), Ecuador (n = 19,851), Peru (n = 8820), and Suriname (n = 5170). Self-reported leisure time (≥150 min/week), (≥150 min/week), transport (≥10 min/week), and occupational PA total (≥10 min/week), as well as sitting time (≥4 h/day) were captured in each national survey. Sex, age, income, and educational status were exposures. Descriptive statistics and harmonized random effect meta-analyses were conducted. Results The prevalence of PA during leisure (Argentina: 29.2% to Peru: 8.6%), transport (Peru: 69.7% to Ecuador: 8.8%), and occupation (Chile: 60.4 to Brazil 18.3%), and ≥4 h/day of sitting time (Peru: 78.8% to Brazil: 14.8%) differed widely between countries. Moreover, total PA ranged between 60.4% (Brazil) and 82.9% (Chile) among men, and between 49.4% (Ecuador) and 74.9% (Chile) among women. Women (low leisure and occupational PA) and those with a higher educational level (low transportation and occupational PA as well as high sitting time) were less active. Concerning total PA, men, young and middle-aged adults of high educational status (college or more) were, respectively, 47% [OR = 0.53 (95% CI = 0.36–0.78), $ I^{2} $ = 76.6%], 25% [OR = 0.75 (95% CI = 0.61-0.93), $ I^{2} $ = 30.4%] and 32% [OR = 0.68 (95% CI = 0.47-1.00), $ I^{2} $ = 80.3%] less likely to be active. Conclusions PA and sitting time present great ranges and tend to vary across sex and educational status in South American countries. Country-specific exploration of trends and population-specific interventions may be warranted. © The Author(s). 2019 |
abstract_unstemmed |
Background Physical inactivity and sedentary behavior are major concerns for public health. Although global initiatives have been successful in monitoring physical activity (PA) worldwide, there is no systematic action for the monitoring of correlates of these behaviors, especially in low- and middle-income countries. Here we describe the prevalence and distribution of PA domains and sitting time in population sub-groups of six south American countries. Methods Data from the South American Physical Activity and Sedentary Behavior Network (SAPASEN) were used, which includes representative data from Argentina (n = 26,932), Brazil (n = 52,490), Chile (n = 3719), Ecuador (n = 19,851), Peru (n = 8820), and Suriname (n = 5170). Self-reported leisure time (≥150 min/week), (≥150 min/week), transport (≥10 min/week), and occupational PA total (≥10 min/week), as well as sitting time (≥4 h/day) were captured in each national survey. Sex, age, income, and educational status were exposures. Descriptive statistics and harmonized random effect meta-analyses were conducted. Results The prevalence of PA during leisure (Argentina: 29.2% to Peru: 8.6%), transport (Peru: 69.7% to Ecuador: 8.8%), and occupation (Chile: 60.4 to Brazil 18.3%), and ≥4 h/day of sitting time (Peru: 78.8% to Brazil: 14.8%) differed widely between countries. Moreover, total PA ranged between 60.4% (Brazil) and 82.9% (Chile) among men, and between 49.4% (Ecuador) and 74.9% (Chile) among women. Women (low leisure and occupational PA) and those with a higher educational level (low transportation and occupational PA as well as high sitting time) were less active. Concerning total PA, men, young and middle-aged adults of high educational status (college or more) were, respectively, 47% [OR = 0.53 (95% CI = 0.36–0.78), $ I^{2} $ = 76.6%], 25% [OR = 0.75 (95% CI = 0.61-0.93), $ I^{2} $ = 30.4%] and 32% [OR = 0.68 (95% CI = 0.47-1.00), $ I^{2} $ = 80.3%] less likely to be active. Conclusions PA and sitting time present great ranges and tend to vary across sex and educational status in South American countries. Country-specific exploration of trends and population-specific interventions may be warranted. © The Author(s). 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4598 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Physical activity and sedentary behavior patterns and sociodemographic correlates in 116,982 adults from six South American countries: the South American physical activity and sedentary behavior network (SAPASEN) |
url |
https://dx.doi.org/10.1186/s12966-019-0839-9 |
remote_bool |
true |
author2 |
Baldew, Se-Sergio Miranda, J. Jaime Díaz Arnesto, Oscar Stubbs, Brendon Silva, Danilo R. |
author2Str |
Baldew, Se-Sergio Miranda, J. Jaime Díaz Arnesto, Oscar Stubbs, Brendon Silva, Danilo R. |
ppnlink |
378572342 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12966-019-0839-9 |
up_date |
2024-07-03T22:34:37.954Z |
_version_ |
1803599036241936384 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR02892990X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520010958.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12966-019-0839-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR02892990X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12966-019-0839-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Werneck, André O.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9166-4376</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physical activity and sedentary behavior patterns and sociodemographic correlates in 116,982 adults from six South American countries: the South American physical activity and sedentary behavior network (SAPASEN)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Physical inactivity and sedentary behavior are major concerns for public health. Although global initiatives have been successful in monitoring physical activity (PA) worldwide, there is no systematic action for the monitoring of correlates of these behaviors, especially in low- and middle-income countries. Here we describe the prevalence and distribution of PA domains and sitting time in population sub-groups of six south American countries. Methods Data from the South American Physical Activity and Sedentary Behavior Network (SAPASEN) were used, which includes representative data from Argentina (n = 26,932), Brazil (n = 52,490), Chile (n = 3719), Ecuador (n = 19,851), Peru (n = 8820), and Suriname (n = 5170). Self-reported leisure time (≥150 min/week), (≥150 min/week), transport (≥10 min/week), and occupational PA total (≥10 min/week), as well as sitting time (≥4 h/day) were captured in each national survey. Sex, age, income, and educational status were exposures. Descriptive statistics and harmonized random effect meta-analyses were conducted. Results The prevalence of PA during leisure (Argentina: 29.2% to Peru: 8.6%), transport (Peru: 69.7% to Ecuador: 8.8%), and occupation (Chile: 60.4 to Brazil 18.3%), and ≥4 h/day of sitting time (Peru: 78.8% to Brazil: 14.8%) differed widely between countries. Moreover, total PA ranged between 60.4% (Brazil) and 82.9% (Chile) among men, and between 49.4% (Ecuador) and 74.9% (Chile) among women. Women (low leisure and occupational PA) and those with a higher educational level (low transportation and occupational PA as well as high sitting time) were less active. Concerning total PA, men, young and middle-aged adults of high educational status (college or more) were, respectively, 47% [OR = 0.53 (95% CI = 0.36–0.78), $ I^{2} $ = 76.6%], 25% [OR = 0.75 (95% CI = 0.61-0.93), $ I^{2} $ = 30.4%] and 32% [OR = 0.68 (95% CI = 0.47-1.00), $ I^{2} $ = 80.3%] less likely to be active. Conclusions PA and sitting time present great ranges and tend to vary across sex and educational status in South American countries. Country-specific exploration of trends and population-specific interventions may be warranted.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sedentary lifestyle</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inequalities</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adult</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exercise</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baldew, Se-Sergio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miranda, J. Jaime</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Díaz Arnesto, Oscar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stubbs, Brendon</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Silva, Danilo R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of behavioral nutrition and physical activity</subfield><subfield code="d">London : BioMed Central, 2004</subfield><subfield code="g">16(2019), 1 vom: 20. Aug.</subfield><subfield code="w">(DE-627)378572342</subfield><subfield code="w">(DE-600)2134691-4</subfield><subfield code="x">1479-5868</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:20</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12966-019-0839-9</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4598</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">20</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
score |
7.4017773 |