Uncertain maximal frequent subgraph mining algorithm based on adjacency matrix and weight

Abstract How to mine many interesting subgraphs in uncertain graph has become an important research field in data mining. In this paper, a novel algorithm Uncertain Maximal Frequent Subgraph Mining Algorithm Based on Adjacency Matrix and Weight (UMFGAMW) is proposed. The definition of the adjacency...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Wu, Di [verfasserIn]

Ren, Jiadong

Sheng, Long

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2017

Schlagwörter:

Adjacency matrix

Weight

Uncertain graph

Maximum frequent subgraph

Frequent subgraph mining

Anmerkung:

© Springer-Verlag Berlin Heidelberg 2017

Übergeordnetes Werk:

Enthalten in: International journal of machine learning and cybernetics - Heidelberg : Springer, 2010, 9(2017), 9 vom: 18. März, Seite 1445-1455

Übergeordnetes Werk:

volume:9 ; year:2017 ; number:9 ; day:18 ; month:03 ; pages:1445-1455

Links:

Volltext

DOI / URN:

10.1007/s13042-017-0655-y

Katalog-ID:

SPR029605482

Nicht das Richtige dabei?

Schreiben Sie uns!