Carbon benefits from protected areas in the conterminous United States
Background Conversion of forests to other land cover or land use releases the carbon stored in the forests and reduces carbon sequestration potential of the land. The rate of forest conversion could be reduced by establishing protected areas for biological diversity and other conservation goals. The...
Ausführliche Beschreibung
Autor*in: |
Zheng, Daolan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
Afforestation and deforestation |
---|
Anmerkung: |
© Zheng et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
---|
Übergeordnetes Werk: |
Enthalten in: Carbon balance and management - London : Biomed Central, 2006, 8(2013), 1 vom: 17. Apr. |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2013 ; number:1 ; day:17 ; month:04 |
Links: |
---|
DOI / URN: |
10.1186/1750-0680-8-4 |
---|
Katalog-ID: |
SPR029478189 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR029478189 | ||
003 | DE-627 | ||
005 | 20230331103545.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1750-0680-8-4 |2 doi | |
035 | |a (DE-627)SPR029478189 | ||
035 | |a (SPR)1750-0680-8-4-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Zheng, Daolan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Carbon benefits from protected areas in the conterminous United States |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Zheng et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( | ||
520 | |a Background Conversion of forests to other land cover or land use releases the carbon stored in the forests and reduces carbon sequestration potential of the land. The rate of forest conversion could be reduced by establishing protected areas for biological diversity and other conservation goals. The purpose of this study is to quantify the efficiency and potential of forest land protection for mitigating GHG emissions. Results The analysis of related national-level datasets shows that during the period of 1992–2001 net forest losses in protected areas were small as compared to those in unprotected areas: -0.74% and −4.07%, respectively. If forest loss rates in protected and unprotected area had been similar, then forest losses in the protected forestlands would be larger by 870 $ km^{2} $/yr forests, that corresponds to release of 7 Tg C/yr (1 Tg=$ 10^{12} $ g). Conversely, and continuing to assume no leakage effects or interactions of prices and harvest levels, about 1,200 $ km^{2} $/yr forests could have remained forest during the period of 1992–2001 if net area loss rate in the forestland outside protected areas was reduced by 20%. Not counting carbon in harvested wood products, this is equivalent to reducing fossil-fuel based carbon emissions by 10 Tg C/yr during this period. The South and West had much higher potentials to mitigate GHG emission from reducing loss rates in unprotected forests than that of North region. Spatially, rates of forest loss were higher across the coastal states in the southeastern US than would be expected from their population change, while interior states in the northern US experienced less forest area loss than would have been expected given their demographic characteristics. Conclusions The estimated carbon benefit from the reduced forest loss based on current protected areas is 7 Tg C/yr, equivalent to the average carbon benefit per year for a previously proposed ten-year $110 million per year tree planting program scenario in the US. If there had been a program that could have reduced forest area loss by 20% in unprotected forestlands during 1992–2001, collectively the benefits from reduced forest loss would be equal to 9.4% of current net forest ecosystem carbon sequestration in the conterminous US. | ||
650 | 4 | |a Afforestation and deforestation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Net deforestation rate |7 (dpeaa)DE-He213 | |
650 | 4 | |a Protected and unprotected forestlands |7 (dpeaa)DE-He213 | |
650 | 4 | |a Forest carbon emissions |7 (dpeaa)DE-He213 | |
650 | 4 | |a Forest carbon sequestration |7 (dpeaa)DE-He213 | |
700 | 1 | |a Heath, Linda S |4 aut | |
700 | 1 | |a Ducey, Mark J |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Carbon balance and management |d London : Biomed Central, 2006 |g 8(2013), 1 vom: 17. Apr. |w (DE-627)515824364 |w (DE-600)2243512-8 |x 1750-0680 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2013 |g number:1 |g day:17 |g month:04 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1750-0680-8-4 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2013 |e 1 |b 17 |c 04 |
author_variant |
d z dz l s h ls lsh m j d mj mjd |
---|---|
matchkey_str |
article:17500680:2013----::abneeisrmrtceaesnhcnem |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1186/1750-0680-8-4 doi (DE-627)SPR029478189 (SPR)1750-0680-8-4-e DE-627 ger DE-627 rakwb eng Zheng, Daolan verfasserin aut Carbon benefits from protected areas in the conterminous United States 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Zheng et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Conversion of forests to other land cover or land use releases the carbon stored in the forests and reduces carbon sequestration potential of the land. The rate of forest conversion could be reduced by establishing protected areas for biological diversity and other conservation goals. The purpose of this study is to quantify the efficiency and potential of forest land protection for mitigating GHG emissions. Results The analysis of related national-level datasets shows that during the period of 1992–2001 net forest losses in protected areas were small as compared to those in unprotected areas: -0.74% and −4.07%, respectively. If forest loss rates in protected and unprotected area had been similar, then forest losses in the protected forestlands would be larger by 870 $ km^{2} $/yr forests, that corresponds to release of 7 Tg C/yr (1 Tg=$ 10^{12} $ g). Conversely, and continuing to assume no leakage effects or interactions of prices and harvest levels, about 1,200 $ km^{2} $/yr forests could have remained forest during the period of 1992–2001 if net area loss rate in the forestland outside protected areas was reduced by 20%. Not counting carbon in harvested wood products, this is equivalent to reducing fossil-fuel based carbon emissions by 10 Tg C/yr during this period. The South and West had much higher potentials to mitigate GHG emission from reducing loss rates in unprotected forests than that of North region. Spatially, rates of forest loss were higher across the coastal states in the southeastern US than would be expected from their population change, while interior states in the northern US experienced less forest area loss than would have been expected given their demographic characteristics. Conclusions The estimated carbon benefit from the reduced forest loss based on current protected areas is 7 Tg C/yr, equivalent to the average carbon benefit per year for a previously proposed ten-year $110 million per year tree planting program scenario in the US. If there had been a program that could have reduced forest area loss by 20% in unprotected forestlands during 1992–2001, collectively the benefits from reduced forest loss would be equal to 9.4% of current net forest ecosystem carbon sequestration in the conterminous US. Afforestation and deforestation (dpeaa)DE-He213 Net deforestation rate (dpeaa)DE-He213 Protected and unprotected forestlands (dpeaa)DE-He213 Forest carbon emissions (dpeaa)DE-He213 Forest carbon sequestration (dpeaa)DE-He213 Heath, Linda S aut Ducey, Mark J aut Enthalten in Carbon balance and management London : Biomed Central, 2006 8(2013), 1 vom: 17. Apr. (DE-627)515824364 (DE-600)2243512-8 1750-0680 nnns volume:8 year:2013 number:1 day:17 month:04 https://dx.doi.org/10.1186/1750-0680-8-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2013 1 17 04 |
spelling |
10.1186/1750-0680-8-4 doi (DE-627)SPR029478189 (SPR)1750-0680-8-4-e DE-627 ger DE-627 rakwb eng Zheng, Daolan verfasserin aut Carbon benefits from protected areas in the conterminous United States 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Zheng et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Conversion of forests to other land cover or land use releases the carbon stored in the forests and reduces carbon sequestration potential of the land. The rate of forest conversion could be reduced by establishing protected areas for biological diversity and other conservation goals. The purpose of this study is to quantify the efficiency and potential of forest land protection for mitigating GHG emissions. Results The analysis of related national-level datasets shows that during the period of 1992–2001 net forest losses in protected areas were small as compared to those in unprotected areas: -0.74% and −4.07%, respectively. If forest loss rates in protected and unprotected area had been similar, then forest losses in the protected forestlands would be larger by 870 $ km^{2} $/yr forests, that corresponds to release of 7 Tg C/yr (1 Tg=$ 10^{12} $ g). Conversely, and continuing to assume no leakage effects or interactions of prices and harvest levels, about 1,200 $ km^{2} $/yr forests could have remained forest during the period of 1992–2001 if net area loss rate in the forestland outside protected areas was reduced by 20%. Not counting carbon in harvested wood products, this is equivalent to reducing fossil-fuel based carbon emissions by 10 Tg C/yr during this period. The South and West had much higher potentials to mitigate GHG emission from reducing loss rates in unprotected forests than that of North region. Spatially, rates of forest loss were higher across the coastal states in the southeastern US than would be expected from their population change, while interior states in the northern US experienced less forest area loss than would have been expected given their demographic characteristics. Conclusions The estimated carbon benefit from the reduced forest loss based on current protected areas is 7 Tg C/yr, equivalent to the average carbon benefit per year for a previously proposed ten-year $110 million per year tree planting program scenario in the US. If there had been a program that could have reduced forest area loss by 20% in unprotected forestlands during 1992–2001, collectively the benefits from reduced forest loss would be equal to 9.4% of current net forest ecosystem carbon sequestration in the conterminous US. Afforestation and deforestation (dpeaa)DE-He213 Net deforestation rate (dpeaa)DE-He213 Protected and unprotected forestlands (dpeaa)DE-He213 Forest carbon emissions (dpeaa)DE-He213 Forest carbon sequestration (dpeaa)DE-He213 Heath, Linda S aut Ducey, Mark J aut Enthalten in Carbon balance and management London : Biomed Central, 2006 8(2013), 1 vom: 17. Apr. (DE-627)515824364 (DE-600)2243512-8 1750-0680 nnns volume:8 year:2013 number:1 day:17 month:04 https://dx.doi.org/10.1186/1750-0680-8-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2013 1 17 04 |
allfields_unstemmed |
10.1186/1750-0680-8-4 doi (DE-627)SPR029478189 (SPR)1750-0680-8-4-e DE-627 ger DE-627 rakwb eng Zheng, Daolan verfasserin aut Carbon benefits from protected areas in the conterminous United States 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Zheng et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Conversion of forests to other land cover or land use releases the carbon stored in the forests and reduces carbon sequestration potential of the land. The rate of forest conversion could be reduced by establishing protected areas for biological diversity and other conservation goals. The purpose of this study is to quantify the efficiency and potential of forest land protection for mitigating GHG emissions. Results The analysis of related national-level datasets shows that during the period of 1992–2001 net forest losses in protected areas were small as compared to those in unprotected areas: -0.74% and −4.07%, respectively. If forest loss rates in protected and unprotected area had been similar, then forest losses in the protected forestlands would be larger by 870 $ km^{2} $/yr forests, that corresponds to release of 7 Tg C/yr (1 Tg=$ 10^{12} $ g). Conversely, and continuing to assume no leakage effects or interactions of prices and harvest levels, about 1,200 $ km^{2} $/yr forests could have remained forest during the period of 1992–2001 if net area loss rate in the forestland outside protected areas was reduced by 20%. Not counting carbon in harvested wood products, this is equivalent to reducing fossil-fuel based carbon emissions by 10 Tg C/yr during this period. The South and West had much higher potentials to mitigate GHG emission from reducing loss rates in unprotected forests than that of North region. Spatially, rates of forest loss were higher across the coastal states in the southeastern US than would be expected from their population change, while interior states in the northern US experienced less forest area loss than would have been expected given their demographic characteristics. Conclusions The estimated carbon benefit from the reduced forest loss based on current protected areas is 7 Tg C/yr, equivalent to the average carbon benefit per year for a previously proposed ten-year $110 million per year tree planting program scenario in the US. If there had been a program that could have reduced forest area loss by 20% in unprotected forestlands during 1992–2001, collectively the benefits from reduced forest loss would be equal to 9.4% of current net forest ecosystem carbon sequestration in the conterminous US. Afforestation and deforestation (dpeaa)DE-He213 Net deforestation rate (dpeaa)DE-He213 Protected and unprotected forestlands (dpeaa)DE-He213 Forest carbon emissions (dpeaa)DE-He213 Forest carbon sequestration (dpeaa)DE-He213 Heath, Linda S aut Ducey, Mark J aut Enthalten in Carbon balance and management London : Biomed Central, 2006 8(2013), 1 vom: 17. Apr. (DE-627)515824364 (DE-600)2243512-8 1750-0680 nnns volume:8 year:2013 number:1 day:17 month:04 https://dx.doi.org/10.1186/1750-0680-8-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2013 1 17 04 |
allfieldsGer |
10.1186/1750-0680-8-4 doi (DE-627)SPR029478189 (SPR)1750-0680-8-4-e DE-627 ger DE-627 rakwb eng Zheng, Daolan verfasserin aut Carbon benefits from protected areas in the conterminous United States 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Zheng et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Conversion of forests to other land cover or land use releases the carbon stored in the forests and reduces carbon sequestration potential of the land. The rate of forest conversion could be reduced by establishing protected areas for biological diversity and other conservation goals. The purpose of this study is to quantify the efficiency and potential of forest land protection for mitigating GHG emissions. Results The analysis of related national-level datasets shows that during the period of 1992–2001 net forest losses in protected areas were small as compared to those in unprotected areas: -0.74% and −4.07%, respectively. If forest loss rates in protected and unprotected area had been similar, then forest losses in the protected forestlands would be larger by 870 $ km^{2} $/yr forests, that corresponds to release of 7 Tg C/yr (1 Tg=$ 10^{12} $ g). Conversely, and continuing to assume no leakage effects or interactions of prices and harvest levels, about 1,200 $ km^{2} $/yr forests could have remained forest during the period of 1992–2001 if net area loss rate in the forestland outside protected areas was reduced by 20%. Not counting carbon in harvested wood products, this is equivalent to reducing fossil-fuel based carbon emissions by 10 Tg C/yr during this period. The South and West had much higher potentials to mitigate GHG emission from reducing loss rates in unprotected forests than that of North region. Spatially, rates of forest loss were higher across the coastal states in the southeastern US than would be expected from their population change, while interior states in the northern US experienced less forest area loss than would have been expected given their demographic characteristics. Conclusions The estimated carbon benefit from the reduced forest loss based on current protected areas is 7 Tg C/yr, equivalent to the average carbon benefit per year for a previously proposed ten-year $110 million per year tree planting program scenario in the US. If there had been a program that could have reduced forest area loss by 20% in unprotected forestlands during 1992–2001, collectively the benefits from reduced forest loss would be equal to 9.4% of current net forest ecosystem carbon sequestration in the conterminous US. Afforestation and deforestation (dpeaa)DE-He213 Net deforestation rate (dpeaa)DE-He213 Protected and unprotected forestlands (dpeaa)DE-He213 Forest carbon emissions (dpeaa)DE-He213 Forest carbon sequestration (dpeaa)DE-He213 Heath, Linda S aut Ducey, Mark J aut Enthalten in Carbon balance and management London : Biomed Central, 2006 8(2013), 1 vom: 17. Apr. (DE-627)515824364 (DE-600)2243512-8 1750-0680 nnns volume:8 year:2013 number:1 day:17 month:04 https://dx.doi.org/10.1186/1750-0680-8-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2013 1 17 04 |
allfieldsSound |
10.1186/1750-0680-8-4 doi (DE-627)SPR029478189 (SPR)1750-0680-8-4-e DE-627 ger DE-627 rakwb eng Zheng, Daolan verfasserin aut Carbon benefits from protected areas in the conterminous United States 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Zheng et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Conversion of forests to other land cover or land use releases the carbon stored in the forests and reduces carbon sequestration potential of the land. The rate of forest conversion could be reduced by establishing protected areas for biological diversity and other conservation goals. The purpose of this study is to quantify the efficiency and potential of forest land protection for mitigating GHG emissions. Results The analysis of related national-level datasets shows that during the period of 1992–2001 net forest losses in protected areas were small as compared to those in unprotected areas: -0.74% and −4.07%, respectively. If forest loss rates in protected and unprotected area had been similar, then forest losses in the protected forestlands would be larger by 870 $ km^{2} $/yr forests, that corresponds to release of 7 Tg C/yr (1 Tg=$ 10^{12} $ g). Conversely, and continuing to assume no leakage effects or interactions of prices and harvest levels, about 1,200 $ km^{2} $/yr forests could have remained forest during the period of 1992–2001 if net area loss rate in the forestland outside protected areas was reduced by 20%. Not counting carbon in harvested wood products, this is equivalent to reducing fossil-fuel based carbon emissions by 10 Tg C/yr during this period. The South and West had much higher potentials to mitigate GHG emission from reducing loss rates in unprotected forests than that of North region. Spatially, rates of forest loss were higher across the coastal states in the southeastern US than would be expected from their population change, while interior states in the northern US experienced less forest area loss than would have been expected given their demographic characteristics. Conclusions The estimated carbon benefit from the reduced forest loss based on current protected areas is 7 Tg C/yr, equivalent to the average carbon benefit per year for a previously proposed ten-year $110 million per year tree planting program scenario in the US. If there had been a program that could have reduced forest area loss by 20% in unprotected forestlands during 1992–2001, collectively the benefits from reduced forest loss would be equal to 9.4% of current net forest ecosystem carbon sequestration in the conterminous US. Afforestation and deforestation (dpeaa)DE-He213 Net deforestation rate (dpeaa)DE-He213 Protected and unprotected forestlands (dpeaa)DE-He213 Forest carbon emissions (dpeaa)DE-He213 Forest carbon sequestration (dpeaa)DE-He213 Heath, Linda S aut Ducey, Mark J aut Enthalten in Carbon balance and management London : Biomed Central, 2006 8(2013), 1 vom: 17. Apr. (DE-627)515824364 (DE-600)2243512-8 1750-0680 nnns volume:8 year:2013 number:1 day:17 month:04 https://dx.doi.org/10.1186/1750-0680-8-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2013 1 17 04 |
language |
English |
source |
Enthalten in Carbon balance and management 8(2013), 1 vom: 17. Apr. volume:8 year:2013 number:1 day:17 month:04 |
sourceStr |
Enthalten in Carbon balance and management 8(2013), 1 vom: 17. Apr. volume:8 year:2013 number:1 day:17 month:04 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Afforestation and deforestation Net deforestation rate Protected and unprotected forestlands Forest carbon emissions Forest carbon sequestration |
isfreeaccess_bool |
true |
container_title |
Carbon balance and management |
authorswithroles_txt_mv |
Zheng, Daolan @@aut@@ Heath, Linda S @@aut@@ Ducey, Mark J @@aut@@ |
publishDateDaySort_date |
2013-04-17T00:00:00Z |
hierarchy_top_id |
515824364 |
id |
SPR029478189 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR029478189</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331103545.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1750-0680-8-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR029478189</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1750-0680-8-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zheng, Daolan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Carbon benefits from protected areas in the conterminous United States</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Zheng et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Conversion of forests to other land cover or land use releases the carbon stored in the forests and reduces carbon sequestration potential of the land. The rate of forest conversion could be reduced by establishing protected areas for biological diversity and other conservation goals. The purpose of this study is to quantify the efficiency and potential of forest land protection for mitigating GHG emissions. Results The analysis of related national-level datasets shows that during the period of 1992–2001 net forest losses in protected areas were small as compared to those in unprotected areas: -0.74% and −4.07%, respectively. If forest loss rates in protected and unprotected area had been similar, then forest losses in the protected forestlands would be larger by 870 $ km^{2} $/yr forests, that corresponds to release of 7 Tg C/yr (1 Tg=$ 10^{12} $ g). Conversely, and continuing to assume no leakage effects or interactions of prices and harvest levels, about 1,200 $ km^{2} $/yr forests could have remained forest during the period of 1992–2001 if net area loss rate in the forestland outside protected areas was reduced by 20%. Not counting carbon in harvested wood products, this is equivalent to reducing fossil-fuel based carbon emissions by 10 Tg C/yr during this period. The South and West had much higher potentials to mitigate GHG emission from reducing loss rates in unprotected forests than that of North region. Spatially, rates of forest loss were higher across the coastal states in the southeastern US than would be expected from their population change, while interior states in the northern US experienced less forest area loss than would have been expected given their demographic characteristics. Conclusions The estimated carbon benefit from the reduced forest loss based on current protected areas is 7 Tg C/yr, equivalent to the average carbon benefit per year for a previously proposed ten-year $110 million per year tree planting program scenario in the US. If there had been a program that could have reduced forest area loss by 20% in unprotected forestlands during 1992–2001, collectively the benefits from reduced forest loss would be equal to 9.4% of current net forest ecosystem carbon sequestration in the conterminous US.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Afforestation and deforestation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Net deforestation rate</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Protected and unprotected forestlands</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forest carbon emissions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forest carbon sequestration</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Heath, Linda S</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ducey, Mark J</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Carbon balance and management</subfield><subfield code="d">London : Biomed Central, 2006</subfield><subfield code="g">8(2013), 1 vom: 17. Apr.</subfield><subfield code="w">(DE-627)515824364</subfield><subfield code="w">(DE-600)2243512-8</subfield><subfield code="x">1750-0680</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:17</subfield><subfield code="g">month:04</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1750-0680-8-4</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">17</subfield><subfield code="c">04</subfield></datafield></record></collection>
|
author |
Zheng, Daolan |
spellingShingle |
Zheng, Daolan misc Afforestation and deforestation misc Net deforestation rate misc Protected and unprotected forestlands misc Forest carbon emissions misc Forest carbon sequestration Carbon benefits from protected areas in the conterminous United States |
authorStr |
Zheng, Daolan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)515824364 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1750-0680 |
topic_title |
Carbon benefits from protected areas in the conterminous United States Afforestation and deforestation (dpeaa)DE-He213 Net deforestation rate (dpeaa)DE-He213 Protected and unprotected forestlands (dpeaa)DE-He213 Forest carbon emissions (dpeaa)DE-He213 Forest carbon sequestration (dpeaa)DE-He213 |
topic |
misc Afforestation and deforestation misc Net deforestation rate misc Protected and unprotected forestlands misc Forest carbon emissions misc Forest carbon sequestration |
topic_unstemmed |
misc Afforestation and deforestation misc Net deforestation rate misc Protected and unprotected forestlands misc Forest carbon emissions misc Forest carbon sequestration |
topic_browse |
misc Afforestation and deforestation misc Net deforestation rate misc Protected and unprotected forestlands misc Forest carbon emissions misc Forest carbon sequestration |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Carbon balance and management |
hierarchy_parent_id |
515824364 |
hierarchy_top_title |
Carbon balance and management |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)515824364 (DE-600)2243512-8 |
title |
Carbon benefits from protected areas in the conterminous United States |
ctrlnum |
(DE-627)SPR029478189 (SPR)1750-0680-8-4-e |
title_full |
Carbon benefits from protected areas in the conterminous United States |
author_sort |
Zheng, Daolan |
journal |
Carbon balance and management |
journalStr |
Carbon balance and management |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
author_browse |
Zheng, Daolan Heath, Linda S Ducey, Mark J |
container_volume |
8 |
format_se |
Elektronische Aufsätze |
author-letter |
Zheng, Daolan |
doi_str_mv |
10.1186/1750-0680-8-4 |
title_sort |
carbon benefits from protected areas in the conterminous united states |
title_auth |
Carbon benefits from protected areas in the conterminous United States |
abstract |
Background Conversion of forests to other land cover or land use releases the carbon stored in the forests and reduces carbon sequestration potential of the land. The rate of forest conversion could be reduced by establishing protected areas for biological diversity and other conservation goals. The purpose of this study is to quantify the efficiency and potential of forest land protection for mitigating GHG emissions. Results The analysis of related national-level datasets shows that during the period of 1992–2001 net forest losses in protected areas were small as compared to those in unprotected areas: -0.74% and −4.07%, respectively. If forest loss rates in protected and unprotected area had been similar, then forest losses in the protected forestlands would be larger by 870 $ km^{2} $/yr forests, that corresponds to release of 7 Tg C/yr (1 Tg=$ 10^{12} $ g). Conversely, and continuing to assume no leakage effects or interactions of prices and harvest levels, about 1,200 $ km^{2} $/yr forests could have remained forest during the period of 1992–2001 if net area loss rate in the forestland outside protected areas was reduced by 20%. Not counting carbon in harvested wood products, this is equivalent to reducing fossil-fuel based carbon emissions by 10 Tg C/yr during this period. The South and West had much higher potentials to mitigate GHG emission from reducing loss rates in unprotected forests than that of North region. Spatially, rates of forest loss were higher across the coastal states in the southeastern US than would be expected from their population change, while interior states in the northern US experienced less forest area loss than would have been expected given their demographic characteristics. Conclusions The estimated carbon benefit from the reduced forest loss based on current protected areas is 7 Tg C/yr, equivalent to the average carbon benefit per year for a previously proposed ten-year $110 million per year tree planting program scenario in the US. If there had been a program that could have reduced forest area loss by 20% in unprotected forestlands during 1992–2001, collectively the benefits from reduced forest loss would be equal to 9.4% of current net forest ecosystem carbon sequestration in the conterminous US. © Zheng et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
abstractGer |
Background Conversion of forests to other land cover or land use releases the carbon stored in the forests and reduces carbon sequestration potential of the land. The rate of forest conversion could be reduced by establishing protected areas for biological diversity and other conservation goals. The purpose of this study is to quantify the efficiency and potential of forest land protection for mitigating GHG emissions. Results The analysis of related national-level datasets shows that during the period of 1992–2001 net forest losses in protected areas were small as compared to those in unprotected areas: -0.74% and −4.07%, respectively. If forest loss rates in protected and unprotected area had been similar, then forest losses in the protected forestlands would be larger by 870 $ km^{2} $/yr forests, that corresponds to release of 7 Tg C/yr (1 Tg=$ 10^{12} $ g). Conversely, and continuing to assume no leakage effects or interactions of prices and harvest levels, about 1,200 $ km^{2} $/yr forests could have remained forest during the period of 1992–2001 if net area loss rate in the forestland outside protected areas was reduced by 20%. Not counting carbon in harvested wood products, this is equivalent to reducing fossil-fuel based carbon emissions by 10 Tg C/yr during this period. The South and West had much higher potentials to mitigate GHG emission from reducing loss rates in unprotected forests than that of North region. Spatially, rates of forest loss were higher across the coastal states in the southeastern US than would be expected from their population change, while interior states in the northern US experienced less forest area loss than would have been expected given their demographic characteristics. Conclusions The estimated carbon benefit from the reduced forest loss based on current protected areas is 7 Tg C/yr, equivalent to the average carbon benefit per year for a previously proposed ten-year $110 million per year tree planting program scenario in the US. If there had been a program that could have reduced forest area loss by 20% in unprotected forestlands during 1992–2001, collectively the benefits from reduced forest loss would be equal to 9.4% of current net forest ecosystem carbon sequestration in the conterminous US. © Zheng et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
abstract_unstemmed |
Background Conversion of forests to other land cover or land use releases the carbon stored in the forests and reduces carbon sequestration potential of the land. The rate of forest conversion could be reduced by establishing protected areas for biological diversity and other conservation goals. The purpose of this study is to quantify the efficiency and potential of forest land protection for mitigating GHG emissions. Results The analysis of related national-level datasets shows that during the period of 1992–2001 net forest losses in protected areas were small as compared to those in unprotected areas: -0.74% and −4.07%, respectively. If forest loss rates in protected and unprotected area had been similar, then forest losses in the protected forestlands would be larger by 870 $ km^{2} $/yr forests, that corresponds to release of 7 Tg C/yr (1 Tg=$ 10^{12} $ g). Conversely, and continuing to assume no leakage effects or interactions of prices and harvest levels, about 1,200 $ km^{2} $/yr forests could have remained forest during the period of 1992–2001 if net area loss rate in the forestland outside protected areas was reduced by 20%. Not counting carbon in harvested wood products, this is equivalent to reducing fossil-fuel based carbon emissions by 10 Tg C/yr during this period. The South and West had much higher potentials to mitigate GHG emission from reducing loss rates in unprotected forests than that of North region. Spatially, rates of forest loss were higher across the coastal states in the southeastern US than would be expected from their population change, while interior states in the northern US experienced less forest area loss than would have been expected given their demographic characteristics. Conclusions The estimated carbon benefit from the reduced forest loss based on current protected areas is 7 Tg C/yr, equivalent to the average carbon benefit per year for a previously proposed ten-year $110 million per year tree planting program scenario in the US. If there had been a program that could have reduced forest area loss by 20% in unprotected forestlands during 1992–2001, collectively the benefits from reduced forest loss would be equal to 9.4% of current net forest ecosystem carbon sequestration in the conterminous US. © Zheng et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Carbon benefits from protected areas in the conterminous United States |
url |
https://dx.doi.org/10.1186/1750-0680-8-4 |
remote_bool |
true |
author2 |
Heath, Linda S Ducey, Mark J |
author2Str |
Heath, Linda S Ducey, Mark J |
ppnlink |
515824364 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1750-0680-8-4 |
up_date |
2024-07-04T01:08:30.361Z |
_version_ |
1803608717121290240 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR029478189</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331103545.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1750-0680-8-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR029478189</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1750-0680-8-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zheng, Daolan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Carbon benefits from protected areas in the conterminous United States</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Zheng et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Conversion of forests to other land cover or land use releases the carbon stored in the forests and reduces carbon sequestration potential of the land. The rate of forest conversion could be reduced by establishing protected areas for biological diversity and other conservation goals. The purpose of this study is to quantify the efficiency and potential of forest land protection for mitigating GHG emissions. Results The analysis of related national-level datasets shows that during the period of 1992–2001 net forest losses in protected areas were small as compared to those in unprotected areas: -0.74% and −4.07%, respectively. If forest loss rates in protected and unprotected area had been similar, then forest losses in the protected forestlands would be larger by 870 $ km^{2} $/yr forests, that corresponds to release of 7 Tg C/yr (1 Tg=$ 10^{12} $ g). Conversely, and continuing to assume no leakage effects or interactions of prices and harvest levels, about 1,200 $ km^{2} $/yr forests could have remained forest during the period of 1992–2001 if net area loss rate in the forestland outside protected areas was reduced by 20%. Not counting carbon in harvested wood products, this is equivalent to reducing fossil-fuel based carbon emissions by 10 Tg C/yr during this period. The South and West had much higher potentials to mitigate GHG emission from reducing loss rates in unprotected forests than that of North region. Spatially, rates of forest loss were higher across the coastal states in the southeastern US than would be expected from their population change, while interior states in the northern US experienced less forest area loss than would have been expected given their demographic characteristics. Conclusions The estimated carbon benefit from the reduced forest loss based on current protected areas is 7 Tg C/yr, equivalent to the average carbon benefit per year for a previously proposed ten-year $110 million per year tree planting program scenario in the US. If there had been a program that could have reduced forest area loss by 20% in unprotected forestlands during 1992–2001, collectively the benefits from reduced forest loss would be equal to 9.4% of current net forest ecosystem carbon sequestration in the conterminous US.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Afforestation and deforestation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Net deforestation rate</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Protected and unprotected forestlands</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forest carbon emissions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forest carbon sequestration</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Heath, Linda S</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ducey, Mark J</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Carbon balance and management</subfield><subfield code="d">London : Biomed Central, 2006</subfield><subfield code="g">8(2013), 1 vom: 17. Apr.</subfield><subfield code="w">(DE-627)515824364</subfield><subfield code="w">(DE-600)2243512-8</subfield><subfield code="x">1750-0680</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:17</subfield><subfield code="g">month:04</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1750-0680-8-4</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">17</subfield><subfield code="c">04</subfield></datafield></record></collection>
|
score |
7.4021244 |