In silico identification of drug target pathways in breast cancer subtypes using pathway cross-talk inhibition
Background Despite great development in genome and proteome high-throughput methods, treatment failure is a critical point in the management of most solid cancers, including breast cancer (BC). Multiple alternative mechanisms upon drug treatment are involved to offset therapeutic effects, eventually...
Ausführliche Beschreibung
Autor*in: |
Cava, Claudia [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of translational medicine - London : BioMed Central, 2003, 16(2018), 1 vom: 05. Juni |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2018 ; number:1 ; day:05 ; month:06 |
Links: |
---|
DOI / URN: |
10.1186/s12967-018-1535-2 |
---|
Katalog-ID: |
SPR02896778X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR02896778X | ||
003 | DE-627 | ||
005 | 20230519110605.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12967-018-1535-2 |2 doi | |
035 | |a (DE-627)SPR02896778X | ||
035 | |a (SPR)s12967-018-1535-2-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Cava, Claudia |e verfasserin |4 aut | |
245 | 1 | 0 | |a In silico identification of drug target pathways in breast cancer subtypes using pathway cross-talk inhibition |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2018 | ||
520 | |a Background Despite great development in genome and proteome high-throughput methods, treatment failure is a critical point in the management of most solid cancers, including breast cancer (BC). Multiple alternative mechanisms upon drug treatment are involved to offset therapeutic effects, eventually causing drug resistance or treatment failure. Methods Here, we optimized a computational method to discover novel drug target pathways in cancer subtypes using pathway cross-talk inhibition (PCI). The in silico method is based on the detection and quantification of the pathway cross-talk for distinct cancer subtypes. From a BC data set of The Cancer Genome Atlas, we have identified different networks of cross-talking pathways for different BC subtypes, validated using an independent BC dataset from Gene Expression Omnibus. Then, we predicted in silico the effects of new or approved drugs on different BC subtypes by silencing individual or combined subtype-derived pathways with the aim to find new potential drugs or more effective synergistic combinations of drugs. Results Overall, we identified a set of new potential drug target pathways for distinct BC subtypes on which therapeutic agents could synergically act showing antitumour effects and impacting on cross-talk inhibition. Conclusions We believe that in silico methods based on PCI could offer valuable approaches to identifying more tailored and effective treatments in particular in heterogeneous cancer diseases. | ||
650 | 4 | |a Monte Carlo cross-validation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Pathway cross-talk inhibition |7 (dpeaa)DE-He213 | |
650 | 4 | |a Breast cancer |7 (dpeaa)DE-He213 | |
650 | 4 | |a Drugs |7 (dpeaa)DE-He213 | |
650 | 4 | |a Classification |7 (dpeaa)DE-He213 | |
650 | 4 | |a Subtypes |7 (dpeaa)DE-He213 | |
700 | 1 | |a Bertoli, Gloria |4 aut | |
700 | 1 | |a Castiglioni, Isabella |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of translational medicine |d London : BioMed Central, 2003 |g 16(2018), 1 vom: 05. Juni |w (DE-627)369084136 |w (DE-600)2118570-0 |x 1479-5876 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2018 |g number:1 |g day:05 |g month:06 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12967-018-1535-2 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 16 |j 2018 |e 1 |b 05 |c 06 |
author_variant |
c c cc g b gb i c ic |
---|---|
matchkey_str |
article:14795876:2018----::niiodniiainfrgagtahasnratacrutpssn |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1186/s12967-018-1535-2 doi (DE-627)SPR02896778X (SPR)s12967-018-1535-2-e DE-627 ger DE-627 rakwb eng Cava, Claudia verfasserin aut In silico identification of drug target pathways in breast cancer subtypes using pathway cross-talk inhibition 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Background Despite great development in genome and proteome high-throughput methods, treatment failure is a critical point in the management of most solid cancers, including breast cancer (BC). Multiple alternative mechanisms upon drug treatment are involved to offset therapeutic effects, eventually causing drug resistance or treatment failure. Methods Here, we optimized a computational method to discover novel drug target pathways in cancer subtypes using pathway cross-talk inhibition (PCI). The in silico method is based on the detection and quantification of the pathway cross-talk for distinct cancer subtypes. From a BC data set of The Cancer Genome Atlas, we have identified different networks of cross-talking pathways for different BC subtypes, validated using an independent BC dataset from Gene Expression Omnibus. Then, we predicted in silico the effects of new or approved drugs on different BC subtypes by silencing individual or combined subtype-derived pathways with the aim to find new potential drugs or more effective synergistic combinations of drugs. Results Overall, we identified a set of new potential drug target pathways for distinct BC subtypes on which therapeutic agents could synergically act showing antitumour effects and impacting on cross-talk inhibition. Conclusions We believe that in silico methods based on PCI could offer valuable approaches to identifying more tailored and effective treatments in particular in heterogeneous cancer diseases. Monte Carlo cross-validation (dpeaa)DE-He213 Pathway cross-talk inhibition (dpeaa)DE-He213 Breast cancer (dpeaa)DE-He213 Drugs (dpeaa)DE-He213 Classification (dpeaa)DE-He213 Subtypes (dpeaa)DE-He213 Bertoli, Gloria aut Castiglioni, Isabella aut Enthalten in Journal of translational medicine London : BioMed Central, 2003 16(2018), 1 vom: 05. Juni (DE-627)369084136 (DE-600)2118570-0 1479-5876 nnns volume:16 year:2018 number:1 day:05 month:06 https://dx.doi.org/10.1186/s12967-018-1535-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2018 1 05 06 |
spelling |
10.1186/s12967-018-1535-2 doi (DE-627)SPR02896778X (SPR)s12967-018-1535-2-e DE-627 ger DE-627 rakwb eng Cava, Claudia verfasserin aut In silico identification of drug target pathways in breast cancer subtypes using pathway cross-talk inhibition 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Background Despite great development in genome and proteome high-throughput methods, treatment failure is a critical point in the management of most solid cancers, including breast cancer (BC). Multiple alternative mechanisms upon drug treatment are involved to offset therapeutic effects, eventually causing drug resistance or treatment failure. Methods Here, we optimized a computational method to discover novel drug target pathways in cancer subtypes using pathway cross-talk inhibition (PCI). The in silico method is based on the detection and quantification of the pathway cross-talk for distinct cancer subtypes. From a BC data set of The Cancer Genome Atlas, we have identified different networks of cross-talking pathways for different BC subtypes, validated using an independent BC dataset from Gene Expression Omnibus. Then, we predicted in silico the effects of new or approved drugs on different BC subtypes by silencing individual or combined subtype-derived pathways with the aim to find new potential drugs or more effective synergistic combinations of drugs. Results Overall, we identified a set of new potential drug target pathways for distinct BC subtypes on which therapeutic agents could synergically act showing antitumour effects and impacting on cross-talk inhibition. Conclusions We believe that in silico methods based on PCI could offer valuable approaches to identifying more tailored and effective treatments in particular in heterogeneous cancer diseases. Monte Carlo cross-validation (dpeaa)DE-He213 Pathway cross-talk inhibition (dpeaa)DE-He213 Breast cancer (dpeaa)DE-He213 Drugs (dpeaa)DE-He213 Classification (dpeaa)DE-He213 Subtypes (dpeaa)DE-He213 Bertoli, Gloria aut Castiglioni, Isabella aut Enthalten in Journal of translational medicine London : BioMed Central, 2003 16(2018), 1 vom: 05. Juni (DE-627)369084136 (DE-600)2118570-0 1479-5876 nnns volume:16 year:2018 number:1 day:05 month:06 https://dx.doi.org/10.1186/s12967-018-1535-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2018 1 05 06 |
allfields_unstemmed |
10.1186/s12967-018-1535-2 doi (DE-627)SPR02896778X (SPR)s12967-018-1535-2-e DE-627 ger DE-627 rakwb eng Cava, Claudia verfasserin aut In silico identification of drug target pathways in breast cancer subtypes using pathway cross-talk inhibition 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Background Despite great development in genome and proteome high-throughput methods, treatment failure is a critical point in the management of most solid cancers, including breast cancer (BC). Multiple alternative mechanisms upon drug treatment are involved to offset therapeutic effects, eventually causing drug resistance or treatment failure. Methods Here, we optimized a computational method to discover novel drug target pathways in cancer subtypes using pathway cross-talk inhibition (PCI). The in silico method is based on the detection and quantification of the pathway cross-talk for distinct cancer subtypes. From a BC data set of The Cancer Genome Atlas, we have identified different networks of cross-talking pathways for different BC subtypes, validated using an independent BC dataset from Gene Expression Omnibus. Then, we predicted in silico the effects of new or approved drugs on different BC subtypes by silencing individual or combined subtype-derived pathways with the aim to find new potential drugs or more effective synergistic combinations of drugs. Results Overall, we identified a set of new potential drug target pathways for distinct BC subtypes on which therapeutic agents could synergically act showing antitumour effects and impacting on cross-talk inhibition. Conclusions We believe that in silico methods based on PCI could offer valuable approaches to identifying more tailored and effective treatments in particular in heterogeneous cancer diseases. Monte Carlo cross-validation (dpeaa)DE-He213 Pathway cross-talk inhibition (dpeaa)DE-He213 Breast cancer (dpeaa)DE-He213 Drugs (dpeaa)DE-He213 Classification (dpeaa)DE-He213 Subtypes (dpeaa)DE-He213 Bertoli, Gloria aut Castiglioni, Isabella aut Enthalten in Journal of translational medicine London : BioMed Central, 2003 16(2018), 1 vom: 05. Juni (DE-627)369084136 (DE-600)2118570-0 1479-5876 nnns volume:16 year:2018 number:1 day:05 month:06 https://dx.doi.org/10.1186/s12967-018-1535-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2018 1 05 06 |
allfieldsGer |
10.1186/s12967-018-1535-2 doi (DE-627)SPR02896778X (SPR)s12967-018-1535-2-e DE-627 ger DE-627 rakwb eng Cava, Claudia verfasserin aut In silico identification of drug target pathways in breast cancer subtypes using pathway cross-talk inhibition 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Background Despite great development in genome and proteome high-throughput methods, treatment failure is a critical point in the management of most solid cancers, including breast cancer (BC). Multiple alternative mechanisms upon drug treatment are involved to offset therapeutic effects, eventually causing drug resistance or treatment failure. Methods Here, we optimized a computational method to discover novel drug target pathways in cancer subtypes using pathway cross-talk inhibition (PCI). The in silico method is based on the detection and quantification of the pathway cross-talk for distinct cancer subtypes. From a BC data set of The Cancer Genome Atlas, we have identified different networks of cross-talking pathways for different BC subtypes, validated using an independent BC dataset from Gene Expression Omnibus. Then, we predicted in silico the effects of new or approved drugs on different BC subtypes by silencing individual or combined subtype-derived pathways with the aim to find new potential drugs or more effective synergistic combinations of drugs. Results Overall, we identified a set of new potential drug target pathways for distinct BC subtypes on which therapeutic agents could synergically act showing antitumour effects and impacting on cross-talk inhibition. Conclusions We believe that in silico methods based on PCI could offer valuable approaches to identifying more tailored and effective treatments in particular in heterogeneous cancer diseases. Monte Carlo cross-validation (dpeaa)DE-He213 Pathway cross-talk inhibition (dpeaa)DE-He213 Breast cancer (dpeaa)DE-He213 Drugs (dpeaa)DE-He213 Classification (dpeaa)DE-He213 Subtypes (dpeaa)DE-He213 Bertoli, Gloria aut Castiglioni, Isabella aut Enthalten in Journal of translational medicine London : BioMed Central, 2003 16(2018), 1 vom: 05. Juni (DE-627)369084136 (DE-600)2118570-0 1479-5876 nnns volume:16 year:2018 number:1 day:05 month:06 https://dx.doi.org/10.1186/s12967-018-1535-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2018 1 05 06 |
allfieldsSound |
10.1186/s12967-018-1535-2 doi (DE-627)SPR02896778X (SPR)s12967-018-1535-2-e DE-627 ger DE-627 rakwb eng Cava, Claudia verfasserin aut In silico identification of drug target pathways in breast cancer subtypes using pathway cross-talk inhibition 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Background Despite great development in genome and proteome high-throughput methods, treatment failure is a critical point in the management of most solid cancers, including breast cancer (BC). Multiple alternative mechanisms upon drug treatment are involved to offset therapeutic effects, eventually causing drug resistance or treatment failure. Methods Here, we optimized a computational method to discover novel drug target pathways in cancer subtypes using pathway cross-talk inhibition (PCI). The in silico method is based on the detection and quantification of the pathway cross-talk for distinct cancer subtypes. From a BC data set of The Cancer Genome Atlas, we have identified different networks of cross-talking pathways for different BC subtypes, validated using an independent BC dataset from Gene Expression Omnibus. Then, we predicted in silico the effects of new or approved drugs on different BC subtypes by silencing individual or combined subtype-derived pathways with the aim to find new potential drugs or more effective synergistic combinations of drugs. Results Overall, we identified a set of new potential drug target pathways for distinct BC subtypes on which therapeutic agents could synergically act showing antitumour effects and impacting on cross-talk inhibition. Conclusions We believe that in silico methods based on PCI could offer valuable approaches to identifying more tailored and effective treatments in particular in heterogeneous cancer diseases. Monte Carlo cross-validation (dpeaa)DE-He213 Pathway cross-talk inhibition (dpeaa)DE-He213 Breast cancer (dpeaa)DE-He213 Drugs (dpeaa)DE-He213 Classification (dpeaa)DE-He213 Subtypes (dpeaa)DE-He213 Bertoli, Gloria aut Castiglioni, Isabella aut Enthalten in Journal of translational medicine London : BioMed Central, 2003 16(2018), 1 vom: 05. Juni (DE-627)369084136 (DE-600)2118570-0 1479-5876 nnns volume:16 year:2018 number:1 day:05 month:06 https://dx.doi.org/10.1186/s12967-018-1535-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2018 1 05 06 |
language |
English |
source |
Enthalten in Journal of translational medicine 16(2018), 1 vom: 05. Juni volume:16 year:2018 number:1 day:05 month:06 |
sourceStr |
Enthalten in Journal of translational medicine 16(2018), 1 vom: 05. Juni volume:16 year:2018 number:1 day:05 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Monte Carlo cross-validation Pathway cross-talk inhibition Breast cancer Drugs Classification Subtypes |
isfreeaccess_bool |
true |
container_title |
Journal of translational medicine |
authorswithroles_txt_mv |
Cava, Claudia @@aut@@ Bertoli, Gloria @@aut@@ Castiglioni, Isabella @@aut@@ |
publishDateDaySort_date |
2018-06-05T00:00:00Z |
hierarchy_top_id |
369084136 |
id |
SPR02896778X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR02896778X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519110605.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12967-018-1535-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR02896778X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12967-018-1535-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cava, Claudia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">In silico identification of drug target pathways in breast cancer subtypes using pathway cross-talk inhibition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Despite great development in genome and proteome high-throughput methods, treatment failure is a critical point in the management of most solid cancers, including breast cancer (BC). Multiple alternative mechanisms upon drug treatment are involved to offset therapeutic effects, eventually causing drug resistance or treatment failure. Methods Here, we optimized a computational method to discover novel drug target pathways in cancer subtypes using pathway cross-talk inhibition (PCI). The in silico method is based on the detection and quantification of the pathway cross-talk for distinct cancer subtypes. From a BC data set of The Cancer Genome Atlas, we have identified different networks of cross-talking pathways for different BC subtypes, validated using an independent BC dataset from Gene Expression Omnibus. Then, we predicted in silico the effects of new or approved drugs on different BC subtypes by silencing individual or combined subtype-derived pathways with the aim to find new potential drugs or more effective synergistic combinations of drugs. Results Overall, we identified a set of new potential drug target pathways for distinct BC subtypes on which therapeutic agents could synergically act showing antitumour effects and impacting on cross-talk inhibition. Conclusions We believe that in silico methods based on PCI could offer valuable approaches to identifying more tailored and effective treatments in particular in heterogeneous cancer diseases.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo cross-validation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pathway cross-talk inhibition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breast cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drugs</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Subtypes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bertoli, Gloria</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Castiglioni, Isabella</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of translational medicine</subfield><subfield code="d">London : BioMed Central, 2003</subfield><subfield code="g">16(2018), 1 vom: 05. Juni</subfield><subfield code="w">(DE-627)369084136</subfield><subfield code="w">(DE-600)2118570-0</subfield><subfield code="x">1479-5876</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:05</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12967-018-1535-2</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">05</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Cava, Claudia |
spellingShingle |
Cava, Claudia misc Monte Carlo cross-validation misc Pathway cross-talk inhibition misc Breast cancer misc Drugs misc Classification misc Subtypes In silico identification of drug target pathways in breast cancer subtypes using pathway cross-talk inhibition |
authorStr |
Cava, Claudia |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)369084136 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1479-5876 |
topic_title |
In silico identification of drug target pathways in breast cancer subtypes using pathway cross-talk inhibition Monte Carlo cross-validation (dpeaa)DE-He213 Pathway cross-talk inhibition (dpeaa)DE-He213 Breast cancer (dpeaa)DE-He213 Drugs (dpeaa)DE-He213 Classification (dpeaa)DE-He213 Subtypes (dpeaa)DE-He213 |
topic |
misc Monte Carlo cross-validation misc Pathway cross-talk inhibition misc Breast cancer misc Drugs misc Classification misc Subtypes |
topic_unstemmed |
misc Monte Carlo cross-validation misc Pathway cross-talk inhibition misc Breast cancer misc Drugs misc Classification misc Subtypes |
topic_browse |
misc Monte Carlo cross-validation misc Pathway cross-talk inhibition misc Breast cancer misc Drugs misc Classification misc Subtypes |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of translational medicine |
hierarchy_parent_id |
369084136 |
hierarchy_top_title |
Journal of translational medicine |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)369084136 (DE-600)2118570-0 |
title |
In silico identification of drug target pathways in breast cancer subtypes using pathway cross-talk inhibition |
ctrlnum |
(DE-627)SPR02896778X (SPR)s12967-018-1535-2-e |
title_full |
In silico identification of drug target pathways in breast cancer subtypes using pathway cross-talk inhibition |
author_sort |
Cava, Claudia |
journal |
Journal of translational medicine |
journalStr |
Journal of translational medicine |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Cava, Claudia Bertoli, Gloria Castiglioni, Isabella |
container_volume |
16 |
format_se |
Elektronische Aufsätze |
author-letter |
Cava, Claudia |
doi_str_mv |
10.1186/s12967-018-1535-2 |
title_sort |
in silico identification of drug target pathways in breast cancer subtypes using pathway cross-talk inhibition |
title_auth |
In silico identification of drug target pathways in breast cancer subtypes using pathway cross-talk inhibition |
abstract |
Background Despite great development in genome and proteome high-throughput methods, treatment failure is a critical point in the management of most solid cancers, including breast cancer (BC). Multiple alternative mechanisms upon drug treatment are involved to offset therapeutic effects, eventually causing drug resistance or treatment failure. Methods Here, we optimized a computational method to discover novel drug target pathways in cancer subtypes using pathway cross-talk inhibition (PCI). The in silico method is based on the detection and quantification of the pathway cross-talk for distinct cancer subtypes. From a BC data set of The Cancer Genome Atlas, we have identified different networks of cross-talking pathways for different BC subtypes, validated using an independent BC dataset from Gene Expression Omnibus. Then, we predicted in silico the effects of new or approved drugs on different BC subtypes by silencing individual or combined subtype-derived pathways with the aim to find new potential drugs or more effective synergistic combinations of drugs. Results Overall, we identified a set of new potential drug target pathways for distinct BC subtypes on which therapeutic agents could synergically act showing antitumour effects and impacting on cross-talk inhibition. Conclusions We believe that in silico methods based on PCI could offer valuable approaches to identifying more tailored and effective treatments in particular in heterogeneous cancer diseases. © The Author(s) 2018 |
abstractGer |
Background Despite great development in genome and proteome high-throughput methods, treatment failure is a critical point in the management of most solid cancers, including breast cancer (BC). Multiple alternative mechanisms upon drug treatment are involved to offset therapeutic effects, eventually causing drug resistance or treatment failure. Methods Here, we optimized a computational method to discover novel drug target pathways in cancer subtypes using pathway cross-talk inhibition (PCI). The in silico method is based on the detection and quantification of the pathway cross-talk for distinct cancer subtypes. From a BC data set of The Cancer Genome Atlas, we have identified different networks of cross-talking pathways for different BC subtypes, validated using an independent BC dataset from Gene Expression Omnibus. Then, we predicted in silico the effects of new or approved drugs on different BC subtypes by silencing individual or combined subtype-derived pathways with the aim to find new potential drugs or more effective synergistic combinations of drugs. Results Overall, we identified a set of new potential drug target pathways for distinct BC subtypes on which therapeutic agents could synergically act showing antitumour effects and impacting on cross-talk inhibition. Conclusions We believe that in silico methods based on PCI could offer valuable approaches to identifying more tailored and effective treatments in particular in heterogeneous cancer diseases. © The Author(s) 2018 |
abstract_unstemmed |
Background Despite great development in genome and proteome high-throughput methods, treatment failure is a critical point in the management of most solid cancers, including breast cancer (BC). Multiple alternative mechanisms upon drug treatment are involved to offset therapeutic effects, eventually causing drug resistance or treatment failure. Methods Here, we optimized a computational method to discover novel drug target pathways in cancer subtypes using pathway cross-talk inhibition (PCI). The in silico method is based on the detection and quantification of the pathway cross-talk for distinct cancer subtypes. From a BC data set of The Cancer Genome Atlas, we have identified different networks of cross-talking pathways for different BC subtypes, validated using an independent BC dataset from Gene Expression Omnibus. Then, we predicted in silico the effects of new or approved drugs on different BC subtypes by silencing individual or combined subtype-derived pathways with the aim to find new potential drugs or more effective synergistic combinations of drugs. Results Overall, we identified a set of new potential drug target pathways for distinct BC subtypes on which therapeutic agents could synergically act showing antitumour effects and impacting on cross-talk inhibition. Conclusions We believe that in silico methods based on PCI could offer valuable approaches to identifying more tailored and effective treatments in particular in heterogeneous cancer diseases. © The Author(s) 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
In silico identification of drug target pathways in breast cancer subtypes using pathway cross-talk inhibition |
url |
https://dx.doi.org/10.1186/s12967-018-1535-2 |
remote_bool |
true |
author2 |
Bertoli, Gloria Castiglioni, Isabella |
author2Str |
Bertoli, Gloria Castiglioni, Isabella |
ppnlink |
369084136 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12967-018-1535-2 |
up_date |
2024-07-03T22:48:27.862Z |
_version_ |
1803599906463547392 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR02896778X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519110605.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12967-018-1535-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR02896778X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12967-018-1535-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cava, Claudia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">In silico identification of drug target pathways in breast cancer subtypes using pathway cross-talk inhibition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Despite great development in genome and proteome high-throughput methods, treatment failure is a critical point in the management of most solid cancers, including breast cancer (BC). Multiple alternative mechanisms upon drug treatment are involved to offset therapeutic effects, eventually causing drug resistance or treatment failure. Methods Here, we optimized a computational method to discover novel drug target pathways in cancer subtypes using pathway cross-talk inhibition (PCI). The in silico method is based on the detection and quantification of the pathway cross-talk for distinct cancer subtypes. From a BC data set of The Cancer Genome Atlas, we have identified different networks of cross-talking pathways for different BC subtypes, validated using an independent BC dataset from Gene Expression Omnibus. Then, we predicted in silico the effects of new or approved drugs on different BC subtypes by silencing individual or combined subtype-derived pathways with the aim to find new potential drugs or more effective synergistic combinations of drugs. Results Overall, we identified a set of new potential drug target pathways for distinct BC subtypes on which therapeutic agents could synergically act showing antitumour effects and impacting on cross-talk inhibition. Conclusions We believe that in silico methods based on PCI could offer valuable approaches to identifying more tailored and effective treatments in particular in heterogeneous cancer diseases.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo cross-validation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pathway cross-talk inhibition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breast cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drugs</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Subtypes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bertoli, Gloria</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Castiglioni, Isabella</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of translational medicine</subfield><subfield code="d">London : BioMed Central, 2003</subfield><subfield code="g">16(2018), 1 vom: 05. Juni</subfield><subfield code="w">(DE-627)369084136</subfield><subfield code="w">(DE-600)2118570-0</subfield><subfield code="x">1479-5876</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:05</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12967-018-1535-2</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">05</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.3995953 |