On the dosimetric impact of inhomogeneity management in the Acuros XB algorithm for breast treatment
Background A new algorithm for photon dose calculation, Acuros XB, has been recently introduced in the Eclipse, Varian treatment planning system, allowing, similarly to the classic Monte Carlo methods, for accurate modelling of dose deposition in media. Aim of the present study was the assessment of...
Ausführliche Beschreibung
Autor*in: |
Fogliata, Antonella [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Fogliata et al; licensee BioMed Central Ltd. 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: Radiation oncology - London : BioMed Central, 2006, 6(2011), 1 vom: 26. Aug. |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2011 ; number:1 ; day:26 ; month:08 |
Links: |
---|
DOI / URN: |
10.1186/1748-717X-6-103 |
---|
Katalog-ID: |
SPR029599164 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR029599164 | ||
003 | DE-627 | ||
005 | 20230520003609.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2011 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1748-717X-6-103 |2 doi | |
035 | |a (DE-627)SPR029599164 | ||
035 | |a (SPR)1748-717X-6-103-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Fogliata, Antonella |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the dosimetric impact of inhomogeneity management in the Acuros XB algorithm for breast treatment |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Fogliata et al; licensee BioMed Central Ltd. 2011 | ||
520 | |a Background A new algorithm for photon dose calculation, Acuros XB, has been recently introduced in the Eclipse, Varian treatment planning system, allowing, similarly to the classic Monte Carlo methods, for accurate modelling of dose deposition in media. Aim of the present study was the assessment of its behaviour in clinical cases. Methods Datasets from ten breast patients scanned under different breathing conditions (free breathing and deep inspiration) were used to calculate dose plans using the simple two tangential field setting, with Acuros XB (in its versions 10 and 11) and the Anisotropic Analytical Algorithm (AAA) for a 6MV beam. Acuros XB calculations were performed as dose-to-medium distributions. This feature was investigated to appraise the capability of the algorithm to distinguish between different elemental compositions in the human body: lobular vs. adipose tissue in the breast, lower (deep inspiration condition) vs. higher (free breathing condition) densities in the lung. Results The analysis of the two breast structures presenting densities compatible with muscle and with adipose tissue showed an average difference in dose calculation between Acuros XB and AAA of 1.6%, with AAA predicting higher dose than Acuros XB, for the muscle tissue (the lobular breast); while the difference for adipose tissue was negligible. From histograms of the dose difference plans between AAA and Acuros XB (version 10), the dose of the lung portion inside the tangential fields presented an average difference of 0.5% in the free breathing conditions, increasing to 1.5% for the deep inspiration cases, with AAA predicting higher doses than Acuros XB. In lung tissue significant differences are found also between Acuros XB version 10 and 11 for lower density lung. Conclusions Acuros XB, differently from AAA, is capable to distinguish between the different elemental compositions of the body, and suggests the possibility to further improve the accuracy of the dose plans computed for actual treatment of patients. | ||
650 | 4 | |a Acuros |7 (dpeaa)DE-He213 | |
650 | 4 | |a AAA |7 (dpeaa)DE-He213 | |
650 | 4 | |a breast |7 (dpeaa)DE-He213 | |
650 | 4 | |a inhomogeneity correction |7 (dpeaa)DE-He213 | |
650 | 4 | |a tissue density |7 (dpeaa)DE-He213 | |
700 | 1 | |a Nicolini, Giorgia |4 aut | |
700 | 1 | |a Clivio, Alessandro |4 aut | |
700 | 1 | |a Vanetti, Eugenio |4 aut | |
700 | 1 | |a Cozzi, Luca |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Radiation oncology |d London : BioMed Central, 2006 |g 6(2011), 1 vom: 26. Aug. |w (DE-627)508725739 |w (DE-600)2224965-5 |x 1748-717X |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2011 |g number:1 |g day:26 |g month:08 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1748-717X-6-103 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2011 |e 1 |b 26 |c 08 |
author_variant |
a f af g n gn a c ac e v ev l c lc |
---|---|
matchkey_str |
article:1748717X:2011----::nhdsmtiipcoihmgniyaaeetnhauoxag |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1186/1748-717X-6-103 doi (DE-627)SPR029599164 (SPR)1748-717X-6-103-e DE-627 ger DE-627 rakwb eng Fogliata, Antonella verfasserin aut On the dosimetric impact of inhomogeneity management in the Acuros XB algorithm for breast treatment 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Fogliata et al; licensee BioMed Central Ltd. 2011 Background A new algorithm for photon dose calculation, Acuros XB, has been recently introduced in the Eclipse, Varian treatment planning system, allowing, similarly to the classic Monte Carlo methods, for accurate modelling of dose deposition in media. Aim of the present study was the assessment of its behaviour in clinical cases. Methods Datasets from ten breast patients scanned under different breathing conditions (free breathing and deep inspiration) were used to calculate dose plans using the simple two tangential field setting, with Acuros XB (in its versions 10 and 11) and the Anisotropic Analytical Algorithm (AAA) for a 6MV beam. Acuros XB calculations were performed as dose-to-medium distributions. This feature was investigated to appraise the capability of the algorithm to distinguish between different elemental compositions in the human body: lobular vs. adipose tissue in the breast, lower (deep inspiration condition) vs. higher (free breathing condition) densities in the lung. Results The analysis of the two breast structures presenting densities compatible with muscle and with adipose tissue showed an average difference in dose calculation between Acuros XB and AAA of 1.6%, with AAA predicting higher dose than Acuros XB, for the muscle tissue (the lobular breast); while the difference for adipose tissue was negligible. From histograms of the dose difference plans between AAA and Acuros XB (version 10), the dose of the lung portion inside the tangential fields presented an average difference of 0.5% in the free breathing conditions, increasing to 1.5% for the deep inspiration cases, with AAA predicting higher doses than Acuros XB. In lung tissue significant differences are found also between Acuros XB version 10 and 11 for lower density lung. Conclusions Acuros XB, differently from AAA, is capable to distinguish between the different elemental compositions of the body, and suggests the possibility to further improve the accuracy of the dose plans computed for actual treatment of patients. Acuros (dpeaa)DE-He213 AAA (dpeaa)DE-He213 breast (dpeaa)DE-He213 inhomogeneity correction (dpeaa)DE-He213 tissue density (dpeaa)DE-He213 Nicolini, Giorgia aut Clivio, Alessandro aut Vanetti, Eugenio aut Cozzi, Luca aut Enthalten in Radiation oncology London : BioMed Central, 2006 6(2011), 1 vom: 26. Aug. (DE-627)508725739 (DE-600)2224965-5 1748-717X nnns volume:6 year:2011 number:1 day:26 month:08 https://dx.doi.org/10.1186/1748-717X-6-103 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2011 1 26 08 |
spelling |
10.1186/1748-717X-6-103 doi (DE-627)SPR029599164 (SPR)1748-717X-6-103-e DE-627 ger DE-627 rakwb eng Fogliata, Antonella verfasserin aut On the dosimetric impact of inhomogeneity management in the Acuros XB algorithm for breast treatment 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Fogliata et al; licensee BioMed Central Ltd. 2011 Background A new algorithm for photon dose calculation, Acuros XB, has been recently introduced in the Eclipse, Varian treatment planning system, allowing, similarly to the classic Monte Carlo methods, for accurate modelling of dose deposition in media. Aim of the present study was the assessment of its behaviour in clinical cases. Methods Datasets from ten breast patients scanned under different breathing conditions (free breathing and deep inspiration) were used to calculate dose plans using the simple two tangential field setting, with Acuros XB (in its versions 10 and 11) and the Anisotropic Analytical Algorithm (AAA) for a 6MV beam. Acuros XB calculations were performed as dose-to-medium distributions. This feature was investigated to appraise the capability of the algorithm to distinguish between different elemental compositions in the human body: lobular vs. adipose tissue in the breast, lower (deep inspiration condition) vs. higher (free breathing condition) densities in the lung. Results The analysis of the two breast structures presenting densities compatible with muscle and with adipose tissue showed an average difference in dose calculation between Acuros XB and AAA of 1.6%, with AAA predicting higher dose than Acuros XB, for the muscle tissue (the lobular breast); while the difference for adipose tissue was negligible. From histograms of the dose difference plans between AAA and Acuros XB (version 10), the dose of the lung portion inside the tangential fields presented an average difference of 0.5% in the free breathing conditions, increasing to 1.5% for the deep inspiration cases, with AAA predicting higher doses than Acuros XB. In lung tissue significant differences are found also between Acuros XB version 10 and 11 for lower density lung. Conclusions Acuros XB, differently from AAA, is capable to distinguish between the different elemental compositions of the body, and suggests the possibility to further improve the accuracy of the dose plans computed for actual treatment of patients. Acuros (dpeaa)DE-He213 AAA (dpeaa)DE-He213 breast (dpeaa)DE-He213 inhomogeneity correction (dpeaa)DE-He213 tissue density (dpeaa)DE-He213 Nicolini, Giorgia aut Clivio, Alessandro aut Vanetti, Eugenio aut Cozzi, Luca aut Enthalten in Radiation oncology London : BioMed Central, 2006 6(2011), 1 vom: 26. Aug. (DE-627)508725739 (DE-600)2224965-5 1748-717X nnns volume:6 year:2011 number:1 day:26 month:08 https://dx.doi.org/10.1186/1748-717X-6-103 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2011 1 26 08 |
allfields_unstemmed |
10.1186/1748-717X-6-103 doi (DE-627)SPR029599164 (SPR)1748-717X-6-103-e DE-627 ger DE-627 rakwb eng Fogliata, Antonella verfasserin aut On the dosimetric impact of inhomogeneity management in the Acuros XB algorithm for breast treatment 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Fogliata et al; licensee BioMed Central Ltd. 2011 Background A new algorithm for photon dose calculation, Acuros XB, has been recently introduced in the Eclipse, Varian treatment planning system, allowing, similarly to the classic Monte Carlo methods, for accurate modelling of dose deposition in media. Aim of the present study was the assessment of its behaviour in clinical cases. Methods Datasets from ten breast patients scanned under different breathing conditions (free breathing and deep inspiration) were used to calculate dose plans using the simple two tangential field setting, with Acuros XB (in its versions 10 and 11) and the Anisotropic Analytical Algorithm (AAA) for a 6MV beam. Acuros XB calculations were performed as dose-to-medium distributions. This feature was investigated to appraise the capability of the algorithm to distinguish between different elemental compositions in the human body: lobular vs. adipose tissue in the breast, lower (deep inspiration condition) vs. higher (free breathing condition) densities in the lung. Results The analysis of the two breast structures presenting densities compatible with muscle and with adipose tissue showed an average difference in dose calculation between Acuros XB and AAA of 1.6%, with AAA predicting higher dose than Acuros XB, for the muscle tissue (the lobular breast); while the difference for adipose tissue was negligible. From histograms of the dose difference plans between AAA and Acuros XB (version 10), the dose of the lung portion inside the tangential fields presented an average difference of 0.5% in the free breathing conditions, increasing to 1.5% for the deep inspiration cases, with AAA predicting higher doses than Acuros XB. In lung tissue significant differences are found also between Acuros XB version 10 and 11 for lower density lung. Conclusions Acuros XB, differently from AAA, is capable to distinguish between the different elemental compositions of the body, and suggests the possibility to further improve the accuracy of the dose plans computed for actual treatment of patients. Acuros (dpeaa)DE-He213 AAA (dpeaa)DE-He213 breast (dpeaa)DE-He213 inhomogeneity correction (dpeaa)DE-He213 tissue density (dpeaa)DE-He213 Nicolini, Giorgia aut Clivio, Alessandro aut Vanetti, Eugenio aut Cozzi, Luca aut Enthalten in Radiation oncology London : BioMed Central, 2006 6(2011), 1 vom: 26. Aug. (DE-627)508725739 (DE-600)2224965-5 1748-717X nnns volume:6 year:2011 number:1 day:26 month:08 https://dx.doi.org/10.1186/1748-717X-6-103 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2011 1 26 08 |
allfieldsGer |
10.1186/1748-717X-6-103 doi (DE-627)SPR029599164 (SPR)1748-717X-6-103-e DE-627 ger DE-627 rakwb eng Fogliata, Antonella verfasserin aut On the dosimetric impact of inhomogeneity management in the Acuros XB algorithm for breast treatment 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Fogliata et al; licensee BioMed Central Ltd. 2011 Background A new algorithm for photon dose calculation, Acuros XB, has been recently introduced in the Eclipse, Varian treatment planning system, allowing, similarly to the classic Monte Carlo methods, for accurate modelling of dose deposition in media. Aim of the present study was the assessment of its behaviour in clinical cases. Methods Datasets from ten breast patients scanned under different breathing conditions (free breathing and deep inspiration) were used to calculate dose plans using the simple two tangential field setting, with Acuros XB (in its versions 10 and 11) and the Anisotropic Analytical Algorithm (AAA) for a 6MV beam. Acuros XB calculations were performed as dose-to-medium distributions. This feature was investigated to appraise the capability of the algorithm to distinguish between different elemental compositions in the human body: lobular vs. adipose tissue in the breast, lower (deep inspiration condition) vs. higher (free breathing condition) densities in the lung. Results The analysis of the two breast structures presenting densities compatible with muscle and with adipose tissue showed an average difference in dose calculation between Acuros XB and AAA of 1.6%, with AAA predicting higher dose than Acuros XB, for the muscle tissue (the lobular breast); while the difference for adipose tissue was negligible. From histograms of the dose difference plans between AAA and Acuros XB (version 10), the dose of the lung portion inside the tangential fields presented an average difference of 0.5% in the free breathing conditions, increasing to 1.5% for the deep inspiration cases, with AAA predicting higher doses than Acuros XB. In lung tissue significant differences are found also between Acuros XB version 10 and 11 for lower density lung. Conclusions Acuros XB, differently from AAA, is capable to distinguish between the different elemental compositions of the body, and suggests the possibility to further improve the accuracy of the dose plans computed for actual treatment of patients. Acuros (dpeaa)DE-He213 AAA (dpeaa)DE-He213 breast (dpeaa)DE-He213 inhomogeneity correction (dpeaa)DE-He213 tissue density (dpeaa)DE-He213 Nicolini, Giorgia aut Clivio, Alessandro aut Vanetti, Eugenio aut Cozzi, Luca aut Enthalten in Radiation oncology London : BioMed Central, 2006 6(2011), 1 vom: 26. Aug. (DE-627)508725739 (DE-600)2224965-5 1748-717X nnns volume:6 year:2011 number:1 day:26 month:08 https://dx.doi.org/10.1186/1748-717X-6-103 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2011 1 26 08 |
allfieldsSound |
10.1186/1748-717X-6-103 doi (DE-627)SPR029599164 (SPR)1748-717X-6-103-e DE-627 ger DE-627 rakwb eng Fogliata, Antonella verfasserin aut On the dosimetric impact of inhomogeneity management in the Acuros XB algorithm for breast treatment 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Fogliata et al; licensee BioMed Central Ltd. 2011 Background A new algorithm for photon dose calculation, Acuros XB, has been recently introduced in the Eclipse, Varian treatment planning system, allowing, similarly to the classic Monte Carlo methods, for accurate modelling of dose deposition in media. Aim of the present study was the assessment of its behaviour in clinical cases. Methods Datasets from ten breast patients scanned under different breathing conditions (free breathing and deep inspiration) were used to calculate dose plans using the simple two tangential field setting, with Acuros XB (in its versions 10 and 11) and the Anisotropic Analytical Algorithm (AAA) for a 6MV beam. Acuros XB calculations were performed as dose-to-medium distributions. This feature was investigated to appraise the capability of the algorithm to distinguish between different elemental compositions in the human body: lobular vs. adipose tissue in the breast, lower (deep inspiration condition) vs. higher (free breathing condition) densities in the lung. Results The analysis of the two breast structures presenting densities compatible with muscle and with adipose tissue showed an average difference in dose calculation between Acuros XB and AAA of 1.6%, with AAA predicting higher dose than Acuros XB, for the muscle tissue (the lobular breast); while the difference for adipose tissue was negligible. From histograms of the dose difference plans between AAA and Acuros XB (version 10), the dose of the lung portion inside the tangential fields presented an average difference of 0.5% in the free breathing conditions, increasing to 1.5% for the deep inspiration cases, with AAA predicting higher doses than Acuros XB. In lung tissue significant differences are found also between Acuros XB version 10 and 11 for lower density lung. Conclusions Acuros XB, differently from AAA, is capable to distinguish between the different elemental compositions of the body, and suggests the possibility to further improve the accuracy of the dose plans computed for actual treatment of patients. Acuros (dpeaa)DE-He213 AAA (dpeaa)DE-He213 breast (dpeaa)DE-He213 inhomogeneity correction (dpeaa)DE-He213 tissue density (dpeaa)DE-He213 Nicolini, Giorgia aut Clivio, Alessandro aut Vanetti, Eugenio aut Cozzi, Luca aut Enthalten in Radiation oncology London : BioMed Central, 2006 6(2011), 1 vom: 26. Aug. (DE-627)508725739 (DE-600)2224965-5 1748-717X nnns volume:6 year:2011 number:1 day:26 month:08 https://dx.doi.org/10.1186/1748-717X-6-103 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2011 1 26 08 |
language |
English |
source |
Enthalten in Radiation oncology 6(2011), 1 vom: 26. Aug. volume:6 year:2011 number:1 day:26 month:08 |
sourceStr |
Enthalten in Radiation oncology 6(2011), 1 vom: 26. Aug. volume:6 year:2011 number:1 day:26 month:08 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Acuros AAA breast inhomogeneity correction tissue density |
isfreeaccess_bool |
true |
container_title |
Radiation oncology |
authorswithroles_txt_mv |
Fogliata, Antonella @@aut@@ Nicolini, Giorgia @@aut@@ Clivio, Alessandro @@aut@@ Vanetti, Eugenio @@aut@@ Cozzi, Luca @@aut@@ |
publishDateDaySort_date |
2011-08-26T00:00:00Z |
hierarchy_top_id |
508725739 |
id |
SPR029599164 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR029599164</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520003609.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1748-717X-6-103</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR029599164</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1748-717X-6-103-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fogliata, Antonella</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the dosimetric impact of inhomogeneity management in the Acuros XB algorithm for breast treatment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Fogliata et al; licensee BioMed Central Ltd. 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background A new algorithm for photon dose calculation, Acuros XB, has been recently introduced in the Eclipse, Varian treatment planning system, allowing, similarly to the classic Monte Carlo methods, for accurate modelling of dose deposition in media. Aim of the present study was the assessment of its behaviour in clinical cases. Methods Datasets from ten breast patients scanned under different breathing conditions (free breathing and deep inspiration) were used to calculate dose plans using the simple two tangential field setting, with Acuros XB (in its versions 10 and 11) and the Anisotropic Analytical Algorithm (AAA) for a 6MV beam. Acuros XB calculations were performed as dose-to-medium distributions. This feature was investigated to appraise the capability of the algorithm to distinguish between different elemental compositions in the human body: lobular vs. adipose tissue in the breast, lower (deep inspiration condition) vs. higher (free breathing condition) densities in the lung. Results The analysis of the two breast structures presenting densities compatible with muscle and with adipose tissue showed an average difference in dose calculation between Acuros XB and AAA of 1.6%, with AAA predicting higher dose than Acuros XB, for the muscle tissue (the lobular breast); while the difference for adipose tissue was negligible. From histograms of the dose difference plans between AAA and Acuros XB (version 10), the dose of the lung portion inside the tangential fields presented an average difference of 0.5% in the free breathing conditions, increasing to 1.5% for the deep inspiration cases, with AAA predicting higher doses than Acuros XB. In lung tissue significant differences are found also between Acuros XB version 10 and 11 for lower density lung. Conclusions Acuros XB, differently from AAA, is capable to distinguish between the different elemental compositions of the body, and suggests the possibility to further improve the accuracy of the dose plans computed for actual treatment of patients.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acuros</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AAA</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">breast</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inhomogeneity correction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tissue density</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nicolini, Giorgia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Clivio, Alessandro</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vanetti, Eugenio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cozzi, Luca</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Radiation oncology</subfield><subfield code="d">London : BioMed Central, 2006</subfield><subfield code="g">6(2011), 1 vom: 26. Aug.</subfield><subfield code="w">(DE-627)508725739</subfield><subfield code="w">(DE-600)2224965-5</subfield><subfield code="x">1748-717X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:1</subfield><subfield code="g">day:26</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1748-717X-6-103</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2011</subfield><subfield code="e">1</subfield><subfield code="b">26</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
author |
Fogliata, Antonella |
spellingShingle |
Fogliata, Antonella misc Acuros misc AAA misc breast misc inhomogeneity correction misc tissue density On the dosimetric impact of inhomogeneity management in the Acuros XB algorithm for breast treatment |
authorStr |
Fogliata, Antonella |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)508725739 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1748-717X |
topic_title |
On the dosimetric impact of inhomogeneity management in the Acuros XB algorithm for breast treatment Acuros (dpeaa)DE-He213 AAA (dpeaa)DE-He213 breast (dpeaa)DE-He213 inhomogeneity correction (dpeaa)DE-He213 tissue density (dpeaa)DE-He213 |
topic |
misc Acuros misc AAA misc breast misc inhomogeneity correction misc tissue density |
topic_unstemmed |
misc Acuros misc AAA misc breast misc inhomogeneity correction misc tissue density |
topic_browse |
misc Acuros misc AAA misc breast misc inhomogeneity correction misc tissue density |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Radiation oncology |
hierarchy_parent_id |
508725739 |
hierarchy_top_title |
Radiation oncology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)508725739 (DE-600)2224965-5 |
title |
On the dosimetric impact of inhomogeneity management in the Acuros XB algorithm for breast treatment |
ctrlnum |
(DE-627)SPR029599164 (SPR)1748-717X-6-103-e |
title_full |
On the dosimetric impact of inhomogeneity management in the Acuros XB algorithm for breast treatment |
author_sort |
Fogliata, Antonella |
journal |
Radiation oncology |
journalStr |
Radiation oncology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
author_browse |
Fogliata, Antonella Nicolini, Giorgia Clivio, Alessandro Vanetti, Eugenio Cozzi, Luca |
container_volume |
6 |
format_se |
Elektronische Aufsätze |
author-letter |
Fogliata, Antonella |
doi_str_mv |
10.1186/1748-717X-6-103 |
title_sort |
on the dosimetric impact of inhomogeneity management in the acuros xb algorithm for breast treatment |
title_auth |
On the dosimetric impact of inhomogeneity management in the Acuros XB algorithm for breast treatment |
abstract |
Background A new algorithm for photon dose calculation, Acuros XB, has been recently introduced in the Eclipse, Varian treatment planning system, allowing, similarly to the classic Monte Carlo methods, for accurate modelling of dose deposition in media. Aim of the present study was the assessment of its behaviour in clinical cases. Methods Datasets from ten breast patients scanned under different breathing conditions (free breathing and deep inspiration) were used to calculate dose plans using the simple two tangential field setting, with Acuros XB (in its versions 10 and 11) and the Anisotropic Analytical Algorithm (AAA) for a 6MV beam. Acuros XB calculations were performed as dose-to-medium distributions. This feature was investigated to appraise the capability of the algorithm to distinguish between different elemental compositions in the human body: lobular vs. adipose tissue in the breast, lower (deep inspiration condition) vs. higher (free breathing condition) densities in the lung. Results The analysis of the two breast structures presenting densities compatible with muscle and with adipose tissue showed an average difference in dose calculation between Acuros XB and AAA of 1.6%, with AAA predicting higher dose than Acuros XB, for the muscle tissue (the lobular breast); while the difference for adipose tissue was negligible. From histograms of the dose difference plans between AAA and Acuros XB (version 10), the dose of the lung portion inside the tangential fields presented an average difference of 0.5% in the free breathing conditions, increasing to 1.5% for the deep inspiration cases, with AAA predicting higher doses than Acuros XB. In lung tissue significant differences are found also between Acuros XB version 10 and 11 for lower density lung. Conclusions Acuros XB, differently from AAA, is capable to distinguish between the different elemental compositions of the body, and suggests the possibility to further improve the accuracy of the dose plans computed for actual treatment of patients. © Fogliata et al; licensee BioMed Central Ltd. 2011 |
abstractGer |
Background A new algorithm for photon dose calculation, Acuros XB, has been recently introduced in the Eclipse, Varian treatment planning system, allowing, similarly to the classic Monte Carlo methods, for accurate modelling of dose deposition in media. Aim of the present study was the assessment of its behaviour in clinical cases. Methods Datasets from ten breast patients scanned under different breathing conditions (free breathing and deep inspiration) were used to calculate dose plans using the simple two tangential field setting, with Acuros XB (in its versions 10 and 11) and the Anisotropic Analytical Algorithm (AAA) for a 6MV beam. Acuros XB calculations were performed as dose-to-medium distributions. This feature was investigated to appraise the capability of the algorithm to distinguish between different elemental compositions in the human body: lobular vs. adipose tissue in the breast, lower (deep inspiration condition) vs. higher (free breathing condition) densities in the lung. Results The analysis of the two breast structures presenting densities compatible with muscle and with adipose tissue showed an average difference in dose calculation between Acuros XB and AAA of 1.6%, with AAA predicting higher dose than Acuros XB, for the muscle tissue (the lobular breast); while the difference for adipose tissue was negligible. From histograms of the dose difference plans between AAA and Acuros XB (version 10), the dose of the lung portion inside the tangential fields presented an average difference of 0.5% in the free breathing conditions, increasing to 1.5% for the deep inspiration cases, with AAA predicting higher doses than Acuros XB. In lung tissue significant differences are found also between Acuros XB version 10 and 11 for lower density lung. Conclusions Acuros XB, differently from AAA, is capable to distinguish between the different elemental compositions of the body, and suggests the possibility to further improve the accuracy of the dose plans computed for actual treatment of patients. © Fogliata et al; licensee BioMed Central Ltd. 2011 |
abstract_unstemmed |
Background A new algorithm for photon dose calculation, Acuros XB, has been recently introduced in the Eclipse, Varian treatment planning system, allowing, similarly to the classic Monte Carlo methods, for accurate modelling of dose deposition in media. Aim of the present study was the assessment of its behaviour in clinical cases. Methods Datasets from ten breast patients scanned under different breathing conditions (free breathing and deep inspiration) were used to calculate dose plans using the simple two tangential field setting, with Acuros XB (in its versions 10 and 11) and the Anisotropic Analytical Algorithm (AAA) for a 6MV beam. Acuros XB calculations were performed as dose-to-medium distributions. This feature was investigated to appraise the capability of the algorithm to distinguish between different elemental compositions in the human body: lobular vs. adipose tissue in the breast, lower (deep inspiration condition) vs. higher (free breathing condition) densities in the lung. Results The analysis of the two breast structures presenting densities compatible with muscle and with adipose tissue showed an average difference in dose calculation between Acuros XB and AAA of 1.6%, with AAA predicting higher dose than Acuros XB, for the muscle tissue (the lobular breast); while the difference for adipose tissue was negligible. From histograms of the dose difference plans between AAA and Acuros XB (version 10), the dose of the lung portion inside the tangential fields presented an average difference of 0.5% in the free breathing conditions, increasing to 1.5% for the deep inspiration cases, with AAA predicting higher doses than Acuros XB. In lung tissue significant differences are found also between Acuros XB version 10 and 11 for lower density lung. Conclusions Acuros XB, differently from AAA, is capable to distinguish between the different elemental compositions of the body, and suggests the possibility to further improve the accuracy of the dose plans computed for actual treatment of patients. © Fogliata et al; licensee BioMed Central Ltd. 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
On the dosimetric impact of inhomogeneity management in the Acuros XB algorithm for breast treatment |
url |
https://dx.doi.org/10.1186/1748-717X-6-103 |
remote_bool |
true |
author2 |
Nicolini, Giorgia Clivio, Alessandro Vanetti, Eugenio Cozzi, Luca |
author2Str |
Nicolini, Giorgia Clivio, Alessandro Vanetti, Eugenio Cozzi, Luca |
ppnlink |
508725739 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1748-717X-6-103 |
up_date |
2024-07-04T01:38:34.277Z |
_version_ |
1803610608662216704 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR029599164</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520003609.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1748-717X-6-103</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR029599164</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1748-717X-6-103-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fogliata, Antonella</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the dosimetric impact of inhomogeneity management in the Acuros XB algorithm for breast treatment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Fogliata et al; licensee BioMed Central Ltd. 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background A new algorithm for photon dose calculation, Acuros XB, has been recently introduced in the Eclipse, Varian treatment planning system, allowing, similarly to the classic Monte Carlo methods, for accurate modelling of dose deposition in media. Aim of the present study was the assessment of its behaviour in clinical cases. Methods Datasets from ten breast patients scanned under different breathing conditions (free breathing and deep inspiration) were used to calculate dose plans using the simple two tangential field setting, with Acuros XB (in its versions 10 and 11) and the Anisotropic Analytical Algorithm (AAA) for a 6MV beam. Acuros XB calculations were performed as dose-to-medium distributions. This feature was investigated to appraise the capability of the algorithm to distinguish between different elemental compositions in the human body: lobular vs. adipose tissue in the breast, lower (deep inspiration condition) vs. higher (free breathing condition) densities in the lung. Results The analysis of the two breast structures presenting densities compatible with muscle and with adipose tissue showed an average difference in dose calculation between Acuros XB and AAA of 1.6%, with AAA predicting higher dose than Acuros XB, for the muscle tissue (the lobular breast); while the difference for adipose tissue was negligible. From histograms of the dose difference plans between AAA and Acuros XB (version 10), the dose of the lung portion inside the tangential fields presented an average difference of 0.5% in the free breathing conditions, increasing to 1.5% for the deep inspiration cases, with AAA predicting higher doses than Acuros XB. In lung tissue significant differences are found also between Acuros XB version 10 and 11 for lower density lung. Conclusions Acuros XB, differently from AAA, is capable to distinguish between the different elemental compositions of the body, and suggests the possibility to further improve the accuracy of the dose plans computed for actual treatment of patients.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acuros</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AAA</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">breast</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inhomogeneity correction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tissue density</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nicolini, Giorgia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Clivio, Alessandro</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vanetti, Eugenio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cozzi, Luca</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Radiation oncology</subfield><subfield code="d">London : BioMed Central, 2006</subfield><subfield code="g">6(2011), 1 vom: 26. Aug.</subfield><subfield code="w">(DE-627)508725739</subfield><subfield code="w">(DE-600)2224965-5</subfield><subfield code="x">1748-717X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:1</subfield><subfield code="g">day:26</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1748-717X-6-103</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2011</subfield><subfield code="e">1</subfield><subfield code="b">26</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
score |
7.4010057 |