Role of mitochondria and cardiolipins in growth inhibition of breast cancer cells by retinoic acid
Background All-trans-retinoic-acid (ATRA) is a promising agent in the prevention/treatment of breast-cancer. There is growing evidence that reprogramming of cellular lipid metabolism contributes to malignant transformation and progression. Lipid metabolism is implicated in cell differentiation and m...
Ausführliche Beschreibung
Autor*in: |
Terao, Mineko [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s). 2019. corrected publication 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of experimental & clinical cancer research - Berlin : Springer, 2008, 38(2019), 1 vom: 29. Okt. |
---|---|
Übergeordnetes Werk: |
volume:38 ; year:2019 ; number:1 ; day:29 ; month:10 |
Links: |
---|
DOI / URN: |
10.1186/s13046-019-1438-y |
---|
Katalog-ID: |
SPR029649587 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR029649587 | ||
003 | DE-627 | ||
005 | 20230519073602.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13046-019-1438-y |2 doi | |
035 | |a (DE-627)SPR029649587 | ||
035 | |a (SPR)s13046-019-1438-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Terao, Mineko |e verfasserin |4 aut | |
245 | 1 | 0 | |a Role of mitochondria and cardiolipins in growth inhibition of breast cancer cells by retinoic acid |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s). 2019. corrected publication 2019 | ||
520 | |a Background All-trans-retinoic-acid (ATRA) is a promising agent in the prevention/treatment of breast-cancer. There is growing evidence that reprogramming of cellular lipid metabolism contributes to malignant transformation and progression. Lipid metabolism is implicated in cell differentiation and metastatic colonization and it is involved in the mechanisms of sensitivity/resistance to different anti-tumor agents. The role played by lipids in the anti-tumor activity of ATRA has never been studied. Methods We used 16 breast cancer cell-lines whose degree of sensitivity to the anti-proliferative action of ATRA is known. We implemented a non-oriented mass-spectrometry based approach to define the lipidomic profiles of each cell-line grown under basal conditions and following treatment with ATRA. To complement the lipidomic data, untreated and retinoid treated cell-lines were also subjected to RNA-sequencing to define the perturbations afforded by ATRA on the whole-genome gene-expression profiles. The number and functional activity of mitochondria were determined in selected ATRA-sensitive and –resistant cell-lines. Bio-computing approaches were used to analyse the high-throughput lipidomic and transcriptomic data. Results ATRA perturbs the homeostasis of numerous lipids and the most relevant effects are observed on cardiolipins, which are located in the mitochondrial inner membranes and play a role in oxidative-phosphorylation. ATRA reduces the amounts of cardiolipins and the effect is associated with the growth-inhibitory activity of the retinoid. Down-regulation of cardiolipins is due to a reduction of mitochondria, which is caused by an ATRA-dependent decrease in the expression of nuclear genes encoding mitochondrial proteins. This demonstrates that ATRA anti-tumor activity is due to a decrease in the amounts of mitochondria causing deficits in the respiration/energy-balance of breast-cancer cells. Conclusions The observation that ATRA anti-proliferative activity is caused by a reduction in the respiration and energy balance of the tumor cells has important ramifications for the therapeutic action of ATRA in breast cancer. The study may open the way to the development of rational therapeutic combinations based on the use of ATRA and anti-tumor agents targeting the mitochondria. | ||
650 | 4 | |a Retinoic acid |7 (dpeaa)DE-He213 | |
650 | 4 | |a Breast cancer |7 (dpeaa)DE-He213 | |
650 | 4 | |a Lipidomics |7 (dpeaa)DE-He213 | |
650 | 4 | |a Oxidative phosphorylation |7 (dpeaa)DE-He213 | |
700 | 1 | |a Goracci, Laura |4 aut | |
700 | 1 | |a Celestini, Valentina |4 aut | |
700 | 1 | |a Kurosaki, Mami |4 aut | |
700 | 1 | |a Bolis, Marco |4 aut | |
700 | 1 | |a Di Veroli, Alessandra |4 aut | |
700 | 1 | |a Vallerga, Arianna |4 aut | |
700 | 1 | |a Fratelli, Maddalena |4 aut | |
700 | 1 | |a Lupi, Monica |4 aut | |
700 | 1 | |a Corbelli, Alessandro |4 aut | |
700 | 1 | |a Fiordaliso, Fabio |4 aut | |
700 | 1 | |a Gianni, Maurizio |4 aut | |
700 | 1 | |a Paroni, Gabriela |4 aut | |
700 | 1 | |a Zanetti, Adriana |4 aut | |
700 | 1 | |a Cruciani, Gabriele |4 aut | |
700 | 1 | |a Garattini, Enrico |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of experimental & clinical cancer research |d Berlin : Springer, 2008 |g 38(2019), 1 vom: 29. Okt. |w (DE-627)568921380 |w (DE-600)2430698-8 |x 1756-9966 |7 nnns |
773 | 1 | 8 | |g volume:38 |g year:2019 |g number:1 |g day:29 |g month:10 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13046-019-1438-y |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 38 |j 2019 |e 1 |b 29 |c 10 |
author_variant |
m t mt l g lg v c vc m k mk m b mb v a d va vad a v av m f mf m l ml a c ac f f ff m g mg g p gp a z az g c gc e g eg |
---|---|
matchkey_str |
article:17569966:2019----::oefiohnrancrilpnigotihbtoobescn |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1186/s13046-019-1438-y doi (DE-627)SPR029649587 (SPR)s13046-019-1438-y-e DE-627 ger DE-627 rakwb eng Terao, Mineko verfasserin aut Role of mitochondria and cardiolipins in growth inhibition of breast cancer cells by retinoic acid 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2019. corrected publication 2019 Background All-trans-retinoic-acid (ATRA) is a promising agent in the prevention/treatment of breast-cancer. There is growing evidence that reprogramming of cellular lipid metabolism contributes to malignant transformation and progression. Lipid metabolism is implicated in cell differentiation and metastatic colonization and it is involved in the mechanisms of sensitivity/resistance to different anti-tumor agents. The role played by lipids in the anti-tumor activity of ATRA has never been studied. Methods We used 16 breast cancer cell-lines whose degree of sensitivity to the anti-proliferative action of ATRA is known. We implemented a non-oriented mass-spectrometry based approach to define the lipidomic profiles of each cell-line grown under basal conditions and following treatment with ATRA. To complement the lipidomic data, untreated and retinoid treated cell-lines were also subjected to RNA-sequencing to define the perturbations afforded by ATRA on the whole-genome gene-expression profiles. The number and functional activity of mitochondria were determined in selected ATRA-sensitive and –resistant cell-lines. Bio-computing approaches were used to analyse the high-throughput lipidomic and transcriptomic data. Results ATRA perturbs the homeostasis of numerous lipids and the most relevant effects are observed on cardiolipins, which are located in the mitochondrial inner membranes and play a role in oxidative-phosphorylation. ATRA reduces the amounts of cardiolipins and the effect is associated with the growth-inhibitory activity of the retinoid. Down-regulation of cardiolipins is due to a reduction of mitochondria, which is caused by an ATRA-dependent decrease in the expression of nuclear genes encoding mitochondrial proteins. This demonstrates that ATRA anti-tumor activity is due to a decrease in the amounts of mitochondria causing deficits in the respiration/energy-balance of breast-cancer cells. Conclusions The observation that ATRA anti-proliferative activity is caused by a reduction in the respiration and energy balance of the tumor cells has important ramifications for the therapeutic action of ATRA in breast cancer. The study may open the way to the development of rational therapeutic combinations based on the use of ATRA and anti-tumor agents targeting the mitochondria. Retinoic acid (dpeaa)DE-He213 Breast cancer (dpeaa)DE-He213 Lipidomics (dpeaa)DE-He213 Oxidative phosphorylation (dpeaa)DE-He213 Goracci, Laura aut Celestini, Valentina aut Kurosaki, Mami aut Bolis, Marco aut Di Veroli, Alessandra aut Vallerga, Arianna aut Fratelli, Maddalena aut Lupi, Monica aut Corbelli, Alessandro aut Fiordaliso, Fabio aut Gianni, Maurizio aut Paroni, Gabriela aut Zanetti, Adriana aut Cruciani, Gabriele aut Garattini, Enrico aut Enthalten in Journal of experimental & clinical cancer research Berlin : Springer, 2008 38(2019), 1 vom: 29. Okt. (DE-627)568921380 (DE-600)2430698-8 1756-9966 nnns volume:38 year:2019 number:1 day:29 month:10 https://dx.doi.org/10.1186/s13046-019-1438-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 38 2019 1 29 10 |
spelling |
10.1186/s13046-019-1438-y doi (DE-627)SPR029649587 (SPR)s13046-019-1438-y-e DE-627 ger DE-627 rakwb eng Terao, Mineko verfasserin aut Role of mitochondria and cardiolipins in growth inhibition of breast cancer cells by retinoic acid 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2019. corrected publication 2019 Background All-trans-retinoic-acid (ATRA) is a promising agent in the prevention/treatment of breast-cancer. There is growing evidence that reprogramming of cellular lipid metabolism contributes to malignant transformation and progression. Lipid metabolism is implicated in cell differentiation and metastatic colonization and it is involved in the mechanisms of sensitivity/resistance to different anti-tumor agents. The role played by lipids in the anti-tumor activity of ATRA has never been studied. Methods We used 16 breast cancer cell-lines whose degree of sensitivity to the anti-proliferative action of ATRA is known. We implemented a non-oriented mass-spectrometry based approach to define the lipidomic profiles of each cell-line grown under basal conditions and following treatment with ATRA. To complement the lipidomic data, untreated and retinoid treated cell-lines were also subjected to RNA-sequencing to define the perturbations afforded by ATRA on the whole-genome gene-expression profiles. The number and functional activity of mitochondria were determined in selected ATRA-sensitive and –resistant cell-lines. Bio-computing approaches were used to analyse the high-throughput lipidomic and transcriptomic data. Results ATRA perturbs the homeostasis of numerous lipids and the most relevant effects are observed on cardiolipins, which are located in the mitochondrial inner membranes and play a role in oxidative-phosphorylation. ATRA reduces the amounts of cardiolipins and the effect is associated with the growth-inhibitory activity of the retinoid. Down-regulation of cardiolipins is due to a reduction of mitochondria, which is caused by an ATRA-dependent decrease in the expression of nuclear genes encoding mitochondrial proteins. This demonstrates that ATRA anti-tumor activity is due to a decrease in the amounts of mitochondria causing deficits in the respiration/energy-balance of breast-cancer cells. Conclusions The observation that ATRA anti-proliferative activity is caused by a reduction in the respiration and energy balance of the tumor cells has important ramifications for the therapeutic action of ATRA in breast cancer. The study may open the way to the development of rational therapeutic combinations based on the use of ATRA and anti-tumor agents targeting the mitochondria. Retinoic acid (dpeaa)DE-He213 Breast cancer (dpeaa)DE-He213 Lipidomics (dpeaa)DE-He213 Oxidative phosphorylation (dpeaa)DE-He213 Goracci, Laura aut Celestini, Valentina aut Kurosaki, Mami aut Bolis, Marco aut Di Veroli, Alessandra aut Vallerga, Arianna aut Fratelli, Maddalena aut Lupi, Monica aut Corbelli, Alessandro aut Fiordaliso, Fabio aut Gianni, Maurizio aut Paroni, Gabriela aut Zanetti, Adriana aut Cruciani, Gabriele aut Garattini, Enrico aut Enthalten in Journal of experimental & clinical cancer research Berlin : Springer, 2008 38(2019), 1 vom: 29. Okt. (DE-627)568921380 (DE-600)2430698-8 1756-9966 nnns volume:38 year:2019 number:1 day:29 month:10 https://dx.doi.org/10.1186/s13046-019-1438-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 38 2019 1 29 10 |
allfields_unstemmed |
10.1186/s13046-019-1438-y doi (DE-627)SPR029649587 (SPR)s13046-019-1438-y-e DE-627 ger DE-627 rakwb eng Terao, Mineko verfasserin aut Role of mitochondria and cardiolipins in growth inhibition of breast cancer cells by retinoic acid 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2019. corrected publication 2019 Background All-trans-retinoic-acid (ATRA) is a promising agent in the prevention/treatment of breast-cancer. There is growing evidence that reprogramming of cellular lipid metabolism contributes to malignant transformation and progression. Lipid metabolism is implicated in cell differentiation and metastatic colonization and it is involved in the mechanisms of sensitivity/resistance to different anti-tumor agents. The role played by lipids in the anti-tumor activity of ATRA has never been studied. Methods We used 16 breast cancer cell-lines whose degree of sensitivity to the anti-proliferative action of ATRA is known. We implemented a non-oriented mass-spectrometry based approach to define the lipidomic profiles of each cell-line grown under basal conditions and following treatment with ATRA. To complement the lipidomic data, untreated and retinoid treated cell-lines were also subjected to RNA-sequencing to define the perturbations afforded by ATRA on the whole-genome gene-expression profiles. The number and functional activity of mitochondria were determined in selected ATRA-sensitive and –resistant cell-lines. Bio-computing approaches were used to analyse the high-throughput lipidomic and transcriptomic data. Results ATRA perturbs the homeostasis of numerous lipids and the most relevant effects are observed on cardiolipins, which are located in the mitochondrial inner membranes and play a role in oxidative-phosphorylation. ATRA reduces the amounts of cardiolipins and the effect is associated with the growth-inhibitory activity of the retinoid. Down-regulation of cardiolipins is due to a reduction of mitochondria, which is caused by an ATRA-dependent decrease in the expression of nuclear genes encoding mitochondrial proteins. This demonstrates that ATRA anti-tumor activity is due to a decrease in the amounts of mitochondria causing deficits in the respiration/energy-balance of breast-cancer cells. Conclusions The observation that ATRA anti-proliferative activity is caused by a reduction in the respiration and energy balance of the tumor cells has important ramifications for the therapeutic action of ATRA in breast cancer. The study may open the way to the development of rational therapeutic combinations based on the use of ATRA and anti-tumor agents targeting the mitochondria. Retinoic acid (dpeaa)DE-He213 Breast cancer (dpeaa)DE-He213 Lipidomics (dpeaa)DE-He213 Oxidative phosphorylation (dpeaa)DE-He213 Goracci, Laura aut Celestini, Valentina aut Kurosaki, Mami aut Bolis, Marco aut Di Veroli, Alessandra aut Vallerga, Arianna aut Fratelli, Maddalena aut Lupi, Monica aut Corbelli, Alessandro aut Fiordaliso, Fabio aut Gianni, Maurizio aut Paroni, Gabriela aut Zanetti, Adriana aut Cruciani, Gabriele aut Garattini, Enrico aut Enthalten in Journal of experimental & clinical cancer research Berlin : Springer, 2008 38(2019), 1 vom: 29. Okt. (DE-627)568921380 (DE-600)2430698-8 1756-9966 nnns volume:38 year:2019 number:1 day:29 month:10 https://dx.doi.org/10.1186/s13046-019-1438-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 38 2019 1 29 10 |
allfieldsGer |
10.1186/s13046-019-1438-y doi (DE-627)SPR029649587 (SPR)s13046-019-1438-y-e DE-627 ger DE-627 rakwb eng Terao, Mineko verfasserin aut Role of mitochondria and cardiolipins in growth inhibition of breast cancer cells by retinoic acid 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2019. corrected publication 2019 Background All-trans-retinoic-acid (ATRA) is a promising agent in the prevention/treatment of breast-cancer. There is growing evidence that reprogramming of cellular lipid metabolism contributes to malignant transformation and progression. Lipid metabolism is implicated in cell differentiation and metastatic colonization and it is involved in the mechanisms of sensitivity/resistance to different anti-tumor agents. The role played by lipids in the anti-tumor activity of ATRA has never been studied. Methods We used 16 breast cancer cell-lines whose degree of sensitivity to the anti-proliferative action of ATRA is known. We implemented a non-oriented mass-spectrometry based approach to define the lipidomic profiles of each cell-line grown under basal conditions and following treatment with ATRA. To complement the lipidomic data, untreated and retinoid treated cell-lines were also subjected to RNA-sequencing to define the perturbations afforded by ATRA on the whole-genome gene-expression profiles. The number and functional activity of mitochondria were determined in selected ATRA-sensitive and –resistant cell-lines. Bio-computing approaches were used to analyse the high-throughput lipidomic and transcriptomic data. Results ATRA perturbs the homeostasis of numerous lipids and the most relevant effects are observed on cardiolipins, which are located in the mitochondrial inner membranes and play a role in oxidative-phosphorylation. ATRA reduces the amounts of cardiolipins and the effect is associated with the growth-inhibitory activity of the retinoid. Down-regulation of cardiolipins is due to a reduction of mitochondria, which is caused by an ATRA-dependent decrease in the expression of nuclear genes encoding mitochondrial proteins. This demonstrates that ATRA anti-tumor activity is due to a decrease in the amounts of mitochondria causing deficits in the respiration/energy-balance of breast-cancer cells. Conclusions The observation that ATRA anti-proliferative activity is caused by a reduction in the respiration and energy balance of the tumor cells has important ramifications for the therapeutic action of ATRA in breast cancer. The study may open the way to the development of rational therapeutic combinations based on the use of ATRA and anti-tumor agents targeting the mitochondria. Retinoic acid (dpeaa)DE-He213 Breast cancer (dpeaa)DE-He213 Lipidomics (dpeaa)DE-He213 Oxidative phosphorylation (dpeaa)DE-He213 Goracci, Laura aut Celestini, Valentina aut Kurosaki, Mami aut Bolis, Marco aut Di Veroli, Alessandra aut Vallerga, Arianna aut Fratelli, Maddalena aut Lupi, Monica aut Corbelli, Alessandro aut Fiordaliso, Fabio aut Gianni, Maurizio aut Paroni, Gabriela aut Zanetti, Adriana aut Cruciani, Gabriele aut Garattini, Enrico aut Enthalten in Journal of experimental & clinical cancer research Berlin : Springer, 2008 38(2019), 1 vom: 29. Okt. (DE-627)568921380 (DE-600)2430698-8 1756-9966 nnns volume:38 year:2019 number:1 day:29 month:10 https://dx.doi.org/10.1186/s13046-019-1438-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 38 2019 1 29 10 |
allfieldsSound |
10.1186/s13046-019-1438-y doi (DE-627)SPR029649587 (SPR)s13046-019-1438-y-e DE-627 ger DE-627 rakwb eng Terao, Mineko verfasserin aut Role of mitochondria and cardiolipins in growth inhibition of breast cancer cells by retinoic acid 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2019. corrected publication 2019 Background All-trans-retinoic-acid (ATRA) is a promising agent in the prevention/treatment of breast-cancer. There is growing evidence that reprogramming of cellular lipid metabolism contributes to malignant transformation and progression. Lipid metabolism is implicated in cell differentiation and metastatic colonization and it is involved in the mechanisms of sensitivity/resistance to different anti-tumor agents. The role played by lipids in the anti-tumor activity of ATRA has never been studied. Methods We used 16 breast cancer cell-lines whose degree of sensitivity to the anti-proliferative action of ATRA is known. We implemented a non-oriented mass-spectrometry based approach to define the lipidomic profiles of each cell-line grown under basal conditions and following treatment with ATRA. To complement the lipidomic data, untreated and retinoid treated cell-lines were also subjected to RNA-sequencing to define the perturbations afforded by ATRA on the whole-genome gene-expression profiles. The number and functional activity of mitochondria were determined in selected ATRA-sensitive and –resistant cell-lines. Bio-computing approaches were used to analyse the high-throughput lipidomic and transcriptomic data. Results ATRA perturbs the homeostasis of numerous lipids and the most relevant effects are observed on cardiolipins, which are located in the mitochondrial inner membranes and play a role in oxidative-phosphorylation. ATRA reduces the amounts of cardiolipins and the effect is associated with the growth-inhibitory activity of the retinoid. Down-regulation of cardiolipins is due to a reduction of mitochondria, which is caused by an ATRA-dependent decrease in the expression of nuclear genes encoding mitochondrial proteins. This demonstrates that ATRA anti-tumor activity is due to a decrease in the amounts of mitochondria causing deficits in the respiration/energy-balance of breast-cancer cells. Conclusions The observation that ATRA anti-proliferative activity is caused by a reduction in the respiration and energy balance of the tumor cells has important ramifications for the therapeutic action of ATRA in breast cancer. The study may open the way to the development of rational therapeutic combinations based on the use of ATRA and anti-tumor agents targeting the mitochondria. Retinoic acid (dpeaa)DE-He213 Breast cancer (dpeaa)DE-He213 Lipidomics (dpeaa)DE-He213 Oxidative phosphorylation (dpeaa)DE-He213 Goracci, Laura aut Celestini, Valentina aut Kurosaki, Mami aut Bolis, Marco aut Di Veroli, Alessandra aut Vallerga, Arianna aut Fratelli, Maddalena aut Lupi, Monica aut Corbelli, Alessandro aut Fiordaliso, Fabio aut Gianni, Maurizio aut Paroni, Gabriela aut Zanetti, Adriana aut Cruciani, Gabriele aut Garattini, Enrico aut Enthalten in Journal of experimental & clinical cancer research Berlin : Springer, 2008 38(2019), 1 vom: 29. Okt. (DE-627)568921380 (DE-600)2430698-8 1756-9966 nnns volume:38 year:2019 number:1 day:29 month:10 https://dx.doi.org/10.1186/s13046-019-1438-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 38 2019 1 29 10 |
language |
English |
source |
Enthalten in Journal of experimental & clinical cancer research 38(2019), 1 vom: 29. Okt. volume:38 year:2019 number:1 day:29 month:10 |
sourceStr |
Enthalten in Journal of experimental & clinical cancer research 38(2019), 1 vom: 29. Okt. volume:38 year:2019 number:1 day:29 month:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Retinoic acid Breast cancer Lipidomics Oxidative phosphorylation |
isfreeaccess_bool |
true |
container_title |
Journal of experimental & clinical cancer research |
authorswithroles_txt_mv |
Terao, Mineko @@aut@@ Goracci, Laura @@aut@@ Celestini, Valentina @@aut@@ Kurosaki, Mami @@aut@@ Bolis, Marco @@aut@@ Di Veroli, Alessandra @@aut@@ Vallerga, Arianna @@aut@@ Fratelli, Maddalena @@aut@@ Lupi, Monica @@aut@@ Corbelli, Alessandro @@aut@@ Fiordaliso, Fabio @@aut@@ Gianni, Maurizio @@aut@@ Paroni, Gabriela @@aut@@ Zanetti, Adriana @@aut@@ Cruciani, Gabriele @@aut@@ Garattini, Enrico @@aut@@ |
publishDateDaySort_date |
2019-10-29T00:00:00Z |
hierarchy_top_id |
568921380 |
id |
SPR029649587 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR029649587</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519073602.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13046-019-1438-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR029649587</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13046-019-1438-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Terao, Mineko</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Role of mitochondria and cardiolipins in growth inhibition of breast cancer cells by retinoic acid</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2019. corrected publication 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background All-trans-retinoic-acid (ATRA) is a promising agent in the prevention/treatment of breast-cancer. There is growing evidence that reprogramming of cellular lipid metabolism contributes to malignant transformation and progression. Lipid metabolism is implicated in cell differentiation and metastatic colonization and it is involved in the mechanisms of sensitivity/resistance to different anti-tumor agents. The role played by lipids in the anti-tumor activity of ATRA has never been studied. Methods We used 16 breast cancer cell-lines whose degree of sensitivity to the anti-proliferative action of ATRA is known. We implemented a non-oriented mass-spectrometry based approach to define the lipidomic profiles of each cell-line grown under basal conditions and following treatment with ATRA. To complement the lipidomic data, untreated and retinoid treated cell-lines were also subjected to RNA-sequencing to define the perturbations afforded by ATRA on the whole-genome gene-expression profiles. The number and functional activity of mitochondria were determined in selected ATRA-sensitive and –resistant cell-lines. Bio-computing approaches were used to analyse the high-throughput lipidomic and transcriptomic data. Results ATRA perturbs the homeostasis of numerous lipids and the most relevant effects are observed on cardiolipins, which are located in the mitochondrial inner membranes and play a role in oxidative-phosphorylation. ATRA reduces the amounts of cardiolipins and the effect is associated with the growth-inhibitory activity of the retinoid. Down-regulation of cardiolipins is due to a reduction of mitochondria, which is caused by an ATRA-dependent decrease in the expression of nuclear genes encoding mitochondrial proteins. This demonstrates that ATRA anti-tumor activity is due to a decrease in the amounts of mitochondria causing deficits in the respiration/energy-balance of breast-cancer cells. Conclusions The observation that ATRA anti-proliferative activity is caused by a reduction in the respiration and energy balance of the tumor cells has important ramifications for the therapeutic action of ATRA in breast cancer. The study may open the way to the development of rational therapeutic combinations based on the use of ATRA and anti-tumor agents targeting the mitochondria.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Retinoic acid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breast cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipidomics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxidative phosphorylation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goracci, Laura</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Celestini, Valentina</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kurosaki, Mami</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bolis, Marco</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Di Veroli, Alessandra</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vallerga, Arianna</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fratelli, Maddalena</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lupi, Monica</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Corbelli, Alessandro</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fiordaliso, Fabio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gianni, Maurizio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Paroni, Gabriela</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zanetti, Adriana</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cruciani, Gabriele</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Garattini, Enrico</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of experimental & clinical cancer research</subfield><subfield code="d">Berlin : Springer, 2008</subfield><subfield code="g">38(2019), 1 vom: 29. Okt.</subfield><subfield code="w">(DE-627)568921380</subfield><subfield code="w">(DE-600)2430698-8</subfield><subfield code="x">1756-9966</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:29</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13046-019-1438-y</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">29</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
author |
Terao, Mineko |
spellingShingle |
Terao, Mineko misc Retinoic acid misc Breast cancer misc Lipidomics misc Oxidative phosphorylation Role of mitochondria and cardiolipins in growth inhibition of breast cancer cells by retinoic acid |
authorStr |
Terao, Mineko |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)568921380 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1756-9966 |
topic_title |
Role of mitochondria and cardiolipins in growth inhibition of breast cancer cells by retinoic acid Retinoic acid (dpeaa)DE-He213 Breast cancer (dpeaa)DE-He213 Lipidomics (dpeaa)DE-He213 Oxidative phosphorylation (dpeaa)DE-He213 |
topic |
misc Retinoic acid misc Breast cancer misc Lipidomics misc Oxidative phosphorylation |
topic_unstemmed |
misc Retinoic acid misc Breast cancer misc Lipidomics misc Oxidative phosphorylation |
topic_browse |
misc Retinoic acid misc Breast cancer misc Lipidomics misc Oxidative phosphorylation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of experimental & clinical cancer research |
hierarchy_parent_id |
568921380 |
hierarchy_top_title |
Journal of experimental & clinical cancer research |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)568921380 (DE-600)2430698-8 |
title |
Role of mitochondria and cardiolipins in growth inhibition of breast cancer cells by retinoic acid |
ctrlnum |
(DE-627)SPR029649587 (SPR)s13046-019-1438-y-e |
title_full |
Role of mitochondria and cardiolipins in growth inhibition of breast cancer cells by retinoic acid |
author_sort |
Terao, Mineko |
journal |
Journal of experimental & clinical cancer research |
journalStr |
Journal of experimental & clinical cancer research |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Terao, Mineko Goracci, Laura Celestini, Valentina Kurosaki, Mami Bolis, Marco Di Veroli, Alessandra Vallerga, Arianna Fratelli, Maddalena Lupi, Monica Corbelli, Alessandro Fiordaliso, Fabio Gianni, Maurizio Paroni, Gabriela Zanetti, Adriana Cruciani, Gabriele Garattini, Enrico |
container_volume |
38 |
format_se |
Elektronische Aufsätze |
author-letter |
Terao, Mineko |
doi_str_mv |
10.1186/s13046-019-1438-y |
title_sort |
role of mitochondria and cardiolipins in growth inhibition of breast cancer cells by retinoic acid |
title_auth |
Role of mitochondria and cardiolipins in growth inhibition of breast cancer cells by retinoic acid |
abstract |
Background All-trans-retinoic-acid (ATRA) is a promising agent in the prevention/treatment of breast-cancer. There is growing evidence that reprogramming of cellular lipid metabolism contributes to malignant transformation and progression. Lipid metabolism is implicated in cell differentiation and metastatic colonization and it is involved in the mechanisms of sensitivity/resistance to different anti-tumor agents. The role played by lipids in the anti-tumor activity of ATRA has never been studied. Methods We used 16 breast cancer cell-lines whose degree of sensitivity to the anti-proliferative action of ATRA is known. We implemented a non-oriented mass-spectrometry based approach to define the lipidomic profiles of each cell-line grown under basal conditions and following treatment with ATRA. To complement the lipidomic data, untreated and retinoid treated cell-lines were also subjected to RNA-sequencing to define the perturbations afforded by ATRA on the whole-genome gene-expression profiles. The number and functional activity of mitochondria were determined in selected ATRA-sensitive and –resistant cell-lines. Bio-computing approaches were used to analyse the high-throughput lipidomic and transcriptomic data. Results ATRA perturbs the homeostasis of numerous lipids and the most relevant effects are observed on cardiolipins, which are located in the mitochondrial inner membranes and play a role in oxidative-phosphorylation. ATRA reduces the amounts of cardiolipins and the effect is associated with the growth-inhibitory activity of the retinoid. Down-regulation of cardiolipins is due to a reduction of mitochondria, which is caused by an ATRA-dependent decrease in the expression of nuclear genes encoding mitochondrial proteins. This demonstrates that ATRA anti-tumor activity is due to a decrease in the amounts of mitochondria causing deficits in the respiration/energy-balance of breast-cancer cells. Conclusions The observation that ATRA anti-proliferative activity is caused by a reduction in the respiration and energy balance of the tumor cells has important ramifications for the therapeutic action of ATRA in breast cancer. The study may open the way to the development of rational therapeutic combinations based on the use of ATRA and anti-tumor agents targeting the mitochondria. © The Author(s). 2019. corrected publication 2019 |
abstractGer |
Background All-trans-retinoic-acid (ATRA) is a promising agent in the prevention/treatment of breast-cancer. There is growing evidence that reprogramming of cellular lipid metabolism contributes to malignant transformation and progression. Lipid metabolism is implicated in cell differentiation and metastatic colonization and it is involved in the mechanisms of sensitivity/resistance to different anti-tumor agents. The role played by lipids in the anti-tumor activity of ATRA has never been studied. Methods We used 16 breast cancer cell-lines whose degree of sensitivity to the anti-proliferative action of ATRA is known. We implemented a non-oriented mass-spectrometry based approach to define the lipidomic profiles of each cell-line grown under basal conditions and following treatment with ATRA. To complement the lipidomic data, untreated and retinoid treated cell-lines were also subjected to RNA-sequencing to define the perturbations afforded by ATRA on the whole-genome gene-expression profiles. The number and functional activity of mitochondria were determined in selected ATRA-sensitive and –resistant cell-lines. Bio-computing approaches were used to analyse the high-throughput lipidomic and transcriptomic data. Results ATRA perturbs the homeostasis of numerous lipids and the most relevant effects are observed on cardiolipins, which are located in the mitochondrial inner membranes and play a role in oxidative-phosphorylation. ATRA reduces the amounts of cardiolipins and the effect is associated with the growth-inhibitory activity of the retinoid. Down-regulation of cardiolipins is due to a reduction of mitochondria, which is caused by an ATRA-dependent decrease in the expression of nuclear genes encoding mitochondrial proteins. This demonstrates that ATRA anti-tumor activity is due to a decrease in the amounts of mitochondria causing deficits in the respiration/energy-balance of breast-cancer cells. Conclusions The observation that ATRA anti-proliferative activity is caused by a reduction in the respiration and energy balance of the tumor cells has important ramifications for the therapeutic action of ATRA in breast cancer. The study may open the way to the development of rational therapeutic combinations based on the use of ATRA and anti-tumor agents targeting the mitochondria. © The Author(s). 2019. corrected publication 2019 |
abstract_unstemmed |
Background All-trans-retinoic-acid (ATRA) is a promising agent in the prevention/treatment of breast-cancer. There is growing evidence that reprogramming of cellular lipid metabolism contributes to malignant transformation and progression. Lipid metabolism is implicated in cell differentiation and metastatic colonization and it is involved in the mechanisms of sensitivity/resistance to different anti-tumor agents. The role played by lipids in the anti-tumor activity of ATRA has never been studied. Methods We used 16 breast cancer cell-lines whose degree of sensitivity to the anti-proliferative action of ATRA is known. We implemented a non-oriented mass-spectrometry based approach to define the lipidomic profiles of each cell-line grown under basal conditions and following treatment with ATRA. To complement the lipidomic data, untreated and retinoid treated cell-lines were also subjected to RNA-sequencing to define the perturbations afforded by ATRA on the whole-genome gene-expression profiles. The number and functional activity of mitochondria were determined in selected ATRA-sensitive and –resistant cell-lines. Bio-computing approaches were used to analyse the high-throughput lipidomic and transcriptomic data. Results ATRA perturbs the homeostasis of numerous lipids and the most relevant effects are observed on cardiolipins, which are located in the mitochondrial inner membranes and play a role in oxidative-phosphorylation. ATRA reduces the amounts of cardiolipins and the effect is associated with the growth-inhibitory activity of the retinoid. Down-regulation of cardiolipins is due to a reduction of mitochondria, which is caused by an ATRA-dependent decrease in the expression of nuclear genes encoding mitochondrial proteins. This demonstrates that ATRA anti-tumor activity is due to a decrease in the amounts of mitochondria causing deficits in the respiration/energy-balance of breast-cancer cells. Conclusions The observation that ATRA anti-proliferative activity is caused by a reduction in the respiration and energy balance of the tumor cells has important ramifications for the therapeutic action of ATRA in breast cancer. The study may open the way to the development of rational therapeutic combinations based on the use of ATRA and anti-tumor agents targeting the mitochondria. © The Author(s). 2019. corrected publication 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Role of mitochondria and cardiolipins in growth inhibition of breast cancer cells by retinoic acid |
url |
https://dx.doi.org/10.1186/s13046-019-1438-y |
remote_bool |
true |
author2 |
Goracci, Laura Celestini, Valentina Kurosaki, Mami Bolis, Marco Di Veroli, Alessandra Vallerga, Arianna Fratelli, Maddalena Lupi, Monica Corbelli, Alessandro Fiordaliso, Fabio Gianni, Maurizio Paroni, Gabriela Zanetti, Adriana Cruciani, Gabriele Garattini, Enrico |
author2Str |
Goracci, Laura Celestini, Valentina Kurosaki, Mami Bolis, Marco Di Veroli, Alessandra Vallerga, Arianna Fratelli, Maddalena Lupi, Monica Corbelli, Alessandro Fiordaliso, Fabio Gianni, Maurizio Paroni, Gabriela Zanetti, Adriana Cruciani, Gabriele Garattini, Enrico |
ppnlink |
568921380 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13046-019-1438-y |
up_date |
2024-07-04T01:51:53.639Z |
_version_ |
1803611446856122368 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR029649587</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519073602.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13046-019-1438-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR029649587</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13046-019-1438-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Terao, Mineko</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Role of mitochondria and cardiolipins in growth inhibition of breast cancer cells by retinoic acid</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2019. corrected publication 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background All-trans-retinoic-acid (ATRA) is a promising agent in the prevention/treatment of breast-cancer. There is growing evidence that reprogramming of cellular lipid metabolism contributes to malignant transformation and progression. Lipid metabolism is implicated in cell differentiation and metastatic colonization and it is involved in the mechanisms of sensitivity/resistance to different anti-tumor agents. The role played by lipids in the anti-tumor activity of ATRA has never been studied. Methods We used 16 breast cancer cell-lines whose degree of sensitivity to the anti-proliferative action of ATRA is known. We implemented a non-oriented mass-spectrometry based approach to define the lipidomic profiles of each cell-line grown under basal conditions and following treatment with ATRA. To complement the lipidomic data, untreated and retinoid treated cell-lines were also subjected to RNA-sequencing to define the perturbations afforded by ATRA on the whole-genome gene-expression profiles. The number and functional activity of mitochondria were determined in selected ATRA-sensitive and –resistant cell-lines. Bio-computing approaches were used to analyse the high-throughput lipidomic and transcriptomic data. Results ATRA perturbs the homeostasis of numerous lipids and the most relevant effects are observed on cardiolipins, which are located in the mitochondrial inner membranes and play a role in oxidative-phosphorylation. ATRA reduces the amounts of cardiolipins and the effect is associated with the growth-inhibitory activity of the retinoid. Down-regulation of cardiolipins is due to a reduction of mitochondria, which is caused by an ATRA-dependent decrease in the expression of nuclear genes encoding mitochondrial proteins. This demonstrates that ATRA anti-tumor activity is due to a decrease in the amounts of mitochondria causing deficits in the respiration/energy-balance of breast-cancer cells. Conclusions The observation that ATRA anti-proliferative activity is caused by a reduction in the respiration and energy balance of the tumor cells has important ramifications for the therapeutic action of ATRA in breast cancer. The study may open the way to the development of rational therapeutic combinations based on the use of ATRA and anti-tumor agents targeting the mitochondria.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Retinoic acid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breast cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipidomics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxidative phosphorylation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goracci, Laura</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Celestini, Valentina</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kurosaki, Mami</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bolis, Marco</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Di Veroli, Alessandra</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vallerga, Arianna</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fratelli, Maddalena</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lupi, Monica</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Corbelli, Alessandro</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fiordaliso, Fabio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gianni, Maurizio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Paroni, Gabriela</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zanetti, Adriana</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cruciani, Gabriele</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Garattini, Enrico</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of experimental & clinical cancer research</subfield><subfield code="d">Berlin : Springer, 2008</subfield><subfield code="g">38(2019), 1 vom: 29. Okt.</subfield><subfield code="w">(DE-627)568921380</subfield><subfield code="w">(DE-600)2430698-8</subfield><subfield code="x">1756-9966</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:29</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13046-019-1438-y</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">29</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
score |
7.401971 |