Metabolomic analyses of the bio-corona formed on $ TiO_{2} $ nanoparticles incubated with plant leaf tissues
Background The surface of a nanoparticle adsorbs molecules from its surroundings with a specific affinity determined by the chemical and physical properties of the nanomaterial. When a nanoparticle is exposed to a biological system, the adsorbed molecules form a dynamic and specific surface layer ca...
Ausführliche Beschreibung
Autor*in: |
Kurepa, Jasmina [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of nanobiotechnology - London : Biomed Central, 2003, 18(2020), 1 vom: 17. Feb. |
---|---|
Übergeordnetes Werk: |
volume:18 ; year:2020 ; number:1 ; day:17 ; month:02 |
Links: |
---|
DOI / URN: |
10.1186/s12951-020-00592-8 |
---|
Katalog-ID: |
SPR029463009 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR029463009 | ||
003 | DE-627 | ||
005 | 20230519072044.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12951-020-00592-8 |2 doi | |
035 | |a (DE-627)SPR029463009 | ||
035 | |a (SPR)s12951-020-00592-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Kurepa, Jasmina |e verfasserin |4 aut | |
245 | 1 | 0 | |a Metabolomic analyses of the bio-corona formed on $ TiO_{2} $ nanoparticles incubated with plant leaf tissues |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2020 | ||
520 | |a Background The surface of a nanoparticle adsorbs molecules from its surroundings with a specific affinity determined by the chemical and physical properties of the nanomaterial. When a nanoparticle is exposed to a biological system, the adsorbed molecules form a dynamic and specific surface layer called a bio-corona. The present study aimed to identify the metabolites that form the bio-corona around anatase $ TiO_{2} $ nanoparticles incubated with leaves of the model plant Arabidopsis thaliana. Results We used an untargeted metabolomics approach and compared the metabolites isolated from wild-type plants with plants deficient in a class of polyphenolic compounds called flavonoids. Conclusions These analyses showed that $ TiO_{2} $ nanoparticle coronas are enriched for flavonoids and lipids and that these metabolite classes compete with each other for binding the nanoparticle surface. | ||
650 | 4 | |a Titanium dioxide nanoparticles |7 (dpeaa)DE-He213 | |
650 | 4 | |a Flavonoids |7 (dpeaa)DE-He213 | |
650 | 4 | |a Arabidopsis |7 (dpeaa)DE-He213 | |
650 | 4 | |a ( |7 (dpeaa)DE-He213 | |
650 | 4 | |a ) mutants |7 (dpeaa)DE-He213 | |
650 | 4 | |a Lipids |7 (dpeaa)DE-He213 | |
700 | 1 | |a Shull, Timothy E. |4 aut | |
700 | 1 | |a Smalle, Jan A. |0 (orcid)0000-0002-6067-4619 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of nanobiotechnology |d London : Biomed Central, 2003 |g 18(2020), 1 vom: 17. Feb. |w (DE-627)362770328 |w (DE-600)2100022-0 |x 1477-3155 |7 nnns |
773 | 1 | 8 | |g volume:18 |g year:2020 |g number:1 |g day:17 |g month:02 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12951-020-00592-8 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 18 |j 2020 |e 1 |b 17 |c 02 |
author_variant |
j k jk t e s te tes j a s ja jas |
---|---|
matchkey_str |
article:14773155:2020----::eaooiaayeoteicrnfreoto2aoatceicbt |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1186/s12951-020-00592-8 doi (DE-627)SPR029463009 (SPR)s12951-020-00592-8-e DE-627 ger DE-627 rakwb eng Kurepa, Jasmina verfasserin aut Metabolomic analyses of the bio-corona formed on $ TiO_{2} $ nanoparticles incubated with plant leaf tissues 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2020 Background The surface of a nanoparticle adsorbs molecules from its surroundings with a specific affinity determined by the chemical and physical properties of the nanomaterial. When a nanoparticle is exposed to a biological system, the adsorbed molecules form a dynamic and specific surface layer called a bio-corona. The present study aimed to identify the metabolites that form the bio-corona around anatase $ TiO_{2} $ nanoparticles incubated with leaves of the model plant Arabidopsis thaliana. Results We used an untargeted metabolomics approach and compared the metabolites isolated from wild-type plants with plants deficient in a class of polyphenolic compounds called flavonoids. Conclusions These analyses showed that $ TiO_{2} $ nanoparticle coronas are enriched for flavonoids and lipids and that these metabolite classes compete with each other for binding the nanoparticle surface. Titanium dioxide nanoparticles (dpeaa)DE-He213 Flavonoids (dpeaa)DE-He213 Arabidopsis (dpeaa)DE-He213 ( (dpeaa)DE-He213 ) mutants (dpeaa)DE-He213 Lipids (dpeaa)DE-He213 Shull, Timothy E. aut Smalle, Jan A. (orcid)0000-0002-6067-4619 aut Enthalten in Journal of nanobiotechnology London : Biomed Central, 2003 18(2020), 1 vom: 17. Feb. (DE-627)362770328 (DE-600)2100022-0 1477-3155 nnns volume:18 year:2020 number:1 day:17 month:02 https://dx.doi.org/10.1186/s12951-020-00592-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2020 1 17 02 |
spelling |
10.1186/s12951-020-00592-8 doi (DE-627)SPR029463009 (SPR)s12951-020-00592-8-e DE-627 ger DE-627 rakwb eng Kurepa, Jasmina verfasserin aut Metabolomic analyses of the bio-corona formed on $ TiO_{2} $ nanoparticles incubated with plant leaf tissues 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2020 Background The surface of a nanoparticle adsorbs molecules from its surroundings with a specific affinity determined by the chemical and physical properties of the nanomaterial. When a nanoparticle is exposed to a biological system, the adsorbed molecules form a dynamic and specific surface layer called a bio-corona. The present study aimed to identify the metabolites that form the bio-corona around anatase $ TiO_{2} $ nanoparticles incubated with leaves of the model plant Arabidopsis thaliana. Results We used an untargeted metabolomics approach and compared the metabolites isolated from wild-type plants with plants deficient in a class of polyphenolic compounds called flavonoids. Conclusions These analyses showed that $ TiO_{2} $ nanoparticle coronas are enriched for flavonoids and lipids and that these metabolite classes compete with each other for binding the nanoparticle surface. Titanium dioxide nanoparticles (dpeaa)DE-He213 Flavonoids (dpeaa)DE-He213 Arabidopsis (dpeaa)DE-He213 ( (dpeaa)DE-He213 ) mutants (dpeaa)DE-He213 Lipids (dpeaa)DE-He213 Shull, Timothy E. aut Smalle, Jan A. (orcid)0000-0002-6067-4619 aut Enthalten in Journal of nanobiotechnology London : Biomed Central, 2003 18(2020), 1 vom: 17. Feb. (DE-627)362770328 (DE-600)2100022-0 1477-3155 nnns volume:18 year:2020 number:1 day:17 month:02 https://dx.doi.org/10.1186/s12951-020-00592-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2020 1 17 02 |
allfields_unstemmed |
10.1186/s12951-020-00592-8 doi (DE-627)SPR029463009 (SPR)s12951-020-00592-8-e DE-627 ger DE-627 rakwb eng Kurepa, Jasmina verfasserin aut Metabolomic analyses of the bio-corona formed on $ TiO_{2} $ nanoparticles incubated with plant leaf tissues 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2020 Background The surface of a nanoparticle adsorbs molecules from its surroundings with a specific affinity determined by the chemical and physical properties of the nanomaterial. When a nanoparticle is exposed to a biological system, the adsorbed molecules form a dynamic and specific surface layer called a bio-corona. The present study aimed to identify the metabolites that form the bio-corona around anatase $ TiO_{2} $ nanoparticles incubated with leaves of the model plant Arabidopsis thaliana. Results We used an untargeted metabolomics approach and compared the metabolites isolated from wild-type plants with plants deficient in a class of polyphenolic compounds called flavonoids. Conclusions These analyses showed that $ TiO_{2} $ nanoparticle coronas are enriched for flavonoids and lipids and that these metabolite classes compete with each other for binding the nanoparticle surface. Titanium dioxide nanoparticles (dpeaa)DE-He213 Flavonoids (dpeaa)DE-He213 Arabidopsis (dpeaa)DE-He213 ( (dpeaa)DE-He213 ) mutants (dpeaa)DE-He213 Lipids (dpeaa)DE-He213 Shull, Timothy E. aut Smalle, Jan A. (orcid)0000-0002-6067-4619 aut Enthalten in Journal of nanobiotechnology London : Biomed Central, 2003 18(2020), 1 vom: 17. Feb. (DE-627)362770328 (DE-600)2100022-0 1477-3155 nnns volume:18 year:2020 number:1 day:17 month:02 https://dx.doi.org/10.1186/s12951-020-00592-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2020 1 17 02 |
allfieldsGer |
10.1186/s12951-020-00592-8 doi (DE-627)SPR029463009 (SPR)s12951-020-00592-8-e DE-627 ger DE-627 rakwb eng Kurepa, Jasmina verfasserin aut Metabolomic analyses of the bio-corona formed on $ TiO_{2} $ nanoparticles incubated with plant leaf tissues 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2020 Background The surface of a nanoparticle adsorbs molecules from its surroundings with a specific affinity determined by the chemical and physical properties of the nanomaterial. When a nanoparticle is exposed to a biological system, the adsorbed molecules form a dynamic and specific surface layer called a bio-corona. The present study aimed to identify the metabolites that form the bio-corona around anatase $ TiO_{2} $ nanoparticles incubated with leaves of the model plant Arabidopsis thaliana. Results We used an untargeted metabolomics approach and compared the metabolites isolated from wild-type plants with plants deficient in a class of polyphenolic compounds called flavonoids. Conclusions These analyses showed that $ TiO_{2} $ nanoparticle coronas are enriched for flavonoids and lipids and that these metabolite classes compete with each other for binding the nanoparticle surface. Titanium dioxide nanoparticles (dpeaa)DE-He213 Flavonoids (dpeaa)DE-He213 Arabidopsis (dpeaa)DE-He213 ( (dpeaa)DE-He213 ) mutants (dpeaa)DE-He213 Lipids (dpeaa)DE-He213 Shull, Timothy E. aut Smalle, Jan A. (orcid)0000-0002-6067-4619 aut Enthalten in Journal of nanobiotechnology London : Biomed Central, 2003 18(2020), 1 vom: 17. Feb. (DE-627)362770328 (DE-600)2100022-0 1477-3155 nnns volume:18 year:2020 number:1 day:17 month:02 https://dx.doi.org/10.1186/s12951-020-00592-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2020 1 17 02 |
allfieldsSound |
10.1186/s12951-020-00592-8 doi (DE-627)SPR029463009 (SPR)s12951-020-00592-8-e DE-627 ger DE-627 rakwb eng Kurepa, Jasmina verfasserin aut Metabolomic analyses of the bio-corona formed on $ TiO_{2} $ nanoparticles incubated with plant leaf tissues 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2020 Background The surface of a nanoparticle adsorbs molecules from its surroundings with a specific affinity determined by the chemical and physical properties of the nanomaterial. When a nanoparticle is exposed to a biological system, the adsorbed molecules form a dynamic and specific surface layer called a bio-corona. The present study aimed to identify the metabolites that form the bio-corona around anatase $ TiO_{2} $ nanoparticles incubated with leaves of the model plant Arabidopsis thaliana. Results We used an untargeted metabolomics approach and compared the metabolites isolated from wild-type plants with plants deficient in a class of polyphenolic compounds called flavonoids. Conclusions These analyses showed that $ TiO_{2} $ nanoparticle coronas are enriched for flavonoids and lipids and that these metabolite classes compete with each other for binding the nanoparticle surface. Titanium dioxide nanoparticles (dpeaa)DE-He213 Flavonoids (dpeaa)DE-He213 Arabidopsis (dpeaa)DE-He213 ( (dpeaa)DE-He213 ) mutants (dpeaa)DE-He213 Lipids (dpeaa)DE-He213 Shull, Timothy E. aut Smalle, Jan A. (orcid)0000-0002-6067-4619 aut Enthalten in Journal of nanobiotechnology London : Biomed Central, 2003 18(2020), 1 vom: 17. Feb. (DE-627)362770328 (DE-600)2100022-0 1477-3155 nnns volume:18 year:2020 number:1 day:17 month:02 https://dx.doi.org/10.1186/s12951-020-00592-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2020 1 17 02 |
language |
English |
source |
Enthalten in Journal of nanobiotechnology 18(2020), 1 vom: 17. Feb. volume:18 year:2020 number:1 day:17 month:02 |
sourceStr |
Enthalten in Journal of nanobiotechnology 18(2020), 1 vom: 17. Feb. volume:18 year:2020 number:1 day:17 month:02 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Titanium dioxide nanoparticles Flavonoids Arabidopsis ( ) mutants Lipids |
isfreeaccess_bool |
true |
container_title |
Journal of nanobiotechnology |
authorswithroles_txt_mv |
Kurepa, Jasmina @@aut@@ Shull, Timothy E. @@aut@@ Smalle, Jan A. @@aut@@ |
publishDateDaySort_date |
2020-02-17T00:00:00Z |
hierarchy_top_id |
362770328 |
id |
SPR029463009 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR029463009</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519072044.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12951-020-00592-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR029463009</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12951-020-00592-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kurepa, Jasmina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metabolomic analyses of the bio-corona formed on $ TiO_{2} $ nanoparticles incubated with plant leaf tissues</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The surface of a nanoparticle adsorbs molecules from its surroundings with a specific affinity determined by the chemical and physical properties of the nanomaterial. When a nanoparticle is exposed to a biological system, the adsorbed molecules form a dynamic and specific surface layer called a bio-corona. The present study aimed to identify the metabolites that form the bio-corona around anatase $ TiO_{2} $ nanoparticles incubated with leaves of the model plant Arabidopsis thaliana. Results We used an untargeted metabolomics approach and compared the metabolites isolated from wild-type plants with plants deficient in a class of polyphenolic compounds called flavonoids. Conclusions These analyses showed that $ TiO_{2} $ nanoparticle coronas are enriched for flavonoids and lipids and that these metabolite classes compete with each other for binding the nanoparticle surface.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Titanium dioxide nanoparticles</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flavonoids</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arabidopsis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">(</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">) mutants</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipids</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shull, Timothy E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smalle, Jan A.</subfield><subfield code="0">(orcid)0000-0002-6067-4619</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of nanobiotechnology</subfield><subfield code="d">London : Biomed Central, 2003</subfield><subfield code="g">18(2020), 1 vom: 17. Feb.</subfield><subfield code="w">(DE-627)362770328</subfield><subfield code="w">(DE-600)2100022-0</subfield><subfield code="x">1477-3155</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:17</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12951-020-00592-8</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">17</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
author |
Kurepa, Jasmina |
spellingShingle |
Kurepa, Jasmina misc Titanium dioxide nanoparticles misc Flavonoids misc Arabidopsis misc ( misc ) mutants misc Lipids Metabolomic analyses of the bio-corona formed on $ TiO_{2} $ nanoparticles incubated with plant leaf tissues |
authorStr |
Kurepa, Jasmina |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)362770328 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1477-3155 |
topic_title |
Metabolomic analyses of the bio-corona formed on $ TiO_{2} $ nanoparticles incubated with plant leaf tissues Titanium dioxide nanoparticles (dpeaa)DE-He213 Flavonoids (dpeaa)DE-He213 Arabidopsis (dpeaa)DE-He213 ( (dpeaa)DE-He213 ) mutants (dpeaa)DE-He213 Lipids (dpeaa)DE-He213 |
topic |
misc Titanium dioxide nanoparticles misc Flavonoids misc Arabidopsis misc ( misc ) mutants misc Lipids |
topic_unstemmed |
misc Titanium dioxide nanoparticles misc Flavonoids misc Arabidopsis misc ( misc ) mutants misc Lipids |
topic_browse |
misc Titanium dioxide nanoparticles misc Flavonoids misc Arabidopsis misc ( misc ) mutants misc Lipids |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of nanobiotechnology |
hierarchy_parent_id |
362770328 |
hierarchy_top_title |
Journal of nanobiotechnology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)362770328 (DE-600)2100022-0 |
title |
Metabolomic analyses of the bio-corona formed on $ TiO_{2} $ nanoparticles incubated with plant leaf tissues |
ctrlnum |
(DE-627)SPR029463009 (SPR)s12951-020-00592-8-e |
title_full |
Metabolomic analyses of the bio-corona formed on $ TiO_{2} $ nanoparticles incubated with plant leaf tissues |
author_sort |
Kurepa, Jasmina |
journal |
Journal of nanobiotechnology |
journalStr |
Journal of nanobiotechnology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Kurepa, Jasmina Shull, Timothy E. Smalle, Jan A. |
container_volume |
18 |
format_se |
Elektronische Aufsätze |
author-letter |
Kurepa, Jasmina |
doi_str_mv |
10.1186/s12951-020-00592-8 |
normlink |
(ORCID)0000-0002-6067-4619 |
normlink_prefix_str_mv |
(orcid)0000-0002-6067-4619 |
title_sort |
metabolomic analyses of the bio-corona formed on $ tio_{2} $ nanoparticles incubated with plant leaf tissues |
title_auth |
Metabolomic analyses of the bio-corona formed on $ TiO_{2} $ nanoparticles incubated with plant leaf tissues |
abstract |
Background The surface of a nanoparticle adsorbs molecules from its surroundings with a specific affinity determined by the chemical and physical properties of the nanomaterial. When a nanoparticle is exposed to a biological system, the adsorbed molecules form a dynamic and specific surface layer called a bio-corona. The present study aimed to identify the metabolites that form the bio-corona around anatase $ TiO_{2} $ nanoparticles incubated with leaves of the model plant Arabidopsis thaliana. Results We used an untargeted metabolomics approach and compared the metabolites isolated from wild-type plants with plants deficient in a class of polyphenolic compounds called flavonoids. Conclusions These analyses showed that $ TiO_{2} $ nanoparticle coronas are enriched for flavonoids and lipids and that these metabolite classes compete with each other for binding the nanoparticle surface. © The Author(s) 2020 |
abstractGer |
Background The surface of a nanoparticle adsorbs molecules from its surroundings with a specific affinity determined by the chemical and physical properties of the nanomaterial. When a nanoparticle is exposed to a biological system, the adsorbed molecules form a dynamic and specific surface layer called a bio-corona. The present study aimed to identify the metabolites that form the bio-corona around anatase $ TiO_{2} $ nanoparticles incubated with leaves of the model plant Arabidopsis thaliana. Results We used an untargeted metabolomics approach and compared the metabolites isolated from wild-type plants with plants deficient in a class of polyphenolic compounds called flavonoids. Conclusions These analyses showed that $ TiO_{2} $ nanoparticle coronas are enriched for flavonoids and lipids and that these metabolite classes compete with each other for binding the nanoparticle surface. © The Author(s) 2020 |
abstract_unstemmed |
Background The surface of a nanoparticle adsorbs molecules from its surroundings with a specific affinity determined by the chemical and physical properties of the nanomaterial. When a nanoparticle is exposed to a biological system, the adsorbed molecules form a dynamic and specific surface layer called a bio-corona. The present study aimed to identify the metabolites that form the bio-corona around anatase $ TiO_{2} $ nanoparticles incubated with leaves of the model plant Arabidopsis thaliana. Results We used an untargeted metabolomics approach and compared the metabolites isolated from wild-type plants with plants deficient in a class of polyphenolic compounds called flavonoids. Conclusions These analyses showed that $ TiO_{2} $ nanoparticle coronas are enriched for flavonoids and lipids and that these metabolite classes compete with each other for binding the nanoparticle surface. © The Author(s) 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Metabolomic analyses of the bio-corona formed on $ TiO_{2} $ nanoparticles incubated with plant leaf tissues |
url |
https://dx.doi.org/10.1186/s12951-020-00592-8 |
remote_bool |
true |
author2 |
Shull, Timothy E. Smalle, Jan A. |
author2Str |
Shull, Timothy E. Smalle, Jan A. |
ppnlink |
362770328 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12951-020-00592-8 |
up_date |
2024-07-04T01:04:40.362Z |
_version_ |
1803608475947761664 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR029463009</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519072044.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12951-020-00592-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR029463009</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12951-020-00592-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kurepa, Jasmina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metabolomic analyses of the bio-corona formed on $ TiO_{2} $ nanoparticles incubated with plant leaf tissues</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The surface of a nanoparticle adsorbs molecules from its surroundings with a specific affinity determined by the chemical and physical properties of the nanomaterial. When a nanoparticle is exposed to a biological system, the adsorbed molecules form a dynamic and specific surface layer called a bio-corona. The present study aimed to identify the metabolites that form the bio-corona around anatase $ TiO_{2} $ nanoparticles incubated with leaves of the model plant Arabidopsis thaliana. Results We used an untargeted metabolomics approach and compared the metabolites isolated from wild-type plants with plants deficient in a class of polyphenolic compounds called flavonoids. Conclusions These analyses showed that $ TiO_{2} $ nanoparticle coronas are enriched for flavonoids and lipids and that these metabolite classes compete with each other for binding the nanoparticle surface.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Titanium dioxide nanoparticles</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flavonoids</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arabidopsis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">(</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">) mutants</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipids</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shull, Timothy E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smalle, Jan A.</subfield><subfield code="0">(orcid)0000-0002-6067-4619</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of nanobiotechnology</subfield><subfield code="d">London : Biomed Central, 2003</subfield><subfield code="g">18(2020), 1 vom: 17. Feb.</subfield><subfield code="w">(DE-627)362770328</subfield><subfield code="w">(DE-600)2100022-0</subfield><subfield code="x">1477-3155</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:17</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12951-020-00592-8</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">17</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
score |
7.3997116 |