Intracellular amyloid formation in muscle cells of Aβ-transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification
Background The amyloid β-peptide is a ubiquitous peptide, which is prone to aggregate forming soluble toxic oligomers and insoluble less-toxic aggregates. The intrinsic and external/environmental factors that determine Aβ aggregation in vivo are poorly understood, as well as the cellular meaning of...
Ausführliche Beschreibung
Autor*in: |
Minniti, Alicia N [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2009 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Minniti et al; licensee BioMed Central Ltd. 2009. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
---|
Übergeordnetes Werk: |
Enthalten in: Molecular neurodegeneration - London : Biomed Central, 2006, 4(2009), 1 vom: 06. Jan. |
---|---|
Übergeordnetes Werk: |
volume:4 ; year:2009 ; number:1 ; day:06 ; month:01 |
Links: |
---|
DOI / URN: |
10.1186/1750-1326-4-2 |
---|
Katalog-ID: |
SPR029506549 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR029506549 | ||
003 | DE-627 | ||
005 | 20230519113403.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2009 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1750-1326-4-2 |2 doi | |
035 | |a (DE-627)SPR029506549 | ||
035 | |a (SPR)1750-1326-4-2-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Minniti, Alicia N |e verfasserin |4 aut | |
245 | 1 | 0 | |a Intracellular amyloid formation in muscle cells of Aβ-transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification |
264 | 1 | |c 2009 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Minniti et al; licensee BioMed Central Ltd. 2009. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( | ||
520 | |a Background The amyloid β-peptide is a ubiquitous peptide, which is prone to aggregate forming soluble toxic oligomers and insoluble less-toxic aggregates. The intrinsic and external/environmental factors that determine Aβ aggregation in vivo are poorly understood, as well as the cellular meaning of this process itself. Genetic data as well as cell biological and biochemical evidence strongly support the hypothesis that Aβ is a major player in the onset and development of Alzheimer's disease. In addition, it is also known that Aβ is involved in Inclusion Body Myositis, a common myopathy of the elderly in which the peptide accumulates intracellularly. Results In the present work, we found that intracellular Aβ aggregation in muscle cells of Caenorhabditis elegans overexpressing Aβ peptide is affected by two single amino acid substitutions, E22G (Arctic) and V18A (NIC). Both variations show decrease intracellular amyloidogenesis compared to wild type Aβ. We show that intracellular amyloid aggregation of wild type Aβ is accelerated by $ Cu^{2+} $ and diminished by copper chelators. Moreover, we demonstrate through toxicity and behavioral assays that Aβ-transgenic worms display a higher tolerance to $ Cu^{2+} $ toxic effects and that this resistance may be linked to the formation of amyloid aggregates. Conclusion Our data show that intracellular Aβ amyloid aggregates may trap excess of free $ Cu^{2+} $ buffering its cytotoxic effects and that accelerated intracellular Aβ aggregation may be part of a cell protective mechanism. | ||
650 | 4 | |a Amyloid Deposit |7 (dpeaa)DE-He213 | |
650 | 4 | |a Inclusion Body Myositis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Clioquinol |7 (dpeaa)DE-He213 | |
650 | 4 | |a Amyloid Precursor Protein Gene |7 (dpeaa)DE-He213 | |
650 | 4 | |a Amyloid Aggregate |7 (dpeaa)DE-He213 | |
700 | 1 | |a Rebolledo, Daniela L |4 aut | |
700 | 1 | |a Grez, Paula M |4 aut | |
700 | 1 | |a Fadic, Ricardo |4 aut | |
700 | 1 | |a Aldunate, Rebeca |4 aut | |
700 | 1 | |a Volitakis, Irene |4 aut | |
700 | 1 | |a Cherny, Robert A |4 aut | |
700 | 1 | |a Opazo, Carlos |4 aut | |
700 | 1 | |a Masters, Colin |4 aut | |
700 | 1 | |a Bush, Ashley I |4 aut | |
700 | 1 | |a Inestrosa, Nibaldo C |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Molecular neurodegeneration |d London : Biomed Central, 2006 |g 4(2009), 1 vom: 06. Jan. |w (DE-627)515978361 |w (DE-600)2244557-2 |x 1750-1326 |7 nnns |
773 | 1 | 8 | |g volume:4 |g year:2009 |g number:1 |g day:06 |g month:01 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1750-1326-4-2 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 4 |j 2009 |e 1 |b 06 |c 01 |
author_variant |
a n m an anm d l r dl dlr p m g pm pmg r f rf r a ra i v iv r a c ra rac c o co c m cm a i b ai aib n c i nc nci |
---|---|
matchkey_str |
article:17501326:2009----::nrcluaayodomtoimslclsftaseiceohbiieeaseemnnsnpyi |
hierarchy_sort_str |
2009 |
publishDate |
2009 |
allfields |
10.1186/1750-1326-4-2 doi (DE-627)SPR029506549 (SPR)1750-1326-4-2-e DE-627 ger DE-627 rakwb eng Minniti, Alicia N verfasserin aut Intracellular amyloid formation in muscle cells of Aβ-transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Minniti et al; licensee BioMed Central Ltd. 2009. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background The amyloid β-peptide is a ubiquitous peptide, which is prone to aggregate forming soluble toxic oligomers and insoluble less-toxic aggregates. The intrinsic and external/environmental factors that determine Aβ aggregation in vivo are poorly understood, as well as the cellular meaning of this process itself. Genetic data as well as cell biological and biochemical evidence strongly support the hypothesis that Aβ is a major player in the onset and development of Alzheimer's disease. In addition, it is also known that Aβ is involved in Inclusion Body Myositis, a common myopathy of the elderly in which the peptide accumulates intracellularly. Results In the present work, we found that intracellular Aβ aggregation in muscle cells of Caenorhabditis elegans overexpressing Aβ peptide is affected by two single amino acid substitutions, E22G (Arctic) and V18A (NIC). Both variations show decrease intracellular amyloidogenesis compared to wild type Aβ. We show that intracellular amyloid aggregation of wild type Aβ is accelerated by $ Cu^{2+} $ and diminished by copper chelators. Moreover, we demonstrate through toxicity and behavioral assays that Aβ-transgenic worms display a higher tolerance to $ Cu^{2+} $ toxic effects and that this resistance may be linked to the formation of amyloid aggregates. Conclusion Our data show that intracellular Aβ amyloid aggregates may trap excess of free $ Cu^{2+} $ buffering its cytotoxic effects and that accelerated intracellular Aβ aggregation may be part of a cell protective mechanism. Amyloid Deposit (dpeaa)DE-He213 Inclusion Body Myositis (dpeaa)DE-He213 Clioquinol (dpeaa)DE-He213 Amyloid Precursor Protein Gene (dpeaa)DE-He213 Amyloid Aggregate (dpeaa)DE-He213 Rebolledo, Daniela L aut Grez, Paula M aut Fadic, Ricardo aut Aldunate, Rebeca aut Volitakis, Irene aut Cherny, Robert A aut Opazo, Carlos aut Masters, Colin aut Bush, Ashley I aut Inestrosa, Nibaldo C aut Enthalten in Molecular neurodegeneration London : Biomed Central, 2006 4(2009), 1 vom: 06. Jan. (DE-627)515978361 (DE-600)2244557-2 1750-1326 nnns volume:4 year:2009 number:1 day:06 month:01 https://dx.doi.org/10.1186/1750-1326-4-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2009 1 06 01 |
spelling |
10.1186/1750-1326-4-2 doi (DE-627)SPR029506549 (SPR)1750-1326-4-2-e DE-627 ger DE-627 rakwb eng Minniti, Alicia N verfasserin aut Intracellular amyloid formation in muscle cells of Aβ-transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Minniti et al; licensee BioMed Central Ltd. 2009. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background The amyloid β-peptide is a ubiquitous peptide, which is prone to aggregate forming soluble toxic oligomers and insoluble less-toxic aggregates. The intrinsic and external/environmental factors that determine Aβ aggregation in vivo are poorly understood, as well as the cellular meaning of this process itself. Genetic data as well as cell biological and biochemical evidence strongly support the hypothesis that Aβ is a major player in the onset and development of Alzheimer's disease. In addition, it is also known that Aβ is involved in Inclusion Body Myositis, a common myopathy of the elderly in which the peptide accumulates intracellularly. Results In the present work, we found that intracellular Aβ aggregation in muscle cells of Caenorhabditis elegans overexpressing Aβ peptide is affected by two single amino acid substitutions, E22G (Arctic) and V18A (NIC). Both variations show decrease intracellular amyloidogenesis compared to wild type Aβ. We show that intracellular amyloid aggregation of wild type Aβ is accelerated by $ Cu^{2+} $ and diminished by copper chelators. Moreover, we demonstrate through toxicity and behavioral assays that Aβ-transgenic worms display a higher tolerance to $ Cu^{2+} $ toxic effects and that this resistance may be linked to the formation of amyloid aggregates. Conclusion Our data show that intracellular Aβ amyloid aggregates may trap excess of free $ Cu^{2+} $ buffering its cytotoxic effects and that accelerated intracellular Aβ aggregation may be part of a cell protective mechanism. Amyloid Deposit (dpeaa)DE-He213 Inclusion Body Myositis (dpeaa)DE-He213 Clioquinol (dpeaa)DE-He213 Amyloid Precursor Protein Gene (dpeaa)DE-He213 Amyloid Aggregate (dpeaa)DE-He213 Rebolledo, Daniela L aut Grez, Paula M aut Fadic, Ricardo aut Aldunate, Rebeca aut Volitakis, Irene aut Cherny, Robert A aut Opazo, Carlos aut Masters, Colin aut Bush, Ashley I aut Inestrosa, Nibaldo C aut Enthalten in Molecular neurodegeneration London : Biomed Central, 2006 4(2009), 1 vom: 06. Jan. (DE-627)515978361 (DE-600)2244557-2 1750-1326 nnns volume:4 year:2009 number:1 day:06 month:01 https://dx.doi.org/10.1186/1750-1326-4-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2009 1 06 01 |
allfields_unstemmed |
10.1186/1750-1326-4-2 doi (DE-627)SPR029506549 (SPR)1750-1326-4-2-e DE-627 ger DE-627 rakwb eng Minniti, Alicia N verfasserin aut Intracellular amyloid formation in muscle cells of Aβ-transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Minniti et al; licensee BioMed Central Ltd. 2009. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background The amyloid β-peptide is a ubiquitous peptide, which is prone to aggregate forming soluble toxic oligomers and insoluble less-toxic aggregates. The intrinsic and external/environmental factors that determine Aβ aggregation in vivo are poorly understood, as well as the cellular meaning of this process itself. Genetic data as well as cell biological and biochemical evidence strongly support the hypothesis that Aβ is a major player in the onset and development of Alzheimer's disease. In addition, it is also known that Aβ is involved in Inclusion Body Myositis, a common myopathy of the elderly in which the peptide accumulates intracellularly. Results In the present work, we found that intracellular Aβ aggregation in muscle cells of Caenorhabditis elegans overexpressing Aβ peptide is affected by two single amino acid substitutions, E22G (Arctic) and V18A (NIC). Both variations show decrease intracellular amyloidogenesis compared to wild type Aβ. We show that intracellular amyloid aggregation of wild type Aβ is accelerated by $ Cu^{2+} $ and diminished by copper chelators. Moreover, we demonstrate through toxicity and behavioral assays that Aβ-transgenic worms display a higher tolerance to $ Cu^{2+} $ toxic effects and that this resistance may be linked to the formation of amyloid aggregates. Conclusion Our data show that intracellular Aβ amyloid aggregates may trap excess of free $ Cu^{2+} $ buffering its cytotoxic effects and that accelerated intracellular Aβ aggregation may be part of a cell protective mechanism. Amyloid Deposit (dpeaa)DE-He213 Inclusion Body Myositis (dpeaa)DE-He213 Clioquinol (dpeaa)DE-He213 Amyloid Precursor Protein Gene (dpeaa)DE-He213 Amyloid Aggregate (dpeaa)DE-He213 Rebolledo, Daniela L aut Grez, Paula M aut Fadic, Ricardo aut Aldunate, Rebeca aut Volitakis, Irene aut Cherny, Robert A aut Opazo, Carlos aut Masters, Colin aut Bush, Ashley I aut Inestrosa, Nibaldo C aut Enthalten in Molecular neurodegeneration London : Biomed Central, 2006 4(2009), 1 vom: 06. Jan. (DE-627)515978361 (DE-600)2244557-2 1750-1326 nnns volume:4 year:2009 number:1 day:06 month:01 https://dx.doi.org/10.1186/1750-1326-4-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2009 1 06 01 |
allfieldsGer |
10.1186/1750-1326-4-2 doi (DE-627)SPR029506549 (SPR)1750-1326-4-2-e DE-627 ger DE-627 rakwb eng Minniti, Alicia N verfasserin aut Intracellular amyloid formation in muscle cells of Aβ-transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Minniti et al; licensee BioMed Central Ltd. 2009. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background The amyloid β-peptide is a ubiquitous peptide, which is prone to aggregate forming soluble toxic oligomers and insoluble less-toxic aggregates. The intrinsic and external/environmental factors that determine Aβ aggregation in vivo are poorly understood, as well as the cellular meaning of this process itself. Genetic data as well as cell biological and biochemical evidence strongly support the hypothesis that Aβ is a major player in the onset and development of Alzheimer's disease. In addition, it is also known that Aβ is involved in Inclusion Body Myositis, a common myopathy of the elderly in which the peptide accumulates intracellularly. Results In the present work, we found that intracellular Aβ aggregation in muscle cells of Caenorhabditis elegans overexpressing Aβ peptide is affected by two single amino acid substitutions, E22G (Arctic) and V18A (NIC). Both variations show decrease intracellular amyloidogenesis compared to wild type Aβ. We show that intracellular amyloid aggregation of wild type Aβ is accelerated by $ Cu^{2+} $ and diminished by copper chelators. Moreover, we demonstrate through toxicity and behavioral assays that Aβ-transgenic worms display a higher tolerance to $ Cu^{2+} $ toxic effects and that this resistance may be linked to the formation of amyloid aggregates. Conclusion Our data show that intracellular Aβ amyloid aggregates may trap excess of free $ Cu^{2+} $ buffering its cytotoxic effects and that accelerated intracellular Aβ aggregation may be part of a cell protective mechanism. Amyloid Deposit (dpeaa)DE-He213 Inclusion Body Myositis (dpeaa)DE-He213 Clioquinol (dpeaa)DE-He213 Amyloid Precursor Protein Gene (dpeaa)DE-He213 Amyloid Aggregate (dpeaa)DE-He213 Rebolledo, Daniela L aut Grez, Paula M aut Fadic, Ricardo aut Aldunate, Rebeca aut Volitakis, Irene aut Cherny, Robert A aut Opazo, Carlos aut Masters, Colin aut Bush, Ashley I aut Inestrosa, Nibaldo C aut Enthalten in Molecular neurodegeneration London : Biomed Central, 2006 4(2009), 1 vom: 06. Jan. (DE-627)515978361 (DE-600)2244557-2 1750-1326 nnns volume:4 year:2009 number:1 day:06 month:01 https://dx.doi.org/10.1186/1750-1326-4-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2009 1 06 01 |
allfieldsSound |
10.1186/1750-1326-4-2 doi (DE-627)SPR029506549 (SPR)1750-1326-4-2-e DE-627 ger DE-627 rakwb eng Minniti, Alicia N verfasserin aut Intracellular amyloid formation in muscle cells of Aβ-transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Minniti et al; licensee BioMed Central Ltd. 2009. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background The amyloid β-peptide is a ubiquitous peptide, which is prone to aggregate forming soluble toxic oligomers and insoluble less-toxic aggregates. The intrinsic and external/environmental factors that determine Aβ aggregation in vivo are poorly understood, as well as the cellular meaning of this process itself. Genetic data as well as cell biological and biochemical evidence strongly support the hypothesis that Aβ is a major player in the onset and development of Alzheimer's disease. In addition, it is also known that Aβ is involved in Inclusion Body Myositis, a common myopathy of the elderly in which the peptide accumulates intracellularly. Results In the present work, we found that intracellular Aβ aggregation in muscle cells of Caenorhabditis elegans overexpressing Aβ peptide is affected by two single amino acid substitutions, E22G (Arctic) and V18A (NIC). Both variations show decrease intracellular amyloidogenesis compared to wild type Aβ. We show that intracellular amyloid aggregation of wild type Aβ is accelerated by $ Cu^{2+} $ and diminished by copper chelators. Moreover, we demonstrate through toxicity and behavioral assays that Aβ-transgenic worms display a higher tolerance to $ Cu^{2+} $ toxic effects and that this resistance may be linked to the formation of amyloid aggregates. Conclusion Our data show that intracellular Aβ amyloid aggregates may trap excess of free $ Cu^{2+} $ buffering its cytotoxic effects and that accelerated intracellular Aβ aggregation may be part of a cell protective mechanism. Amyloid Deposit (dpeaa)DE-He213 Inclusion Body Myositis (dpeaa)DE-He213 Clioquinol (dpeaa)DE-He213 Amyloid Precursor Protein Gene (dpeaa)DE-He213 Amyloid Aggregate (dpeaa)DE-He213 Rebolledo, Daniela L aut Grez, Paula M aut Fadic, Ricardo aut Aldunate, Rebeca aut Volitakis, Irene aut Cherny, Robert A aut Opazo, Carlos aut Masters, Colin aut Bush, Ashley I aut Inestrosa, Nibaldo C aut Enthalten in Molecular neurodegeneration London : Biomed Central, 2006 4(2009), 1 vom: 06. Jan. (DE-627)515978361 (DE-600)2244557-2 1750-1326 nnns volume:4 year:2009 number:1 day:06 month:01 https://dx.doi.org/10.1186/1750-1326-4-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2009 1 06 01 |
language |
English |
source |
Enthalten in Molecular neurodegeneration 4(2009), 1 vom: 06. Jan. volume:4 year:2009 number:1 day:06 month:01 |
sourceStr |
Enthalten in Molecular neurodegeneration 4(2009), 1 vom: 06. Jan. volume:4 year:2009 number:1 day:06 month:01 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Amyloid Deposit Inclusion Body Myositis Clioquinol Amyloid Precursor Protein Gene Amyloid Aggregate |
isfreeaccess_bool |
true |
container_title |
Molecular neurodegeneration |
authorswithroles_txt_mv |
Minniti, Alicia N @@aut@@ Rebolledo, Daniela L @@aut@@ Grez, Paula M @@aut@@ Fadic, Ricardo @@aut@@ Aldunate, Rebeca @@aut@@ Volitakis, Irene @@aut@@ Cherny, Robert A @@aut@@ Opazo, Carlos @@aut@@ Masters, Colin @@aut@@ Bush, Ashley I @@aut@@ Inestrosa, Nibaldo C @@aut@@ |
publishDateDaySort_date |
2009-01-06T00:00:00Z |
hierarchy_top_id |
515978361 |
id |
SPR029506549 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR029506549</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519113403.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2009 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1750-1326-4-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR029506549</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1750-1326-4-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Minniti, Alicia N</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Intracellular amyloid formation in muscle cells of Aβ-transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Minniti et al; licensee BioMed Central Ltd. 2009. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The amyloid β-peptide is a ubiquitous peptide, which is prone to aggregate forming soluble toxic oligomers and insoluble less-toxic aggregates. The intrinsic and external/environmental factors that determine Aβ aggregation in vivo are poorly understood, as well as the cellular meaning of this process itself. Genetic data as well as cell biological and biochemical evidence strongly support the hypothesis that Aβ is a major player in the onset and development of Alzheimer's disease. In addition, it is also known that Aβ is involved in Inclusion Body Myositis, a common myopathy of the elderly in which the peptide accumulates intracellularly. Results In the present work, we found that intracellular Aβ aggregation in muscle cells of Caenorhabditis elegans overexpressing Aβ peptide is affected by two single amino acid substitutions, E22G (Arctic) and V18A (NIC). Both variations show decrease intracellular amyloidogenesis compared to wild type Aβ. We show that intracellular amyloid aggregation of wild type Aβ is accelerated by $ Cu^{2+} $ and diminished by copper chelators. Moreover, we demonstrate through toxicity and behavioral assays that Aβ-transgenic worms display a higher tolerance to $ Cu^{2+} $ toxic effects and that this resistance may be linked to the formation of amyloid aggregates. Conclusion Our data show that intracellular Aβ amyloid aggregates may trap excess of free $ Cu^{2+} $ buffering its cytotoxic effects and that accelerated intracellular Aβ aggregation may be part of a cell protective mechanism.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amyloid Deposit</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inclusion Body Myositis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clioquinol</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amyloid Precursor Protein Gene</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amyloid Aggregate</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rebolledo, Daniela L</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grez, Paula M</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fadic, Ricardo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aldunate, Rebeca</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Volitakis, Irene</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cherny, Robert A</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Opazo, Carlos</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Masters, Colin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bush, Ashley I</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Inestrosa, Nibaldo C</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Molecular neurodegeneration</subfield><subfield code="d">London : Biomed Central, 2006</subfield><subfield code="g">4(2009), 1 vom: 06. Jan.</subfield><subfield code="w">(DE-627)515978361</subfield><subfield code="w">(DE-600)2244557-2</subfield><subfield code="x">1750-1326</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:1</subfield><subfield code="g">day:06</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1750-1326-4-2</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2009</subfield><subfield code="e">1</subfield><subfield code="b">06</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
author |
Minniti, Alicia N |
spellingShingle |
Minniti, Alicia N misc Amyloid Deposit misc Inclusion Body Myositis misc Clioquinol misc Amyloid Precursor Protein Gene misc Amyloid Aggregate Intracellular amyloid formation in muscle cells of Aβ-transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification |
authorStr |
Minniti, Alicia N |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)515978361 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1750-1326 |
topic_title |
Intracellular amyloid formation in muscle cells of Aβ-transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification Amyloid Deposit (dpeaa)DE-He213 Inclusion Body Myositis (dpeaa)DE-He213 Clioquinol (dpeaa)DE-He213 Amyloid Precursor Protein Gene (dpeaa)DE-He213 Amyloid Aggregate (dpeaa)DE-He213 |
topic |
misc Amyloid Deposit misc Inclusion Body Myositis misc Clioquinol misc Amyloid Precursor Protein Gene misc Amyloid Aggregate |
topic_unstemmed |
misc Amyloid Deposit misc Inclusion Body Myositis misc Clioquinol misc Amyloid Precursor Protein Gene misc Amyloid Aggregate |
topic_browse |
misc Amyloid Deposit misc Inclusion Body Myositis misc Clioquinol misc Amyloid Precursor Protein Gene misc Amyloid Aggregate |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Molecular neurodegeneration |
hierarchy_parent_id |
515978361 |
hierarchy_top_title |
Molecular neurodegeneration |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)515978361 (DE-600)2244557-2 |
title |
Intracellular amyloid formation in muscle cells of Aβ-transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification |
ctrlnum |
(DE-627)SPR029506549 (SPR)1750-1326-4-2-e |
title_full |
Intracellular amyloid formation in muscle cells of Aβ-transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification |
author_sort |
Minniti, Alicia N |
journal |
Molecular neurodegeneration |
journalStr |
Molecular neurodegeneration |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2009 |
contenttype_str_mv |
txt |
author_browse |
Minniti, Alicia N Rebolledo, Daniela L Grez, Paula M Fadic, Ricardo Aldunate, Rebeca Volitakis, Irene Cherny, Robert A Opazo, Carlos Masters, Colin Bush, Ashley I Inestrosa, Nibaldo C |
container_volume |
4 |
format_se |
Elektronische Aufsätze |
author-letter |
Minniti, Alicia N |
doi_str_mv |
10.1186/1750-1326-4-2 |
title_sort |
intracellular amyloid formation in muscle cells of aβ-transgenic caenorhabditis elegans: determinants and physiological role in copper detoxification |
title_auth |
Intracellular amyloid formation in muscle cells of Aβ-transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification |
abstract |
Background The amyloid β-peptide is a ubiquitous peptide, which is prone to aggregate forming soluble toxic oligomers and insoluble less-toxic aggregates. The intrinsic and external/environmental factors that determine Aβ aggregation in vivo are poorly understood, as well as the cellular meaning of this process itself. Genetic data as well as cell biological and biochemical evidence strongly support the hypothesis that Aβ is a major player in the onset and development of Alzheimer's disease. In addition, it is also known that Aβ is involved in Inclusion Body Myositis, a common myopathy of the elderly in which the peptide accumulates intracellularly. Results In the present work, we found that intracellular Aβ aggregation in muscle cells of Caenorhabditis elegans overexpressing Aβ peptide is affected by two single amino acid substitutions, E22G (Arctic) and V18A (NIC). Both variations show decrease intracellular amyloidogenesis compared to wild type Aβ. We show that intracellular amyloid aggregation of wild type Aβ is accelerated by $ Cu^{2+} $ and diminished by copper chelators. Moreover, we demonstrate through toxicity and behavioral assays that Aβ-transgenic worms display a higher tolerance to $ Cu^{2+} $ toxic effects and that this resistance may be linked to the formation of amyloid aggregates. Conclusion Our data show that intracellular Aβ amyloid aggregates may trap excess of free $ Cu^{2+} $ buffering its cytotoxic effects and that accelerated intracellular Aβ aggregation may be part of a cell protective mechanism. © Minniti et al; licensee BioMed Central Ltd. 2009. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
abstractGer |
Background The amyloid β-peptide is a ubiquitous peptide, which is prone to aggregate forming soluble toxic oligomers and insoluble less-toxic aggregates. The intrinsic and external/environmental factors that determine Aβ aggregation in vivo are poorly understood, as well as the cellular meaning of this process itself. Genetic data as well as cell biological and biochemical evidence strongly support the hypothesis that Aβ is a major player in the onset and development of Alzheimer's disease. In addition, it is also known that Aβ is involved in Inclusion Body Myositis, a common myopathy of the elderly in which the peptide accumulates intracellularly. Results In the present work, we found that intracellular Aβ aggregation in muscle cells of Caenorhabditis elegans overexpressing Aβ peptide is affected by two single amino acid substitutions, E22G (Arctic) and V18A (NIC). Both variations show decrease intracellular amyloidogenesis compared to wild type Aβ. We show that intracellular amyloid aggregation of wild type Aβ is accelerated by $ Cu^{2+} $ and diminished by copper chelators. Moreover, we demonstrate through toxicity and behavioral assays that Aβ-transgenic worms display a higher tolerance to $ Cu^{2+} $ toxic effects and that this resistance may be linked to the formation of amyloid aggregates. Conclusion Our data show that intracellular Aβ amyloid aggregates may trap excess of free $ Cu^{2+} $ buffering its cytotoxic effects and that accelerated intracellular Aβ aggregation may be part of a cell protective mechanism. © Minniti et al; licensee BioMed Central Ltd. 2009. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
abstract_unstemmed |
Background The amyloid β-peptide is a ubiquitous peptide, which is prone to aggregate forming soluble toxic oligomers and insoluble less-toxic aggregates. The intrinsic and external/environmental factors that determine Aβ aggregation in vivo are poorly understood, as well as the cellular meaning of this process itself. Genetic data as well as cell biological and biochemical evidence strongly support the hypothesis that Aβ is a major player in the onset and development of Alzheimer's disease. In addition, it is also known that Aβ is involved in Inclusion Body Myositis, a common myopathy of the elderly in which the peptide accumulates intracellularly. Results In the present work, we found that intracellular Aβ aggregation in muscle cells of Caenorhabditis elegans overexpressing Aβ peptide is affected by two single amino acid substitutions, E22G (Arctic) and V18A (NIC). Both variations show decrease intracellular amyloidogenesis compared to wild type Aβ. We show that intracellular amyloid aggregation of wild type Aβ is accelerated by $ Cu^{2+} $ and diminished by copper chelators. Moreover, we demonstrate through toxicity and behavioral assays that Aβ-transgenic worms display a higher tolerance to $ Cu^{2+} $ toxic effects and that this resistance may be linked to the formation of amyloid aggregates. Conclusion Our data show that intracellular Aβ amyloid aggregates may trap excess of free $ Cu^{2+} $ buffering its cytotoxic effects and that accelerated intracellular Aβ aggregation may be part of a cell protective mechanism. © Minniti et al; licensee BioMed Central Ltd. 2009. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Intracellular amyloid formation in muscle cells of Aβ-transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification |
url |
https://dx.doi.org/10.1186/1750-1326-4-2 |
remote_bool |
true |
author2 |
Rebolledo, Daniela L Grez, Paula M Fadic, Ricardo Aldunate, Rebeca Volitakis, Irene Cherny, Robert A Opazo, Carlos Masters, Colin Bush, Ashley I Inestrosa, Nibaldo C |
author2Str |
Rebolledo, Daniela L Grez, Paula M Fadic, Ricardo Aldunate, Rebeca Volitakis, Irene Cherny, Robert A Opazo, Carlos Masters, Colin Bush, Ashley I Inestrosa, Nibaldo C |
ppnlink |
515978361 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1750-1326-4-2 |
up_date |
2024-07-04T01:15:52.510Z |
_version_ |
1803609180747071488 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR029506549</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519113403.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2009 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1750-1326-4-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR029506549</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1750-1326-4-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Minniti, Alicia N</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Intracellular amyloid formation in muscle cells of Aβ-transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Minniti et al; licensee BioMed Central Ltd. 2009. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The amyloid β-peptide is a ubiquitous peptide, which is prone to aggregate forming soluble toxic oligomers and insoluble less-toxic aggregates. The intrinsic and external/environmental factors that determine Aβ aggregation in vivo are poorly understood, as well as the cellular meaning of this process itself. Genetic data as well as cell biological and biochemical evidence strongly support the hypothesis that Aβ is a major player in the onset and development of Alzheimer's disease. In addition, it is also known that Aβ is involved in Inclusion Body Myositis, a common myopathy of the elderly in which the peptide accumulates intracellularly. Results In the present work, we found that intracellular Aβ aggregation in muscle cells of Caenorhabditis elegans overexpressing Aβ peptide is affected by two single amino acid substitutions, E22G (Arctic) and V18A (NIC). Both variations show decrease intracellular amyloidogenesis compared to wild type Aβ. We show that intracellular amyloid aggregation of wild type Aβ is accelerated by $ Cu^{2+} $ and diminished by copper chelators. Moreover, we demonstrate through toxicity and behavioral assays that Aβ-transgenic worms display a higher tolerance to $ Cu^{2+} $ toxic effects and that this resistance may be linked to the formation of amyloid aggregates. Conclusion Our data show that intracellular Aβ amyloid aggregates may trap excess of free $ Cu^{2+} $ buffering its cytotoxic effects and that accelerated intracellular Aβ aggregation may be part of a cell protective mechanism.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amyloid Deposit</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inclusion Body Myositis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clioquinol</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amyloid Precursor Protein Gene</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amyloid Aggregate</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rebolledo, Daniela L</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grez, Paula M</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fadic, Ricardo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aldunate, Rebeca</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Volitakis, Irene</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cherny, Robert A</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Opazo, Carlos</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Masters, Colin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bush, Ashley I</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Inestrosa, Nibaldo C</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Molecular neurodegeneration</subfield><subfield code="d">London : Biomed Central, 2006</subfield><subfield code="g">4(2009), 1 vom: 06. Jan.</subfield><subfield code="w">(DE-627)515978361</subfield><subfield code="w">(DE-600)2244557-2</subfield><subfield code="x">1750-1326</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:1</subfield><subfield code="g">day:06</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1750-1326-4-2</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2009</subfield><subfield code="e">1</subfield><subfield code="b">06</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
score |
7.3996525 |