Administration of hydrogen sulfide via extracorporeal membrane lung ventilation in sheep with partial cardiopulmonary bypass perfusion: a proof of concept study on metabolic and vasomotor effects
Introduction Although inhalation of 80 parts per million (ppm) of hydrogen sulfide ($ H_{2} $S) reduces metabolism in mice, doses higher than 200 ppm of $ H_{2} $S were required to depress metabolism in rats. We therefore hypothesized that higher concentrations of $ H_{2} $S are required to reduce m...
Ausführliche Beschreibung
Autor*in: |
Derwall, Matthias [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Derwall et al.; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( |
---|
Übergeordnetes Werk: |
Enthalten in: Critical care - London : BioMed Central, 1997, 15(2011), 1 vom: 07. Feb. |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2011 ; number:1 ; day:07 ; month:02 |
Links: |
---|
DOI / URN: |
10.1186/cc10016 |
---|
Katalog-ID: |
SPR029827868 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR029827868 | ||
003 | DE-627 | ||
005 | 20230519090100.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2011 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/cc10016 |2 doi | |
035 | |a (DE-627)SPR029827868 | ||
035 | |a (SPR)cc10016-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Derwall, Matthias |e verfasserin |4 aut | |
245 | 1 | 0 | |a Administration of hydrogen sulfide via extracorporeal membrane lung ventilation in sheep with partial cardiopulmonary bypass perfusion: a proof of concept study on metabolic and vasomotor effects |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Derwall et al.; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( | ||
520 | |a Introduction Although inhalation of 80 parts per million (ppm) of hydrogen sulfide ($ H_{2} $S) reduces metabolism in mice, doses higher than 200 ppm of $ H_{2} $S were required to depress metabolism in rats. We therefore hypothesized that higher concentrations of $ H_{2} $S are required to reduce metabolism in larger mammals and humans. To avoid the potential pulmonary toxicity of $ H_{2} $S inhalation at high concentrations, we investigated whether administering $ H_{2} $S via ventilation of an extracorporeal membrane lung (ECML) would provide means to manipulate the metabolic rate in sheep. Methods A partial venoarterial cardiopulmonary bypass was established in anesthetized, ventilated (fraction of inspired oxygen = 0.5) sheep. The ECML was alternately ventilated with air or air containing 100, 200, or 300 ppm $ H_{2} $S for intervals of 1 hour. Metabolic rate was estimated on the basis of total $ CO_{2} $ production () and $ O_{2} $ consumption (). Continuous hemodynamic monitoring was performed via indwelling femoral and pulmonary artery catheters. Results , , and cardiac output ranged within normal physiological limits when the ECML was ventilated with air and did not change after administration of up to 300 ppm $ H_{2} $S. Administration of 100, 200 and 300 ppm $ H_{2} $S increased pulmonary vascular resistance by 46, 52 and 141 dyn·s/$ cm^{5} $, respectively (all P ≤ 0.05 for air vs. 100, 200 and 300 ppm $ H_{2} $S, respectively), and mean pulmonary artery pressure by 4 mmHg (P ≤ 0.05), 3 mmHg (n.s.) and 11 mmHg (P ≤ 0.05), respectively, without changing pulmonary capillary wedge pressure or cardiac output. Exposure to 300 ppm $ H_{2} $S decreased systemic vascular resistance from 1,561 ± 553 to 870 ± 138 dyn·s/$ cm^{5} $ (P ≤ 0.05) and mean arterial pressure from 121 ± 15 mmHg to 66 ± 11 mmHg (P ≤ 0.05). In addition, exposure to 300 ppm $ H_{2} $S impaired arterial oxygenation ($ P_{a} %$ O_{2} $ 114 ± 36 mmHg with air vs. 83 ± 23 mmHg with $ H_{2} $S; P ≤ 0.05). Conclusions Administration of up to 300 ppm $ H_{2} $S via ventilation of an extracorporeal membrane lung does not reduce and , but causes dose-dependent pulmonary vasoconstriction and systemic vasodilation. These results suggest that administration of high concentrations of $ H_{2} $S in venoarterial cardiopulmonary bypass circulation does not reduce metabolism in anesthetized sheep but confers systemic and pulmonary vasomotor effects. | ||
650 | 4 | |a Mean Arterial Pressure |7 (dpeaa)DE-He213 | |
650 | 4 | |a Pulmonary Capillary Wedge Pressure |7 (dpeaa)DE-He213 | |
650 | 4 | |a NaHS |7 (dpeaa)DE-He213 | |
650 | 4 | |a Large Mammal |7 (dpeaa)DE-He213 | |
650 | 4 | |a Mixed Venous Blood |7 (dpeaa)DE-He213 | |
700 | 1 | |a Francis, Roland CE |4 aut | |
700 | 1 | |a Kida, Kotaro |4 aut | |
700 | 1 | |a Bougaki, Masahiko |4 aut | |
700 | 1 | |a Crimi, Ettore |4 aut | |
700 | 1 | |a Adrie, Christophe |4 aut | |
700 | 1 | |a Zapol, Warren M |4 aut | |
700 | 1 | |a Ichinose, Fumito |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Critical care |d London : BioMed Central, 1997 |g 15(2011), 1 vom: 07. Feb. |w (DE-627)331258269 |w (DE-600)2051256-9 |x 1364-8535 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2011 |g number:1 |g day:07 |g month:02 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/cc10016 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2011 |e 1 |b 07 |c 02 |
author_variant |
m d md r c f rc rcf k k kk m b mb e c ec c a ca w m z wm wmz f i fi |
---|---|
matchkey_str |
article:13648535:2011----::diitainfyrgnufdvaxrcroelebaeugetltoisepihatacriploayyasefsoaroo |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1186/cc10016 doi (DE-627)SPR029827868 (SPR)cc10016-e DE-627 ger DE-627 rakwb eng Derwall, Matthias verfasserin aut Administration of hydrogen sulfide via extracorporeal membrane lung ventilation in sheep with partial cardiopulmonary bypass perfusion: a proof of concept study on metabolic and vasomotor effects 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Derwall et al.; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Introduction Although inhalation of 80 parts per million (ppm) of hydrogen sulfide ($ H_{2} $S) reduces metabolism in mice, doses higher than 200 ppm of $ H_{2} $S were required to depress metabolism in rats. We therefore hypothesized that higher concentrations of $ H_{2} $S are required to reduce metabolism in larger mammals and humans. To avoid the potential pulmonary toxicity of $ H_{2} $S inhalation at high concentrations, we investigated whether administering $ H_{2} $S via ventilation of an extracorporeal membrane lung (ECML) would provide means to manipulate the metabolic rate in sheep. Methods A partial venoarterial cardiopulmonary bypass was established in anesthetized, ventilated (fraction of inspired oxygen = 0.5) sheep. The ECML was alternately ventilated with air or air containing 100, 200, or 300 ppm $ H_{2} $S for intervals of 1 hour. Metabolic rate was estimated on the basis of total $ CO_{2} $ production () and $ O_{2} $ consumption (). Continuous hemodynamic monitoring was performed via indwelling femoral and pulmonary artery catheters. Results , , and cardiac output ranged within normal physiological limits when the ECML was ventilated with air and did not change after administration of up to 300 ppm $ H_{2} $S. Administration of 100, 200 and 300 ppm $ H_{2} $S increased pulmonary vascular resistance by 46, 52 and 141 dyn·s/$ cm^{5} $, respectively (all P ≤ 0.05 for air vs. 100, 200 and 300 ppm $ H_{2} $S, respectively), and mean pulmonary artery pressure by 4 mmHg (P ≤ 0.05), 3 mmHg (n.s.) and 11 mmHg (P ≤ 0.05), respectively, without changing pulmonary capillary wedge pressure or cardiac output. Exposure to 300 ppm $ H_{2} $S decreased systemic vascular resistance from 1,561 ± 553 to 870 ± 138 dyn·s/$ cm^{5} $ (P ≤ 0.05) and mean arterial pressure from 121 ± 15 mmHg to 66 ± 11 mmHg (P ≤ 0.05). In addition, exposure to 300 ppm $ H_{2} $S impaired arterial oxygenation ($ P_{a} %$ O_{2} $ 114 ± 36 mmHg with air vs. 83 ± 23 mmHg with $ H_{2} $S; P ≤ 0.05). Conclusions Administration of up to 300 ppm $ H_{2} $S via ventilation of an extracorporeal membrane lung does not reduce and , but causes dose-dependent pulmonary vasoconstriction and systemic vasodilation. These results suggest that administration of high concentrations of $ H_{2} $S in venoarterial cardiopulmonary bypass circulation does not reduce metabolism in anesthetized sheep but confers systemic and pulmonary vasomotor effects. Mean Arterial Pressure (dpeaa)DE-He213 Pulmonary Capillary Wedge Pressure (dpeaa)DE-He213 NaHS (dpeaa)DE-He213 Large Mammal (dpeaa)DE-He213 Mixed Venous Blood (dpeaa)DE-He213 Francis, Roland CE aut Kida, Kotaro aut Bougaki, Masahiko aut Crimi, Ettore aut Adrie, Christophe aut Zapol, Warren M aut Ichinose, Fumito aut Enthalten in Critical care London : BioMed Central, 1997 15(2011), 1 vom: 07. Feb. (DE-627)331258269 (DE-600)2051256-9 1364-8535 nnns volume:15 year:2011 number:1 day:07 month:02 https://dx.doi.org/10.1186/cc10016 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2011 1 07 02 |
spelling |
10.1186/cc10016 doi (DE-627)SPR029827868 (SPR)cc10016-e DE-627 ger DE-627 rakwb eng Derwall, Matthias verfasserin aut Administration of hydrogen sulfide via extracorporeal membrane lung ventilation in sheep with partial cardiopulmonary bypass perfusion: a proof of concept study on metabolic and vasomotor effects 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Derwall et al.; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Introduction Although inhalation of 80 parts per million (ppm) of hydrogen sulfide ($ H_{2} $S) reduces metabolism in mice, doses higher than 200 ppm of $ H_{2} $S were required to depress metabolism in rats. We therefore hypothesized that higher concentrations of $ H_{2} $S are required to reduce metabolism in larger mammals and humans. To avoid the potential pulmonary toxicity of $ H_{2} $S inhalation at high concentrations, we investigated whether administering $ H_{2} $S via ventilation of an extracorporeal membrane lung (ECML) would provide means to manipulate the metabolic rate in sheep. Methods A partial venoarterial cardiopulmonary bypass was established in anesthetized, ventilated (fraction of inspired oxygen = 0.5) sheep. The ECML was alternately ventilated with air or air containing 100, 200, or 300 ppm $ H_{2} $S for intervals of 1 hour. Metabolic rate was estimated on the basis of total $ CO_{2} $ production () and $ O_{2} $ consumption (). Continuous hemodynamic monitoring was performed via indwelling femoral and pulmonary artery catheters. Results , , and cardiac output ranged within normal physiological limits when the ECML was ventilated with air and did not change after administration of up to 300 ppm $ H_{2} $S. Administration of 100, 200 and 300 ppm $ H_{2} $S increased pulmonary vascular resistance by 46, 52 and 141 dyn·s/$ cm^{5} $, respectively (all P ≤ 0.05 for air vs. 100, 200 and 300 ppm $ H_{2} $S, respectively), and mean pulmonary artery pressure by 4 mmHg (P ≤ 0.05), 3 mmHg (n.s.) and 11 mmHg (P ≤ 0.05), respectively, without changing pulmonary capillary wedge pressure or cardiac output. Exposure to 300 ppm $ H_{2} $S decreased systemic vascular resistance from 1,561 ± 553 to 870 ± 138 dyn·s/$ cm^{5} $ (P ≤ 0.05) and mean arterial pressure from 121 ± 15 mmHg to 66 ± 11 mmHg (P ≤ 0.05). In addition, exposure to 300 ppm $ H_{2} $S impaired arterial oxygenation ($ P_{a} %$ O_{2} $ 114 ± 36 mmHg with air vs. 83 ± 23 mmHg with $ H_{2} $S; P ≤ 0.05). Conclusions Administration of up to 300 ppm $ H_{2} $S via ventilation of an extracorporeal membrane lung does not reduce and , but causes dose-dependent pulmonary vasoconstriction and systemic vasodilation. These results suggest that administration of high concentrations of $ H_{2} $S in venoarterial cardiopulmonary bypass circulation does not reduce metabolism in anesthetized sheep but confers systemic and pulmonary vasomotor effects. Mean Arterial Pressure (dpeaa)DE-He213 Pulmonary Capillary Wedge Pressure (dpeaa)DE-He213 NaHS (dpeaa)DE-He213 Large Mammal (dpeaa)DE-He213 Mixed Venous Blood (dpeaa)DE-He213 Francis, Roland CE aut Kida, Kotaro aut Bougaki, Masahiko aut Crimi, Ettore aut Adrie, Christophe aut Zapol, Warren M aut Ichinose, Fumito aut Enthalten in Critical care London : BioMed Central, 1997 15(2011), 1 vom: 07. Feb. (DE-627)331258269 (DE-600)2051256-9 1364-8535 nnns volume:15 year:2011 number:1 day:07 month:02 https://dx.doi.org/10.1186/cc10016 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2011 1 07 02 |
allfields_unstemmed |
10.1186/cc10016 doi (DE-627)SPR029827868 (SPR)cc10016-e DE-627 ger DE-627 rakwb eng Derwall, Matthias verfasserin aut Administration of hydrogen sulfide via extracorporeal membrane lung ventilation in sheep with partial cardiopulmonary bypass perfusion: a proof of concept study on metabolic and vasomotor effects 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Derwall et al.; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Introduction Although inhalation of 80 parts per million (ppm) of hydrogen sulfide ($ H_{2} $S) reduces metabolism in mice, doses higher than 200 ppm of $ H_{2} $S were required to depress metabolism in rats. We therefore hypothesized that higher concentrations of $ H_{2} $S are required to reduce metabolism in larger mammals and humans. To avoid the potential pulmonary toxicity of $ H_{2} $S inhalation at high concentrations, we investigated whether administering $ H_{2} $S via ventilation of an extracorporeal membrane lung (ECML) would provide means to manipulate the metabolic rate in sheep. Methods A partial venoarterial cardiopulmonary bypass was established in anesthetized, ventilated (fraction of inspired oxygen = 0.5) sheep. The ECML was alternately ventilated with air or air containing 100, 200, or 300 ppm $ H_{2} $S for intervals of 1 hour. Metabolic rate was estimated on the basis of total $ CO_{2} $ production () and $ O_{2} $ consumption (). Continuous hemodynamic monitoring was performed via indwelling femoral and pulmonary artery catheters. Results , , and cardiac output ranged within normal physiological limits when the ECML was ventilated with air and did not change after administration of up to 300 ppm $ H_{2} $S. Administration of 100, 200 and 300 ppm $ H_{2} $S increased pulmonary vascular resistance by 46, 52 and 141 dyn·s/$ cm^{5} $, respectively (all P ≤ 0.05 for air vs. 100, 200 and 300 ppm $ H_{2} $S, respectively), and mean pulmonary artery pressure by 4 mmHg (P ≤ 0.05), 3 mmHg (n.s.) and 11 mmHg (P ≤ 0.05), respectively, without changing pulmonary capillary wedge pressure or cardiac output. Exposure to 300 ppm $ H_{2} $S decreased systemic vascular resistance from 1,561 ± 553 to 870 ± 138 dyn·s/$ cm^{5} $ (P ≤ 0.05) and mean arterial pressure from 121 ± 15 mmHg to 66 ± 11 mmHg (P ≤ 0.05). In addition, exposure to 300 ppm $ H_{2} $S impaired arterial oxygenation ($ P_{a} %$ O_{2} $ 114 ± 36 mmHg with air vs. 83 ± 23 mmHg with $ H_{2} $S; P ≤ 0.05). Conclusions Administration of up to 300 ppm $ H_{2} $S via ventilation of an extracorporeal membrane lung does not reduce and , but causes dose-dependent pulmonary vasoconstriction and systemic vasodilation. These results suggest that administration of high concentrations of $ H_{2} $S in venoarterial cardiopulmonary bypass circulation does not reduce metabolism in anesthetized sheep but confers systemic and pulmonary vasomotor effects. Mean Arterial Pressure (dpeaa)DE-He213 Pulmonary Capillary Wedge Pressure (dpeaa)DE-He213 NaHS (dpeaa)DE-He213 Large Mammal (dpeaa)DE-He213 Mixed Venous Blood (dpeaa)DE-He213 Francis, Roland CE aut Kida, Kotaro aut Bougaki, Masahiko aut Crimi, Ettore aut Adrie, Christophe aut Zapol, Warren M aut Ichinose, Fumito aut Enthalten in Critical care London : BioMed Central, 1997 15(2011), 1 vom: 07. Feb. (DE-627)331258269 (DE-600)2051256-9 1364-8535 nnns volume:15 year:2011 number:1 day:07 month:02 https://dx.doi.org/10.1186/cc10016 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2011 1 07 02 |
allfieldsGer |
10.1186/cc10016 doi (DE-627)SPR029827868 (SPR)cc10016-e DE-627 ger DE-627 rakwb eng Derwall, Matthias verfasserin aut Administration of hydrogen sulfide via extracorporeal membrane lung ventilation in sheep with partial cardiopulmonary bypass perfusion: a proof of concept study on metabolic and vasomotor effects 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Derwall et al.; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Introduction Although inhalation of 80 parts per million (ppm) of hydrogen sulfide ($ H_{2} $S) reduces metabolism in mice, doses higher than 200 ppm of $ H_{2} $S were required to depress metabolism in rats. We therefore hypothesized that higher concentrations of $ H_{2} $S are required to reduce metabolism in larger mammals and humans. To avoid the potential pulmonary toxicity of $ H_{2} $S inhalation at high concentrations, we investigated whether administering $ H_{2} $S via ventilation of an extracorporeal membrane lung (ECML) would provide means to manipulate the metabolic rate in sheep. Methods A partial venoarterial cardiopulmonary bypass was established in anesthetized, ventilated (fraction of inspired oxygen = 0.5) sheep. The ECML was alternately ventilated with air or air containing 100, 200, or 300 ppm $ H_{2} $S for intervals of 1 hour. Metabolic rate was estimated on the basis of total $ CO_{2} $ production () and $ O_{2} $ consumption (). Continuous hemodynamic monitoring was performed via indwelling femoral and pulmonary artery catheters. Results , , and cardiac output ranged within normal physiological limits when the ECML was ventilated with air and did not change after administration of up to 300 ppm $ H_{2} $S. Administration of 100, 200 and 300 ppm $ H_{2} $S increased pulmonary vascular resistance by 46, 52 and 141 dyn·s/$ cm^{5} $, respectively (all P ≤ 0.05 for air vs. 100, 200 and 300 ppm $ H_{2} $S, respectively), and mean pulmonary artery pressure by 4 mmHg (P ≤ 0.05), 3 mmHg (n.s.) and 11 mmHg (P ≤ 0.05), respectively, without changing pulmonary capillary wedge pressure or cardiac output. Exposure to 300 ppm $ H_{2} $S decreased systemic vascular resistance from 1,561 ± 553 to 870 ± 138 dyn·s/$ cm^{5} $ (P ≤ 0.05) and mean arterial pressure from 121 ± 15 mmHg to 66 ± 11 mmHg (P ≤ 0.05). In addition, exposure to 300 ppm $ H_{2} $S impaired arterial oxygenation ($ P_{a} %$ O_{2} $ 114 ± 36 mmHg with air vs. 83 ± 23 mmHg with $ H_{2} $S; P ≤ 0.05). Conclusions Administration of up to 300 ppm $ H_{2} $S via ventilation of an extracorporeal membrane lung does not reduce and , but causes dose-dependent pulmonary vasoconstriction and systemic vasodilation. These results suggest that administration of high concentrations of $ H_{2} $S in venoarterial cardiopulmonary bypass circulation does not reduce metabolism in anesthetized sheep but confers systemic and pulmonary vasomotor effects. Mean Arterial Pressure (dpeaa)DE-He213 Pulmonary Capillary Wedge Pressure (dpeaa)DE-He213 NaHS (dpeaa)DE-He213 Large Mammal (dpeaa)DE-He213 Mixed Venous Blood (dpeaa)DE-He213 Francis, Roland CE aut Kida, Kotaro aut Bougaki, Masahiko aut Crimi, Ettore aut Adrie, Christophe aut Zapol, Warren M aut Ichinose, Fumito aut Enthalten in Critical care London : BioMed Central, 1997 15(2011), 1 vom: 07. Feb. (DE-627)331258269 (DE-600)2051256-9 1364-8535 nnns volume:15 year:2011 number:1 day:07 month:02 https://dx.doi.org/10.1186/cc10016 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2011 1 07 02 |
allfieldsSound |
10.1186/cc10016 doi (DE-627)SPR029827868 (SPR)cc10016-e DE-627 ger DE-627 rakwb eng Derwall, Matthias verfasserin aut Administration of hydrogen sulfide via extracorporeal membrane lung ventilation in sheep with partial cardiopulmonary bypass perfusion: a proof of concept study on metabolic and vasomotor effects 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Derwall et al.; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Introduction Although inhalation of 80 parts per million (ppm) of hydrogen sulfide ($ H_{2} $S) reduces metabolism in mice, doses higher than 200 ppm of $ H_{2} $S were required to depress metabolism in rats. We therefore hypothesized that higher concentrations of $ H_{2} $S are required to reduce metabolism in larger mammals and humans. To avoid the potential pulmonary toxicity of $ H_{2} $S inhalation at high concentrations, we investigated whether administering $ H_{2} $S via ventilation of an extracorporeal membrane lung (ECML) would provide means to manipulate the metabolic rate in sheep. Methods A partial venoarterial cardiopulmonary bypass was established in anesthetized, ventilated (fraction of inspired oxygen = 0.5) sheep. The ECML was alternately ventilated with air or air containing 100, 200, or 300 ppm $ H_{2} $S for intervals of 1 hour. Metabolic rate was estimated on the basis of total $ CO_{2} $ production () and $ O_{2} $ consumption (). Continuous hemodynamic monitoring was performed via indwelling femoral and pulmonary artery catheters. Results , , and cardiac output ranged within normal physiological limits when the ECML was ventilated with air and did not change after administration of up to 300 ppm $ H_{2} $S. Administration of 100, 200 and 300 ppm $ H_{2} $S increased pulmonary vascular resistance by 46, 52 and 141 dyn·s/$ cm^{5} $, respectively (all P ≤ 0.05 for air vs. 100, 200 and 300 ppm $ H_{2} $S, respectively), and mean pulmonary artery pressure by 4 mmHg (P ≤ 0.05), 3 mmHg (n.s.) and 11 mmHg (P ≤ 0.05), respectively, without changing pulmonary capillary wedge pressure or cardiac output. Exposure to 300 ppm $ H_{2} $S decreased systemic vascular resistance from 1,561 ± 553 to 870 ± 138 dyn·s/$ cm^{5} $ (P ≤ 0.05) and mean arterial pressure from 121 ± 15 mmHg to 66 ± 11 mmHg (P ≤ 0.05). In addition, exposure to 300 ppm $ H_{2} $S impaired arterial oxygenation ($ P_{a} %$ O_{2} $ 114 ± 36 mmHg with air vs. 83 ± 23 mmHg with $ H_{2} $S; P ≤ 0.05). Conclusions Administration of up to 300 ppm $ H_{2} $S via ventilation of an extracorporeal membrane lung does not reduce and , but causes dose-dependent pulmonary vasoconstriction and systemic vasodilation. These results suggest that administration of high concentrations of $ H_{2} $S in venoarterial cardiopulmonary bypass circulation does not reduce metabolism in anesthetized sheep but confers systemic and pulmonary vasomotor effects. Mean Arterial Pressure (dpeaa)DE-He213 Pulmonary Capillary Wedge Pressure (dpeaa)DE-He213 NaHS (dpeaa)DE-He213 Large Mammal (dpeaa)DE-He213 Mixed Venous Blood (dpeaa)DE-He213 Francis, Roland CE aut Kida, Kotaro aut Bougaki, Masahiko aut Crimi, Ettore aut Adrie, Christophe aut Zapol, Warren M aut Ichinose, Fumito aut Enthalten in Critical care London : BioMed Central, 1997 15(2011), 1 vom: 07. Feb. (DE-627)331258269 (DE-600)2051256-9 1364-8535 nnns volume:15 year:2011 number:1 day:07 month:02 https://dx.doi.org/10.1186/cc10016 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2011 1 07 02 |
language |
English |
source |
Enthalten in Critical care 15(2011), 1 vom: 07. Feb. volume:15 year:2011 number:1 day:07 month:02 |
sourceStr |
Enthalten in Critical care 15(2011), 1 vom: 07. Feb. volume:15 year:2011 number:1 day:07 month:02 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Mean Arterial Pressure Pulmonary Capillary Wedge Pressure NaHS Large Mammal Mixed Venous Blood |
isfreeaccess_bool |
false |
container_title |
Critical care |
authorswithroles_txt_mv |
Derwall, Matthias @@aut@@ Francis, Roland CE @@aut@@ Kida, Kotaro @@aut@@ Bougaki, Masahiko @@aut@@ Crimi, Ettore @@aut@@ Adrie, Christophe @@aut@@ Zapol, Warren M @@aut@@ Ichinose, Fumito @@aut@@ |
publishDateDaySort_date |
2011-02-07T00:00:00Z |
hierarchy_top_id |
331258269 |
id |
SPR029827868 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR029827868</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519090100.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/cc10016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR029827868</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)cc10016-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Derwall, Matthias</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Administration of hydrogen sulfide via extracorporeal membrane lung ventilation in sheep with partial cardiopulmonary bypass perfusion: a proof of concept study on metabolic and vasomotor effects</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Derwall et al.; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Introduction Although inhalation of 80 parts per million (ppm) of hydrogen sulfide ($ H_{2} $S) reduces metabolism in mice, doses higher than 200 ppm of $ H_{2} $S were required to depress metabolism in rats. We therefore hypothesized that higher concentrations of $ H_{2} $S are required to reduce metabolism in larger mammals and humans. To avoid the potential pulmonary toxicity of $ H_{2} $S inhalation at high concentrations, we investigated whether administering $ H_{2} $S via ventilation of an extracorporeal membrane lung (ECML) would provide means to manipulate the metabolic rate in sheep. Methods A partial venoarterial cardiopulmonary bypass was established in anesthetized, ventilated (fraction of inspired oxygen = 0.5) sheep. The ECML was alternately ventilated with air or air containing 100, 200, or 300 ppm $ H_{2} $S for intervals of 1 hour. Metabolic rate was estimated on the basis of total $ CO_{2} $ production () and $ O_{2} $ consumption (). Continuous hemodynamic monitoring was performed via indwelling femoral and pulmonary artery catheters. Results , , and cardiac output ranged within normal physiological limits when the ECML was ventilated with air and did not change after administration of up to 300 ppm $ H_{2} $S. Administration of 100, 200 and 300 ppm $ H_{2} $S increased pulmonary vascular resistance by 46, 52 and 141 dyn·s/$ cm^{5} $, respectively (all P ≤ 0.05 for air vs. 100, 200 and 300 ppm $ H_{2} $S, respectively), and mean pulmonary artery pressure by 4 mmHg (P ≤ 0.05), 3 mmHg (n.s.) and 11 mmHg (P ≤ 0.05), respectively, without changing pulmonary capillary wedge pressure or cardiac output. Exposure to 300 ppm $ H_{2} $S decreased systemic vascular resistance from 1,561 ± 553 to 870 ± 138 dyn·s/$ cm^{5} $ (P ≤ 0.05) and mean arterial pressure from 121 ± 15 mmHg to 66 ± 11 mmHg (P ≤ 0.05). In addition, exposure to 300 ppm $ H_{2} $S impaired arterial oxygenation ($ P_{a} %$ O_{2} $ 114 ± 36 mmHg with air vs. 83 ± 23 mmHg with $ H_{2} $S; P ≤ 0.05). Conclusions Administration of up to 300 ppm $ H_{2} $S via ventilation of an extracorporeal membrane lung does not reduce and , but causes dose-dependent pulmonary vasoconstriction and systemic vasodilation. These results suggest that administration of high concentrations of $ H_{2} $S in venoarterial cardiopulmonary bypass circulation does not reduce metabolism in anesthetized sheep but confers systemic and pulmonary vasomotor effects.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mean Arterial Pressure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pulmonary Capillary Wedge Pressure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NaHS</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large Mammal</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixed Venous Blood</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Francis, Roland CE</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kida, Kotaro</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bougaki, Masahiko</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Crimi, Ettore</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adrie, Christophe</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zapol, Warren M</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ichinose, Fumito</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Critical care</subfield><subfield code="d">London : BioMed Central, 1997</subfield><subfield code="g">15(2011), 1 vom: 07. Feb.</subfield><subfield code="w">(DE-627)331258269</subfield><subfield code="w">(DE-600)2051256-9</subfield><subfield code="x">1364-8535</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:1</subfield><subfield code="g">day:07</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/cc10016</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2011</subfield><subfield code="e">1</subfield><subfield code="b">07</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
author |
Derwall, Matthias |
spellingShingle |
Derwall, Matthias misc Mean Arterial Pressure misc Pulmonary Capillary Wedge Pressure misc NaHS misc Large Mammal misc Mixed Venous Blood Administration of hydrogen sulfide via extracorporeal membrane lung ventilation in sheep with partial cardiopulmonary bypass perfusion: a proof of concept study on metabolic and vasomotor effects |
authorStr |
Derwall, Matthias |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331258269 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1364-8535 |
topic_title |
Administration of hydrogen sulfide via extracorporeal membrane lung ventilation in sheep with partial cardiopulmonary bypass perfusion: a proof of concept study on metabolic and vasomotor effects Mean Arterial Pressure (dpeaa)DE-He213 Pulmonary Capillary Wedge Pressure (dpeaa)DE-He213 NaHS (dpeaa)DE-He213 Large Mammal (dpeaa)DE-He213 Mixed Venous Blood (dpeaa)DE-He213 |
topic |
misc Mean Arterial Pressure misc Pulmonary Capillary Wedge Pressure misc NaHS misc Large Mammal misc Mixed Venous Blood |
topic_unstemmed |
misc Mean Arterial Pressure misc Pulmonary Capillary Wedge Pressure misc NaHS misc Large Mammal misc Mixed Venous Blood |
topic_browse |
misc Mean Arterial Pressure misc Pulmonary Capillary Wedge Pressure misc NaHS misc Large Mammal misc Mixed Venous Blood |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Critical care |
hierarchy_parent_id |
331258269 |
hierarchy_top_title |
Critical care |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)331258269 (DE-600)2051256-9 |
title |
Administration of hydrogen sulfide via extracorporeal membrane lung ventilation in sheep with partial cardiopulmonary bypass perfusion: a proof of concept study on metabolic and vasomotor effects |
ctrlnum |
(DE-627)SPR029827868 (SPR)cc10016-e |
title_full |
Administration of hydrogen sulfide via extracorporeal membrane lung ventilation in sheep with partial cardiopulmonary bypass perfusion: a proof of concept study on metabolic and vasomotor effects |
author_sort |
Derwall, Matthias |
journal |
Critical care |
journalStr |
Critical care |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
author_browse |
Derwall, Matthias Francis, Roland CE Kida, Kotaro Bougaki, Masahiko Crimi, Ettore Adrie, Christophe Zapol, Warren M Ichinose, Fumito |
container_volume |
15 |
format_se |
Elektronische Aufsätze |
author-letter |
Derwall, Matthias |
doi_str_mv |
10.1186/cc10016 |
title_sort |
administration of hydrogen sulfide via extracorporeal membrane lung ventilation in sheep with partial cardiopulmonary bypass perfusion: a proof of concept study on metabolic and vasomotor effects |
title_auth |
Administration of hydrogen sulfide via extracorporeal membrane lung ventilation in sheep with partial cardiopulmonary bypass perfusion: a proof of concept study on metabolic and vasomotor effects |
abstract |
Introduction Although inhalation of 80 parts per million (ppm) of hydrogen sulfide ($ H_{2} $S) reduces metabolism in mice, doses higher than 200 ppm of $ H_{2} $S were required to depress metabolism in rats. We therefore hypothesized that higher concentrations of $ H_{2} $S are required to reduce metabolism in larger mammals and humans. To avoid the potential pulmonary toxicity of $ H_{2} $S inhalation at high concentrations, we investigated whether administering $ H_{2} $S via ventilation of an extracorporeal membrane lung (ECML) would provide means to manipulate the metabolic rate in sheep. Methods A partial venoarterial cardiopulmonary bypass was established in anesthetized, ventilated (fraction of inspired oxygen = 0.5) sheep. The ECML was alternately ventilated with air or air containing 100, 200, or 300 ppm $ H_{2} $S for intervals of 1 hour. Metabolic rate was estimated on the basis of total $ CO_{2} $ production () and $ O_{2} $ consumption (). Continuous hemodynamic monitoring was performed via indwelling femoral and pulmonary artery catheters. Results , , and cardiac output ranged within normal physiological limits when the ECML was ventilated with air and did not change after administration of up to 300 ppm $ H_{2} $S. Administration of 100, 200 and 300 ppm $ H_{2} $S increased pulmonary vascular resistance by 46, 52 and 141 dyn·s/$ cm^{5} $, respectively (all P ≤ 0.05 for air vs. 100, 200 and 300 ppm $ H_{2} $S, respectively), and mean pulmonary artery pressure by 4 mmHg (P ≤ 0.05), 3 mmHg (n.s.) and 11 mmHg (P ≤ 0.05), respectively, without changing pulmonary capillary wedge pressure or cardiac output. Exposure to 300 ppm $ H_{2} $S decreased systemic vascular resistance from 1,561 ± 553 to 870 ± 138 dyn·s/$ cm^{5} $ (P ≤ 0.05) and mean arterial pressure from 121 ± 15 mmHg to 66 ± 11 mmHg (P ≤ 0.05). In addition, exposure to 300 ppm $ H_{2} $S impaired arterial oxygenation ($ P_{a} %$ O_{2} $ 114 ± 36 mmHg with air vs. 83 ± 23 mmHg with $ H_{2} $S; P ≤ 0.05). Conclusions Administration of up to 300 ppm $ H_{2} $S via ventilation of an extracorporeal membrane lung does not reduce and , but causes dose-dependent pulmonary vasoconstriction and systemic vasodilation. These results suggest that administration of high concentrations of $ H_{2} $S in venoarterial cardiopulmonary bypass circulation does not reduce metabolism in anesthetized sheep but confers systemic and pulmonary vasomotor effects. © Derwall et al.; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( |
abstractGer |
Introduction Although inhalation of 80 parts per million (ppm) of hydrogen sulfide ($ H_{2} $S) reduces metabolism in mice, doses higher than 200 ppm of $ H_{2} $S were required to depress metabolism in rats. We therefore hypothesized that higher concentrations of $ H_{2} $S are required to reduce metabolism in larger mammals and humans. To avoid the potential pulmonary toxicity of $ H_{2} $S inhalation at high concentrations, we investigated whether administering $ H_{2} $S via ventilation of an extracorporeal membrane lung (ECML) would provide means to manipulate the metabolic rate in sheep. Methods A partial venoarterial cardiopulmonary bypass was established in anesthetized, ventilated (fraction of inspired oxygen = 0.5) sheep. The ECML was alternately ventilated with air or air containing 100, 200, or 300 ppm $ H_{2} $S for intervals of 1 hour. Metabolic rate was estimated on the basis of total $ CO_{2} $ production () and $ O_{2} $ consumption (). Continuous hemodynamic monitoring was performed via indwelling femoral and pulmonary artery catheters. Results , , and cardiac output ranged within normal physiological limits when the ECML was ventilated with air and did not change after administration of up to 300 ppm $ H_{2} $S. Administration of 100, 200 and 300 ppm $ H_{2} $S increased pulmonary vascular resistance by 46, 52 and 141 dyn·s/$ cm^{5} $, respectively (all P ≤ 0.05 for air vs. 100, 200 and 300 ppm $ H_{2} $S, respectively), and mean pulmonary artery pressure by 4 mmHg (P ≤ 0.05), 3 mmHg (n.s.) and 11 mmHg (P ≤ 0.05), respectively, without changing pulmonary capillary wedge pressure or cardiac output. Exposure to 300 ppm $ H_{2} $S decreased systemic vascular resistance from 1,561 ± 553 to 870 ± 138 dyn·s/$ cm^{5} $ (P ≤ 0.05) and mean arterial pressure from 121 ± 15 mmHg to 66 ± 11 mmHg (P ≤ 0.05). In addition, exposure to 300 ppm $ H_{2} $S impaired arterial oxygenation ($ P_{a} %$ O_{2} $ 114 ± 36 mmHg with air vs. 83 ± 23 mmHg with $ H_{2} $S; P ≤ 0.05). Conclusions Administration of up to 300 ppm $ H_{2} $S via ventilation of an extracorporeal membrane lung does not reduce and , but causes dose-dependent pulmonary vasoconstriction and systemic vasodilation. These results suggest that administration of high concentrations of $ H_{2} $S in venoarterial cardiopulmonary bypass circulation does not reduce metabolism in anesthetized sheep but confers systemic and pulmonary vasomotor effects. © Derwall et al.; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( |
abstract_unstemmed |
Introduction Although inhalation of 80 parts per million (ppm) of hydrogen sulfide ($ H_{2} $S) reduces metabolism in mice, doses higher than 200 ppm of $ H_{2} $S were required to depress metabolism in rats. We therefore hypothesized that higher concentrations of $ H_{2} $S are required to reduce metabolism in larger mammals and humans. To avoid the potential pulmonary toxicity of $ H_{2} $S inhalation at high concentrations, we investigated whether administering $ H_{2} $S via ventilation of an extracorporeal membrane lung (ECML) would provide means to manipulate the metabolic rate in sheep. Methods A partial venoarterial cardiopulmonary bypass was established in anesthetized, ventilated (fraction of inspired oxygen = 0.5) sheep. The ECML was alternately ventilated with air or air containing 100, 200, or 300 ppm $ H_{2} $S for intervals of 1 hour. Metabolic rate was estimated on the basis of total $ CO_{2} $ production () and $ O_{2} $ consumption (). Continuous hemodynamic monitoring was performed via indwelling femoral and pulmonary artery catheters. Results , , and cardiac output ranged within normal physiological limits when the ECML was ventilated with air and did not change after administration of up to 300 ppm $ H_{2} $S. Administration of 100, 200 and 300 ppm $ H_{2} $S increased pulmonary vascular resistance by 46, 52 and 141 dyn·s/$ cm^{5} $, respectively (all P ≤ 0.05 for air vs. 100, 200 and 300 ppm $ H_{2} $S, respectively), and mean pulmonary artery pressure by 4 mmHg (P ≤ 0.05), 3 mmHg (n.s.) and 11 mmHg (P ≤ 0.05), respectively, without changing pulmonary capillary wedge pressure or cardiac output. Exposure to 300 ppm $ H_{2} $S decreased systemic vascular resistance from 1,561 ± 553 to 870 ± 138 dyn·s/$ cm^{5} $ (P ≤ 0.05) and mean arterial pressure from 121 ± 15 mmHg to 66 ± 11 mmHg (P ≤ 0.05). In addition, exposure to 300 ppm $ H_{2} $S impaired arterial oxygenation ($ P_{a} %$ O_{2} $ 114 ± 36 mmHg with air vs. 83 ± 23 mmHg with $ H_{2} $S; P ≤ 0.05). Conclusions Administration of up to 300 ppm $ H_{2} $S via ventilation of an extracorporeal membrane lung does not reduce and , but causes dose-dependent pulmonary vasoconstriction and systemic vasodilation. These results suggest that administration of high concentrations of $ H_{2} $S in venoarterial cardiopulmonary bypass circulation does not reduce metabolism in anesthetized sheep but confers systemic and pulmonary vasomotor effects. © Derwall et al.; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Administration of hydrogen sulfide via extracorporeal membrane lung ventilation in sheep with partial cardiopulmonary bypass perfusion: a proof of concept study on metabolic and vasomotor effects |
url |
https://dx.doi.org/10.1186/cc10016 |
remote_bool |
true |
author2 |
Francis, Roland CE Kida, Kotaro Bougaki, Masahiko Crimi, Ettore Adrie, Christophe Zapol, Warren M Ichinose, Fumito |
author2Str |
Francis, Roland CE Kida, Kotaro Bougaki, Masahiko Crimi, Ettore Adrie, Christophe Zapol, Warren M Ichinose, Fumito |
ppnlink |
331258269 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1186/cc10016 |
up_date |
2024-07-04T02:25:38.509Z |
_version_ |
1803613570084110336 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR029827868</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519090100.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/cc10016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR029827868</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)cc10016-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Derwall, Matthias</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Administration of hydrogen sulfide via extracorporeal membrane lung ventilation in sheep with partial cardiopulmonary bypass perfusion: a proof of concept study on metabolic and vasomotor effects</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Derwall et al.; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Introduction Although inhalation of 80 parts per million (ppm) of hydrogen sulfide ($ H_{2} $S) reduces metabolism in mice, doses higher than 200 ppm of $ H_{2} $S were required to depress metabolism in rats. We therefore hypothesized that higher concentrations of $ H_{2} $S are required to reduce metabolism in larger mammals and humans. To avoid the potential pulmonary toxicity of $ H_{2} $S inhalation at high concentrations, we investigated whether administering $ H_{2} $S via ventilation of an extracorporeal membrane lung (ECML) would provide means to manipulate the metabolic rate in sheep. Methods A partial venoarterial cardiopulmonary bypass was established in anesthetized, ventilated (fraction of inspired oxygen = 0.5) sheep. The ECML was alternately ventilated with air or air containing 100, 200, or 300 ppm $ H_{2} $S for intervals of 1 hour. Metabolic rate was estimated on the basis of total $ CO_{2} $ production () and $ O_{2} $ consumption (). Continuous hemodynamic monitoring was performed via indwelling femoral and pulmonary artery catheters. Results , , and cardiac output ranged within normal physiological limits when the ECML was ventilated with air and did not change after administration of up to 300 ppm $ H_{2} $S. Administration of 100, 200 and 300 ppm $ H_{2} $S increased pulmonary vascular resistance by 46, 52 and 141 dyn·s/$ cm^{5} $, respectively (all P ≤ 0.05 for air vs. 100, 200 and 300 ppm $ H_{2} $S, respectively), and mean pulmonary artery pressure by 4 mmHg (P ≤ 0.05), 3 mmHg (n.s.) and 11 mmHg (P ≤ 0.05), respectively, without changing pulmonary capillary wedge pressure or cardiac output. Exposure to 300 ppm $ H_{2} $S decreased systemic vascular resistance from 1,561 ± 553 to 870 ± 138 dyn·s/$ cm^{5} $ (P ≤ 0.05) and mean arterial pressure from 121 ± 15 mmHg to 66 ± 11 mmHg (P ≤ 0.05). In addition, exposure to 300 ppm $ H_{2} $S impaired arterial oxygenation ($ P_{a} %$ O_{2} $ 114 ± 36 mmHg with air vs. 83 ± 23 mmHg with $ H_{2} $S; P ≤ 0.05). Conclusions Administration of up to 300 ppm $ H_{2} $S via ventilation of an extracorporeal membrane lung does not reduce and , but causes dose-dependent pulmonary vasoconstriction and systemic vasodilation. These results suggest that administration of high concentrations of $ H_{2} $S in venoarterial cardiopulmonary bypass circulation does not reduce metabolism in anesthetized sheep but confers systemic and pulmonary vasomotor effects.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mean Arterial Pressure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pulmonary Capillary Wedge Pressure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NaHS</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large Mammal</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixed Venous Blood</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Francis, Roland CE</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kida, Kotaro</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bougaki, Masahiko</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Crimi, Ettore</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adrie, Christophe</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zapol, Warren M</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ichinose, Fumito</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Critical care</subfield><subfield code="d">London : BioMed Central, 1997</subfield><subfield code="g">15(2011), 1 vom: 07. Feb.</subfield><subfield code="w">(DE-627)331258269</subfield><subfield code="w">(DE-600)2051256-9</subfield><subfield code="x">1364-8535</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:1</subfield><subfield code="g">day:07</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/cc10016</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2011</subfield><subfield code="e">1</subfield><subfield code="b">07</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
score |
7.4000053 |