Droplet digital PCR for the quantification of Alu methylation status in hematological malignancies
Background Alu repeats, belonging to the Short Interspersed Repetitive Elements (SINEs) class, contain about 25% of CpG sites in the human genome. Alu sequences lie in gene-rich regions, so their methylation is an important transcriptional regulation mechanism. Aberrant Alu methylation has been asso...
Ausführliche Beschreibung
Autor*in: |
Orsini, Paola [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s). 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Diagnostic pathology - [S.l.] : BioMed Central, 2006, 13(2018), 1 vom: 22. Dez. |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2018 ; number:1 ; day:22 ; month:12 |
Links: |
---|
DOI / URN: |
10.1186/s13000-018-0777-x |
---|
Katalog-ID: |
SPR029381444 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR029381444 | ||
003 | DE-627 | ||
005 | 20230519193336.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13000-018-0777-x |2 doi | |
035 | |a (DE-627)SPR029381444 | ||
035 | |a (SPR)s13000-018-0777-x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Orsini, Paola |e verfasserin |4 aut | |
245 | 1 | 0 | |a Droplet digital PCR for the quantification of Alu methylation status in hematological malignancies |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s). 2018 | ||
520 | |a Background Alu repeats, belonging to the Short Interspersed Repetitive Elements (SINEs) class, contain about 25% of CpG sites in the human genome. Alu sequences lie in gene-rich regions, so their methylation is an important transcriptional regulation mechanism. Aberrant Alu methylation has been associated with tumor aggressiveness, and also previously discussed in hematological malignancies, by applying different approaches. Moreover, today different techniques designed to measure global DNA methylation are focused on the methylation level of specific repeat elements. In this work we propose a new method of investigating Alu differential methylation, based on droplet digital PCR (ddPCR) technology. Methods Forty-six patients with hematological neoplasms were included in the study: 30 patients affected by chronic lymphocytic leukemia, 7 patients with myelodysplastic syndromes at intermediate/high risk, according with the International Prognostic Scoring System, and 9 patients with myelomonocytic leukemia. Ten healthy donors were included as controls. Acute promyelocytic leukemia-derived NB4 cell line, either untreated or treated with decitabine (DEC) hypomethylating agent, was also analyzed. DNA samples were investigated for Alu methylation level by digestion of genomic DNA with isoschizomers with differential sensitivity to DNA methylation, followed by ddPCR. Results Using ddPCR, a significant decrease of the global Alu methylation level in DNA extracted from NB4 cells treated with DEC, as compared to untreated cells, was observed. Moreover, comparing the global Alu methylation levels at diagnosis and after azacytidine (AZA) treatment in MDS patients, a statistically significant decrease of Alu sequences methylation after therapy as compared to diagnosis was evident. We also observed a significant decrease of the Alu methylation level in CLL patients compared to HD, and, finally, for CMML patients, a decrease of Alu sequences methylation was observed in patients harboring the SRSF2 hotspot gene mutation c.284C>D. Conclusions In our work, we propose a method to investigate Alu differential methylation based on ddPCR technology. This assay introduces ddPCR as a more sensitive and immediate technique for Alu methylation analysis. To date, this is the first application of ddPCR to study DNA repetitive elements. This approach may be useful to profile patients affected by hematologic malignancies for diagnostic/prognostic purpose. | ||
650 | 4 | |a Alu repeats |7 (dpeaa)DE-He213 | |
650 | 4 | |a DNA methylation |7 (dpeaa)DE-He213 | |
650 | 4 | |a ddPCR |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hematological malignancies |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hypomethylating agents |7 (dpeaa)DE-He213 | |
700 | 1 | |a Impera, Luciana |4 aut | |
700 | 1 | |a Parciante, Elisa |4 aut | |
700 | 1 | |a Cumbo, Cosimo |4 aut | |
700 | 1 | |a Minervini, Crescenzio F. |4 aut | |
700 | 1 | |a Minervini, Angela |4 aut | |
700 | 1 | |a Zagaria, Antonella |4 aut | |
700 | 1 | |a Anelli, Luisa |4 aut | |
700 | 1 | |a Coccaro, Nicoletta |4 aut | |
700 | 1 | |a Casieri, Paola |4 aut | |
700 | 1 | |a Tota, Giuseppina |4 aut | |
700 | 1 | |a Brunetti, Claudia |4 aut | |
700 | 1 | |a Ricco, Alessandra |4 aut | |
700 | 1 | |a Carluccio, Paola |4 aut | |
700 | 1 | |a Specchia, Giorgina |4 aut | |
700 | 1 | |a Albano, Francesco |0 (orcid)0000-0001-7926-6052 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Diagnostic pathology |d [S.l.] : BioMed Central, 2006 |g 13(2018), 1 vom: 22. Dez. |w (DE-627)503328960 |w (DE-600)2210518-9 |x 1746-1596 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2018 |g number:1 |g day:22 |g month:12 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13000-018-0777-x |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_168 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2018 |e 1 |b 22 |c 12 |
author_variant |
p o po l i li e p ep c c cc c f m cf cfm a m am a z az l a la n c nc p c pc g t gt c b cb a r ar p c pc g s gs f a fa |
---|---|
matchkey_str |
article:17461596:2018----::rpedgtlcfrhqatfctooauehltosauih |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1186/s13000-018-0777-x doi (DE-627)SPR029381444 (SPR)s13000-018-0777-x-e DE-627 ger DE-627 rakwb eng Orsini, Paola verfasserin aut Droplet digital PCR for the quantification of Alu methylation status in hematological malignancies 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2018 Background Alu repeats, belonging to the Short Interspersed Repetitive Elements (SINEs) class, contain about 25% of CpG sites in the human genome. Alu sequences lie in gene-rich regions, so their methylation is an important transcriptional regulation mechanism. Aberrant Alu methylation has been associated with tumor aggressiveness, and also previously discussed in hematological malignancies, by applying different approaches. Moreover, today different techniques designed to measure global DNA methylation are focused on the methylation level of specific repeat elements. In this work we propose a new method of investigating Alu differential methylation, based on droplet digital PCR (ddPCR) technology. Methods Forty-six patients with hematological neoplasms were included in the study: 30 patients affected by chronic lymphocytic leukemia, 7 patients with myelodysplastic syndromes at intermediate/high risk, according with the International Prognostic Scoring System, and 9 patients with myelomonocytic leukemia. Ten healthy donors were included as controls. Acute promyelocytic leukemia-derived NB4 cell line, either untreated or treated with decitabine (DEC) hypomethylating agent, was also analyzed. DNA samples were investigated for Alu methylation level by digestion of genomic DNA with isoschizomers with differential sensitivity to DNA methylation, followed by ddPCR. Results Using ddPCR, a significant decrease of the global Alu methylation level in DNA extracted from NB4 cells treated with DEC, as compared to untreated cells, was observed. Moreover, comparing the global Alu methylation levels at diagnosis and after azacytidine (AZA) treatment in MDS patients, a statistically significant decrease of Alu sequences methylation after therapy as compared to diagnosis was evident. We also observed a significant decrease of the Alu methylation level in CLL patients compared to HD, and, finally, for CMML patients, a decrease of Alu sequences methylation was observed in patients harboring the SRSF2 hotspot gene mutation c.284C>D. Conclusions In our work, we propose a method to investigate Alu differential methylation based on ddPCR technology. This assay introduces ddPCR as a more sensitive and immediate technique for Alu methylation analysis. To date, this is the first application of ddPCR to study DNA repetitive elements. This approach may be useful to profile patients affected by hematologic malignancies for diagnostic/prognostic purpose. Alu repeats (dpeaa)DE-He213 DNA methylation (dpeaa)DE-He213 ddPCR (dpeaa)DE-He213 Hematological malignancies (dpeaa)DE-He213 Hypomethylating agents (dpeaa)DE-He213 Impera, Luciana aut Parciante, Elisa aut Cumbo, Cosimo aut Minervini, Crescenzio F. aut Minervini, Angela aut Zagaria, Antonella aut Anelli, Luisa aut Coccaro, Nicoletta aut Casieri, Paola aut Tota, Giuseppina aut Brunetti, Claudia aut Ricco, Alessandra aut Carluccio, Paola aut Specchia, Giorgina aut Albano, Francesco (orcid)0000-0001-7926-6052 aut Enthalten in Diagnostic pathology [S.l.] : BioMed Central, 2006 13(2018), 1 vom: 22. Dez. (DE-627)503328960 (DE-600)2210518-9 1746-1596 nnns volume:13 year:2018 number:1 day:22 month:12 https://dx.doi.org/10.1186/s13000-018-0777-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_168 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2018 1 22 12 |
spelling |
10.1186/s13000-018-0777-x doi (DE-627)SPR029381444 (SPR)s13000-018-0777-x-e DE-627 ger DE-627 rakwb eng Orsini, Paola verfasserin aut Droplet digital PCR for the quantification of Alu methylation status in hematological malignancies 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2018 Background Alu repeats, belonging to the Short Interspersed Repetitive Elements (SINEs) class, contain about 25% of CpG sites in the human genome. Alu sequences lie in gene-rich regions, so their methylation is an important transcriptional regulation mechanism. Aberrant Alu methylation has been associated with tumor aggressiveness, and also previously discussed in hematological malignancies, by applying different approaches. Moreover, today different techniques designed to measure global DNA methylation are focused on the methylation level of specific repeat elements. In this work we propose a new method of investigating Alu differential methylation, based on droplet digital PCR (ddPCR) technology. Methods Forty-six patients with hematological neoplasms were included in the study: 30 patients affected by chronic lymphocytic leukemia, 7 patients with myelodysplastic syndromes at intermediate/high risk, according with the International Prognostic Scoring System, and 9 patients with myelomonocytic leukemia. Ten healthy donors were included as controls. Acute promyelocytic leukemia-derived NB4 cell line, either untreated or treated with decitabine (DEC) hypomethylating agent, was also analyzed. DNA samples were investigated for Alu methylation level by digestion of genomic DNA with isoschizomers with differential sensitivity to DNA methylation, followed by ddPCR. Results Using ddPCR, a significant decrease of the global Alu methylation level in DNA extracted from NB4 cells treated with DEC, as compared to untreated cells, was observed. Moreover, comparing the global Alu methylation levels at diagnosis and after azacytidine (AZA) treatment in MDS patients, a statistically significant decrease of Alu sequences methylation after therapy as compared to diagnosis was evident. We also observed a significant decrease of the Alu methylation level in CLL patients compared to HD, and, finally, for CMML patients, a decrease of Alu sequences methylation was observed in patients harboring the SRSF2 hotspot gene mutation c.284C>D. Conclusions In our work, we propose a method to investigate Alu differential methylation based on ddPCR technology. This assay introduces ddPCR as a more sensitive and immediate technique for Alu methylation analysis. To date, this is the first application of ddPCR to study DNA repetitive elements. This approach may be useful to profile patients affected by hematologic malignancies for diagnostic/prognostic purpose. Alu repeats (dpeaa)DE-He213 DNA methylation (dpeaa)DE-He213 ddPCR (dpeaa)DE-He213 Hematological malignancies (dpeaa)DE-He213 Hypomethylating agents (dpeaa)DE-He213 Impera, Luciana aut Parciante, Elisa aut Cumbo, Cosimo aut Minervini, Crescenzio F. aut Minervini, Angela aut Zagaria, Antonella aut Anelli, Luisa aut Coccaro, Nicoletta aut Casieri, Paola aut Tota, Giuseppina aut Brunetti, Claudia aut Ricco, Alessandra aut Carluccio, Paola aut Specchia, Giorgina aut Albano, Francesco (orcid)0000-0001-7926-6052 aut Enthalten in Diagnostic pathology [S.l.] : BioMed Central, 2006 13(2018), 1 vom: 22. Dez. (DE-627)503328960 (DE-600)2210518-9 1746-1596 nnns volume:13 year:2018 number:1 day:22 month:12 https://dx.doi.org/10.1186/s13000-018-0777-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_168 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2018 1 22 12 |
allfields_unstemmed |
10.1186/s13000-018-0777-x doi (DE-627)SPR029381444 (SPR)s13000-018-0777-x-e DE-627 ger DE-627 rakwb eng Orsini, Paola verfasserin aut Droplet digital PCR for the quantification of Alu methylation status in hematological malignancies 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2018 Background Alu repeats, belonging to the Short Interspersed Repetitive Elements (SINEs) class, contain about 25% of CpG sites in the human genome. Alu sequences lie in gene-rich regions, so their methylation is an important transcriptional regulation mechanism. Aberrant Alu methylation has been associated with tumor aggressiveness, and also previously discussed in hematological malignancies, by applying different approaches. Moreover, today different techniques designed to measure global DNA methylation are focused on the methylation level of specific repeat elements. In this work we propose a new method of investigating Alu differential methylation, based on droplet digital PCR (ddPCR) technology. Methods Forty-six patients with hematological neoplasms were included in the study: 30 patients affected by chronic lymphocytic leukemia, 7 patients with myelodysplastic syndromes at intermediate/high risk, according with the International Prognostic Scoring System, and 9 patients with myelomonocytic leukemia. Ten healthy donors were included as controls. Acute promyelocytic leukemia-derived NB4 cell line, either untreated or treated with decitabine (DEC) hypomethylating agent, was also analyzed. DNA samples were investigated for Alu methylation level by digestion of genomic DNA with isoschizomers with differential sensitivity to DNA methylation, followed by ddPCR. Results Using ddPCR, a significant decrease of the global Alu methylation level in DNA extracted from NB4 cells treated with DEC, as compared to untreated cells, was observed. Moreover, comparing the global Alu methylation levels at diagnosis and after azacytidine (AZA) treatment in MDS patients, a statistically significant decrease of Alu sequences methylation after therapy as compared to diagnosis was evident. We also observed a significant decrease of the Alu methylation level in CLL patients compared to HD, and, finally, for CMML patients, a decrease of Alu sequences methylation was observed in patients harboring the SRSF2 hotspot gene mutation c.284C>D. Conclusions In our work, we propose a method to investigate Alu differential methylation based on ddPCR technology. This assay introduces ddPCR as a more sensitive and immediate technique for Alu methylation analysis. To date, this is the first application of ddPCR to study DNA repetitive elements. This approach may be useful to profile patients affected by hematologic malignancies for diagnostic/prognostic purpose. Alu repeats (dpeaa)DE-He213 DNA methylation (dpeaa)DE-He213 ddPCR (dpeaa)DE-He213 Hematological malignancies (dpeaa)DE-He213 Hypomethylating agents (dpeaa)DE-He213 Impera, Luciana aut Parciante, Elisa aut Cumbo, Cosimo aut Minervini, Crescenzio F. aut Minervini, Angela aut Zagaria, Antonella aut Anelli, Luisa aut Coccaro, Nicoletta aut Casieri, Paola aut Tota, Giuseppina aut Brunetti, Claudia aut Ricco, Alessandra aut Carluccio, Paola aut Specchia, Giorgina aut Albano, Francesco (orcid)0000-0001-7926-6052 aut Enthalten in Diagnostic pathology [S.l.] : BioMed Central, 2006 13(2018), 1 vom: 22. Dez. (DE-627)503328960 (DE-600)2210518-9 1746-1596 nnns volume:13 year:2018 number:1 day:22 month:12 https://dx.doi.org/10.1186/s13000-018-0777-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_168 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2018 1 22 12 |
allfieldsGer |
10.1186/s13000-018-0777-x doi (DE-627)SPR029381444 (SPR)s13000-018-0777-x-e DE-627 ger DE-627 rakwb eng Orsini, Paola verfasserin aut Droplet digital PCR for the quantification of Alu methylation status in hematological malignancies 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2018 Background Alu repeats, belonging to the Short Interspersed Repetitive Elements (SINEs) class, contain about 25% of CpG sites in the human genome. Alu sequences lie in gene-rich regions, so their methylation is an important transcriptional regulation mechanism. Aberrant Alu methylation has been associated with tumor aggressiveness, and also previously discussed in hematological malignancies, by applying different approaches. Moreover, today different techniques designed to measure global DNA methylation are focused on the methylation level of specific repeat elements. In this work we propose a new method of investigating Alu differential methylation, based on droplet digital PCR (ddPCR) technology. Methods Forty-six patients with hematological neoplasms were included in the study: 30 patients affected by chronic lymphocytic leukemia, 7 patients with myelodysplastic syndromes at intermediate/high risk, according with the International Prognostic Scoring System, and 9 patients with myelomonocytic leukemia. Ten healthy donors were included as controls. Acute promyelocytic leukemia-derived NB4 cell line, either untreated or treated with decitabine (DEC) hypomethylating agent, was also analyzed. DNA samples were investigated for Alu methylation level by digestion of genomic DNA with isoschizomers with differential sensitivity to DNA methylation, followed by ddPCR. Results Using ddPCR, a significant decrease of the global Alu methylation level in DNA extracted from NB4 cells treated with DEC, as compared to untreated cells, was observed. Moreover, comparing the global Alu methylation levels at diagnosis and after azacytidine (AZA) treatment in MDS patients, a statistically significant decrease of Alu sequences methylation after therapy as compared to diagnosis was evident. We also observed a significant decrease of the Alu methylation level in CLL patients compared to HD, and, finally, for CMML patients, a decrease of Alu sequences methylation was observed in patients harboring the SRSF2 hotspot gene mutation c.284C>D. Conclusions In our work, we propose a method to investigate Alu differential methylation based on ddPCR technology. This assay introduces ddPCR as a more sensitive and immediate technique for Alu methylation analysis. To date, this is the first application of ddPCR to study DNA repetitive elements. This approach may be useful to profile patients affected by hematologic malignancies for diagnostic/prognostic purpose. Alu repeats (dpeaa)DE-He213 DNA methylation (dpeaa)DE-He213 ddPCR (dpeaa)DE-He213 Hematological malignancies (dpeaa)DE-He213 Hypomethylating agents (dpeaa)DE-He213 Impera, Luciana aut Parciante, Elisa aut Cumbo, Cosimo aut Minervini, Crescenzio F. aut Minervini, Angela aut Zagaria, Antonella aut Anelli, Luisa aut Coccaro, Nicoletta aut Casieri, Paola aut Tota, Giuseppina aut Brunetti, Claudia aut Ricco, Alessandra aut Carluccio, Paola aut Specchia, Giorgina aut Albano, Francesco (orcid)0000-0001-7926-6052 aut Enthalten in Diagnostic pathology [S.l.] : BioMed Central, 2006 13(2018), 1 vom: 22. Dez. (DE-627)503328960 (DE-600)2210518-9 1746-1596 nnns volume:13 year:2018 number:1 day:22 month:12 https://dx.doi.org/10.1186/s13000-018-0777-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_168 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2018 1 22 12 |
allfieldsSound |
10.1186/s13000-018-0777-x doi (DE-627)SPR029381444 (SPR)s13000-018-0777-x-e DE-627 ger DE-627 rakwb eng Orsini, Paola verfasserin aut Droplet digital PCR for the quantification of Alu methylation status in hematological malignancies 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2018 Background Alu repeats, belonging to the Short Interspersed Repetitive Elements (SINEs) class, contain about 25% of CpG sites in the human genome. Alu sequences lie in gene-rich regions, so their methylation is an important transcriptional regulation mechanism. Aberrant Alu methylation has been associated with tumor aggressiveness, and also previously discussed in hematological malignancies, by applying different approaches. Moreover, today different techniques designed to measure global DNA methylation are focused on the methylation level of specific repeat elements. In this work we propose a new method of investigating Alu differential methylation, based on droplet digital PCR (ddPCR) technology. Methods Forty-six patients with hematological neoplasms were included in the study: 30 patients affected by chronic lymphocytic leukemia, 7 patients with myelodysplastic syndromes at intermediate/high risk, according with the International Prognostic Scoring System, and 9 patients with myelomonocytic leukemia. Ten healthy donors were included as controls. Acute promyelocytic leukemia-derived NB4 cell line, either untreated or treated with decitabine (DEC) hypomethylating agent, was also analyzed. DNA samples were investigated for Alu methylation level by digestion of genomic DNA with isoschizomers with differential sensitivity to DNA methylation, followed by ddPCR. Results Using ddPCR, a significant decrease of the global Alu methylation level in DNA extracted from NB4 cells treated with DEC, as compared to untreated cells, was observed. Moreover, comparing the global Alu methylation levels at diagnosis and after azacytidine (AZA) treatment in MDS patients, a statistically significant decrease of Alu sequences methylation after therapy as compared to diagnosis was evident. We also observed a significant decrease of the Alu methylation level in CLL patients compared to HD, and, finally, for CMML patients, a decrease of Alu sequences methylation was observed in patients harboring the SRSF2 hotspot gene mutation c.284C>D. Conclusions In our work, we propose a method to investigate Alu differential methylation based on ddPCR technology. This assay introduces ddPCR as a more sensitive and immediate technique for Alu methylation analysis. To date, this is the first application of ddPCR to study DNA repetitive elements. This approach may be useful to profile patients affected by hematologic malignancies for diagnostic/prognostic purpose. Alu repeats (dpeaa)DE-He213 DNA methylation (dpeaa)DE-He213 ddPCR (dpeaa)DE-He213 Hematological malignancies (dpeaa)DE-He213 Hypomethylating agents (dpeaa)DE-He213 Impera, Luciana aut Parciante, Elisa aut Cumbo, Cosimo aut Minervini, Crescenzio F. aut Minervini, Angela aut Zagaria, Antonella aut Anelli, Luisa aut Coccaro, Nicoletta aut Casieri, Paola aut Tota, Giuseppina aut Brunetti, Claudia aut Ricco, Alessandra aut Carluccio, Paola aut Specchia, Giorgina aut Albano, Francesco (orcid)0000-0001-7926-6052 aut Enthalten in Diagnostic pathology [S.l.] : BioMed Central, 2006 13(2018), 1 vom: 22. Dez. (DE-627)503328960 (DE-600)2210518-9 1746-1596 nnns volume:13 year:2018 number:1 day:22 month:12 https://dx.doi.org/10.1186/s13000-018-0777-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_168 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2018 1 22 12 |
language |
English |
source |
Enthalten in Diagnostic pathology 13(2018), 1 vom: 22. Dez. volume:13 year:2018 number:1 day:22 month:12 |
sourceStr |
Enthalten in Diagnostic pathology 13(2018), 1 vom: 22. Dez. volume:13 year:2018 number:1 day:22 month:12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Alu repeats DNA methylation ddPCR Hematological malignancies Hypomethylating agents |
isfreeaccess_bool |
true |
container_title |
Diagnostic pathology |
authorswithroles_txt_mv |
Orsini, Paola @@aut@@ Impera, Luciana @@aut@@ Parciante, Elisa @@aut@@ Cumbo, Cosimo @@aut@@ Minervini, Crescenzio F. @@aut@@ Minervini, Angela @@aut@@ Zagaria, Antonella @@aut@@ Anelli, Luisa @@aut@@ Coccaro, Nicoletta @@aut@@ Casieri, Paola @@aut@@ Tota, Giuseppina @@aut@@ Brunetti, Claudia @@aut@@ Ricco, Alessandra @@aut@@ Carluccio, Paola @@aut@@ Specchia, Giorgina @@aut@@ Albano, Francesco @@aut@@ |
publishDateDaySort_date |
2018-12-22T00:00:00Z |
hierarchy_top_id |
503328960 |
id |
SPR029381444 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR029381444</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519193336.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13000-018-0777-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR029381444</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13000-018-0777-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Orsini, Paola</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Droplet digital PCR for the quantification of Alu methylation status in hematological malignancies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Alu repeats, belonging to the Short Interspersed Repetitive Elements (SINEs) class, contain about 25% of CpG sites in the human genome. Alu sequences lie in gene-rich regions, so their methylation is an important transcriptional regulation mechanism. Aberrant Alu methylation has been associated with tumor aggressiveness, and also previously discussed in hematological malignancies, by applying different approaches. Moreover, today different techniques designed to measure global DNA methylation are focused on the methylation level of specific repeat elements. In this work we propose a new method of investigating Alu differential methylation, based on droplet digital PCR (ddPCR) technology. Methods Forty-six patients with hematological neoplasms were included in the study: 30 patients affected by chronic lymphocytic leukemia, 7 patients with myelodysplastic syndromes at intermediate/high risk, according with the International Prognostic Scoring System, and 9 patients with myelomonocytic leukemia. Ten healthy donors were included as controls. Acute promyelocytic leukemia-derived NB4 cell line, either untreated or treated with decitabine (DEC) hypomethylating agent, was also analyzed. DNA samples were investigated for Alu methylation level by digestion of genomic DNA with isoschizomers with differential sensitivity to DNA methylation, followed by ddPCR. Results Using ddPCR, a significant decrease of the global Alu methylation level in DNA extracted from NB4 cells treated with DEC, as compared to untreated cells, was observed. Moreover, comparing the global Alu methylation levels at diagnosis and after azacytidine (AZA) treatment in MDS patients, a statistically significant decrease of Alu sequences methylation after therapy as compared to diagnosis was evident. We also observed a significant decrease of the Alu methylation level in CLL patients compared to HD, and, finally, for CMML patients, a decrease of Alu sequences methylation was observed in patients harboring the SRSF2 hotspot gene mutation c.284C>D. Conclusions In our work, we propose a method to investigate Alu differential methylation based on ddPCR technology. This assay introduces ddPCR as a more sensitive and immediate technique for Alu methylation analysis. To date, this is the first application of ddPCR to study DNA repetitive elements. This approach may be useful to profile patients affected by hematologic malignancies for diagnostic/prognostic purpose.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alu repeats</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA methylation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ddPCR</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hematological malignancies</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypomethylating agents</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Impera, Luciana</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Parciante, Elisa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cumbo, Cosimo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Minervini, Crescenzio F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Minervini, Angela</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zagaria, Antonella</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Anelli, Luisa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Coccaro, Nicoletta</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Casieri, Paola</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tota, Giuseppina</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brunetti, Claudia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ricco, Alessandra</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Carluccio, Paola</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Specchia, Giorgina</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Albano, Francesco</subfield><subfield code="0">(orcid)0000-0001-7926-6052</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Diagnostic pathology</subfield><subfield code="d">[S.l.] : BioMed Central, 2006</subfield><subfield code="g">13(2018), 1 vom: 22. Dez.</subfield><subfield code="w">(DE-627)503328960</subfield><subfield code="w">(DE-600)2210518-9</subfield><subfield code="x">1746-1596</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:22</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13000-018-0777-x</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_168</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">22</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
author |
Orsini, Paola |
spellingShingle |
Orsini, Paola misc Alu repeats misc DNA methylation misc ddPCR misc Hematological malignancies misc Hypomethylating agents Droplet digital PCR for the quantification of Alu methylation status in hematological malignancies |
authorStr |
Orsini, Paola |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)503328960 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1746-1596 |
topic_title |
Droplet digital PCR for the quantification of Alu methylation status in hematological malignancies Alu repeats (dpeaa)DE-He213 DNA methylation (dpeaa)DE-He213 ddPCR (dpeaa)DE-He213 Hematological malignancies (dpeaa)DE-He213 Hypomethylating agents (dpeaa)DE-He213 |
topic |
misc Alu repeats misc DNA methylation misc ddPCR misc Hematological malignancies misc Hypomethylating agents |
topic_unstemmed |
misc Alu repeats misc DNA methylation misc ddPCR misc Hematological malignancies misc Hypomethylating agents |
topic_browse |
misc Alu repeats misc DNA methylation misc ddPCR misc Hematological malignancies misc Hypomethylating agents |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Diagnostic pathology |
hierarchy_parent_id |
503328960 |
hierarchy_top_title |
Diagnostic pathology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)503328960 (DE-600)2210518-9 |
title |
Droplet digital PCR for the quantification of Alu methylation status in hematological malignancies |
ctrlnum |
(DE-627)SPR029381444 (SPR)s13000-018-0777-x-e |
title_full |
Droplet digital PCR for the quantification of Alu methylation status in hematological malignancies |
author_sort |
Orsini, Paola |
journal |
Diagnostic pathology |
journalStr |
Diagnostic pathology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Orsini, Paola Impera, Luciana Parciante, Elisa Cumbo, Cosimo Minervini, Crescenzio F. Minervini, Angela Zagaria, Antonella Anelli, Luisa Coccaro, Nicoletta Casieri, Paola Tota, Giuseppina Brunetti, Claudia Ricco, Alessandra Carluccio, Paola Specchia, Giorgina Albano, Francesco |
container_volume |
13 |
format_se |
Elektronische Aufsätze |
author-letter |
Orsini, Paola |
doi_str_mv |
10.1186/s13000-018-0777-x |
normlink |
(ORCID)0000-0001-7926-6052 |
normlink_prefix_str_mv |
(orcid)0000-0001-7926-6052 |
title_sort |
droplet digital pcr for the quantification of alu methylation status in hematological malignancies |
title_auth |
Droplet digital PCR for the quantification of Alu methylation status in hematological malignancies |
abstract |
Background Alu repeats, belonging to the Short Interspersed Repetitive Elements (SINEs) class, contain about 25% of CpG sites in the human genome. Alu sequences lie in gene-rich regions, so their methylation is an important transcriptional regulation mechanism. Aberrant Alu methylation has been associated with tumor aggressiveness, and also previously discussed in hematological malignancies, by applying different approaches. Moreover, today different techniques designed to measure global DNA methylation are focused on the methylation level of specific repeat elements. In this work we propose a new method of investigating Alu differential methylation, based on droplet digital PCR (ddPCR) technology. Methods Forty-six patients with hematological neoplasms were included in the study: 30 patients affected by chronic lymphocytic leukemia, 7 patients with myelodysplastic syndromes at intermediate/high risk, according with the International Prognostic Scoring System, and 9 patients with myelomonocytic leukemia. Ten healthy donors were included as controls. Acute promyelocytic leukemia-derived NB4 cell line, either untreated or treated with decitabine (DEC) hypomethylating agent, was also analyzed. DNA samples were investigated for Alu methylation level by digestion of genomic DNA with isoschizomers with differential sensitivity to DNA methylation, followed by ddPCR. Results Using ddPCR, a significant decrease of the global Alu methylation level in DNA extracted from NB4 cells treated with DEC, as compared to untreated cells, was observed. Moreover, comparing the global Alu methylation levels at diagnosis and after azacytidine (AZA) treatment in MDS patients, a statistically significant decrease of Alu sequences methylation after therapy as compared to diagnosis was evident. We also observed a significant decrease of the Alu methylation level in CLL patients compared to HD, and, finally, for CMML patients, a decrease of Alu sequences methylation was observed in patients harboring the SRSF2 hotspot gene mutation c.284C>D. Conclusions In our work, we propose a method to investigate Alu differential methylation based on ddPCR technology. This assay introduces ddPCR as a more sensitive and immediate technique for Alu methylation analysis. To date, this is the first application of ddPCR to study DNA repetitive elements. This approach may be useful to profile patients affected by hematologic malignancies for diagnostic/prognostic purpose. © The Author(s). 2018 |
abstractGer |
Background Alu repeats, belonging to the Short Interspersed Repetitive Elements (SINEs) class, contain about 25% of CpG sites in the human genome. Alu sequences lie in gene-rich regions, so their methylation is an important transcriptional regulation mechanism. Aberrant Alu methylation has been associated with tumor aggressiveness, and also previously discussed in hematological malignancies, by applying different approaches. Moreover, today different techniques designed to measure global DNA methylation are focused on the methylation level of specific repeat elements. In this work we propose a new method of investigating Alu differential methylation, based on droplet digital PCR (ddPCR) technology. Methods Forty-six patients with hematological neoplasms were included in the study: 30 patients affected by chronic lymphocytic leukemia, 7 patients with myelodysplastic syndromes at intermediate/high risk, according with the International Prognostic Scoring System, and 9 patients with myelomonocytic leukemia. Ten healthy donors were included as controls. Acute promyelocytic leukemia-derived NB4 cell line, either untreated or treated with decitabine (DEC) hypomethylating agent, was also analyzed. DNA samples were investigated for Alu methylation level by digestion of genomic DNA with isoschizomers with differential sensitivity to DNA methylation, followed by ddPCR. Results Using ddPCR, a significant decrease of the global Alu methylation level in DNA extracted from NB4 cells treated with DEC, as compared to untreated cells, was observed. Moreover, comparing the global Alu methylation levels at diagnosis and after azacytidine (AZA) treatment in MDS patients, a statistically significant decrease of Alu sequences methylation after therapy as compared to diagnosis was evident. We also observed a significant decrease of the Alu methylation level in CLL patients compared to HD, and, finally, for CMML patients, a decrease of Alu sequences methylation was observed in patients harboring the SRSF2 hotspot gene mutation c.284C>D. Conclusions In our work, we propose a method to investigate Alu differential methylation based on ddPCR technology. This assay introduces ddPCR as a more sensitive and immediate technique for Alu methylation analysis. To date, this is the first application of ddPCR to study DNA repetitive elements. This approach may be useful to profile patients affected by hematologic malignancies for diagnostic/prognostic purpose. © The Author(s). 2018 |
abstract_unstemmed |
Background Alu repeats, belonging to the Short Interspersed Repetitive Elements (SINEs) class, contain about 25% of CpG sites in the human genome. Alu sequences lie in gene-rich regions, so their methylation is an important transcriptional regulation mechanism. Aberrant Alu methylation has been associated with tumor aggressiveness, and also previously discussed in hematological malignancies, by applying different approaches. Moreover, today different techniques designed to measure global DNA methylation are focused on the methylation level of specific repeat elements. In this work we propose a new method of investigating Alu differential methylation, based on droplet digital PCR (ddPCR) technology. Methods Forty-six patients with hematological neoplasms were included in the study: 30 patients affected by chronic lymphocytic leukemia, 7 patients with myelodysplastic syndromes at intermediate/high risk, according with the International Prognostic Scoring System, and 9 patients with myelomonocytic leukemia. Ten healthy donors were included as controls. Acute promyelocytic leukemia-derived NB4 cell line, either untreated or treated with decitabine (DEC) hypomethylating agent, was also analyzed. DNA samples were investigated for Alu methylation level by digestion of genomic DNA with isoschizomers with differential sensitivity to DNA methylation, followed by ddPCR. Results Using ddPCR, a significant decrease of the global Alu methylation level in DNA extracted from NB4 cells treated with DEC, as compared to untreated cells, was observed. Moreover, comparing the global Alu methylation levels at diagnosis and after azacytidine (AZA) treatment in MDS patients, a statistically significant decrease of Alu sequences methylation after therapy as compared to diagnosis was evident. We also observed a significant decrease of the Alu methylation level in CLL patients compared to HD, and, finally, for CMML patients, a decrease of Alu sequences methylation was observed in patients harboring the SRSF2 hotspot gene mutation c.284C>D. Conclusions In our work, we propose a method to investigate Alu differential methylation based on ddPCR technology. This assay introduces ddPCR as a more sensitive and immediate technique for Alu methylation analysis. To date, this is the first application of ddPCR to study DNA repetitive elements. This approach may be useful to profile patients affected by hematologic malignancies for diagnostic/prognostic purpose. © The Author(s). 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_168 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Droplet digital PCR for the quantification of Alu methylation status in hematological malignancies |
url |
https://dx.doi.org/10.1186/s13000-018-0777-x |
remote_bool |
true |
author2 |
Impera, Luciana Parciante, Elisa Cumbo, Cosimo Minervini, Crescenzio F. Minervini, Angela Zagaria, Antonella Anelli, Luisa Coccaro, Nicoletta Casieri, Paola Tota, Giuseppina Brunetti, Claudia Ricco, Alessandra Carluccio, Paola Specchia, Giorgina Albano, Francesco |
author2Str |
Impera, Luciana Parciante, Elisa Cumbo, Cosimo Minervini, Crescenzio F. Minervini, Angela Zagaria, Antonella Anelli, Luisa Coccaro, Nicoletta Casieri, Paola Tota, Giuseppina Brunetti, Claudia Ricco, Alessandra Carluccio, Paola Specchia, Giorgina Albano, Francesco |
ppnlink |
503328960 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13000-018-0777-x |
up_date |
2024-07-04T00:43:54.065Z |
_version_ |
1803607169110638592 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR029381444</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519193336.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13000-018-0777-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR029381444</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13000-018-0777-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Orsini, Paola</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Droplet digital PCR for the quantification of Alu methylation status in hematological malignancies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Alu repeats, belonging to the Short Interspersed Repetitive Elements (SINEs) class, contain about 25% of CpG sites in the human genome. Alu sequences lie in gene-rich regions, so their methylation is an important transcriptional regulation mechanism. Aberrant Alu methylation has been associated with tumor aggressiveness, and also previously discussed in hematological malignancies, by applying different approaches. Moreover, today different techniques designed to measure global DNA methylation are focused on the methylation level of specific repeat elements. In this work we propose a new method of investigating Alu differential methylation, based on droplet digital PCR (ddPCR) technology. Methods Forty-six patients with hematological neoplasms were included in the study: 30 patients affected by chronic lymphocytic leukemia, 7 patients with myelodysplastic syndromes at intermediate/high risk, according with the International Prognostic Scoring System, and 9 patients with myelomonocytic leukemia. Ten healthy donors were included as controls. Acute promyelocytic leukemia-derived NB4 cell line, either untreated or treated with decitabine (DEC) hypomethylating agent, was also analyzed. DNA samples were investigated for Alu methylation level by digestion of genomic DNA with isoschizomers with differential sensitivity to DNA methylation, followed by ddPCR. Results Using ddPCR, a significant decrease of the global Alu methylation level in DNA extracted from NB4 cells treated with DEC, as compared to untreated cells, was observed. Moreover, comparing the global Alu methylation levels at diagnosis and after azacytidine (AZA) treatment in MDS patients, a statistically significant decrease of Alu sequences methylation after therapy as compared to diagnosis was evident. We also observed a significant decrease of the Alu methylation level in CLL patients compared to HD, and, finally, for CMML patients, a decrease of Alu sequences methylation was observed in patients harboring the SRSF2 hotspot gene mutation c.284C>D. Conclusions In our work, we propose a method to investigate Alu differential methylation based on ddPCR technology. This assay introduces ddPCR as a more sensitive and immediate technique for Alu methylation analysis. To date, this is the first application of ddPCR to study DNA repetitive elements. This approach may be useful to profile patients affected by hematologic malignancies for diagnostic/prognostic purpose.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alu repeats</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA methylation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ddPCR</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hematological malignancies</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypomethylating agents</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Impera, Luciana</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Parciante, Elisa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cumbo, Cosimo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Minervini, Crescenzio F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Minervini, Angela</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zagaria, Antonella</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Anelli, Luisa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Coccaro, Nicoletta</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Casieri, Paola</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tota, Giuseppina</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brunetti, Claudia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ricco, Alessandra</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Carluccio, Paola</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Specchia, Giorgina</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Albano, Francesco</subfield><subfield code="0">(orcid)0000-0001-7926-6052</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Diagnostic pathology</subfield><subfield code="d">[S.l.] : BioMed Central, 2006</subfield><subfield code="g">13(2018), 1 vom: 22. Dez.</subfield><subfield code="w">(DE-627)503328960</subfield><subfield code="w">(DE-600)2210518-9</subfield><subfield code="x">1746-1596</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:22</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13000-018-0777-x</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_168</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">22</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
score |
7.399357 |