Identification of miR-26 as a key mediator of estrogen stimulated cell proliferation by targeting CHD1, GREB1 and KPNA2
Introduction Estrogen signaling is pivotal in the progression of estrogen receptor positive breast cancer primarily by the regulation of cell survival and proliferation. Micro (mi)RNAs have been demonstrated to be regulated by estrogen to mediate estrogenic effects. Herein, we determined the role of...
Ausführliche Beschreibung
Autor*in: |
Tan, Sheng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Tan et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
---|
Übergeordnetes Werk: |
Enthalten in: Breast cancer research - London : BioMed Central, 1999, 16(2014), 2 vom: 15. Apr. |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2014 ; number:2 ; day:15 ; month:04 |
Links: |
---|
DOI / URN: |
10.1186/bcr3644 |
---|
Katalog-ID: |
SPR029952271 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR029952271 | ||
003 | DE-627 | ||
005 | 20230519184921.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/bcr3644 |2 doi | |
035 | |a (DE-627)SPR029952271 | ||
035 | |a (SPR)bcr3644-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Tan, Sheng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Identification of miR-26 as a key mediator of estrogen stimulated cell proliferation by targeting CHD1, GREB1 and KPNA2 |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Tan et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( | ||
520 | |a Introduction Estrogen signaling is pivotal in the progression of estrogen receptor positive breast cancer primarily by the regulation of cell survival and proliferation. Micro (mi)RNAs have been demonstrated to be regulated by estrogen to mediate estrogenic effects. Herein, we determined the role of estrogen regulated miR-26 and its underlying molecular mechanisms associated with estrogen receptor (ER)+ breast cancer proliferation. Methods The expression of miR-26a and miR-26b was evaluated by real-time quantitative (RT)-PCR. The expression of miR-26a or miR-26b was modulated in ER+ breast cancer cells (MCF-7 and T47D) and tumor cell growth in vitro and an in vivo xenograft model was determined. Bioinformatics analyses were utilized to screen for estrogen responsive genes, which were also predicted to be targeted by miR-26. Luciferase reporter assays were performed to confirm miR-26 regulation of the 3' UTR of target genes. The levels of miR-26 target genes (CHD1, GREB1 and KPNA2) were evaluated by western blotting and immunohistochemistry. Results Estrogen reduced the expression of miR-26a and miR-26b in ER+ breast cancer cells. Forced expression of miR-26a or miR-26b significantly inhibited the estrogen stimulated growth of ER+ breast cancer cells and tumor growth in xenograft models, whereas miR-26a/b depletion increased the growth of ER+ breast cancer cells in the absence of estrogen treatment. Screening of estrogen responsive genes, which were also predicted to be targeted by miR-26, identified GREB1 and nine other genes (AGPAT5, AMMECR1, CHD1, ERLIN1, HSPA8, KPNA2, MREG, NARG1, and PLOD2). Further verification has identified nine genes (AGPAT5, CHD1, ERLIN1, GREB1, HSPA8, KPNA2, MREG, NARG1 and PLOD2) which were directly targeted by miR-26 via their 3′ UTR. Functional screening suggested only three estrogen regulated miR-26 target genes (CHD1, GREB1 and KPNA2) were involved in the regulation of estrogen promoted cell proliferation. Depletion of either CHD1, GREB1 or KPNA2 significantly abrogated the enhanced growth of ER+ breast cancer cells due to miR-26 depletion. We further demonstrated that estrogen stimulated c-MYC expression was both sufficient and necessary for the diminished expression of miR-26a and miR-26b. Conclusions We have identified a novel estrogen/MYC/miR-26 axis that mediates estrogen stimulated cell growth via CHD1, GREB1 and KPNA2. | ||
650 | 4 | |a Breast Cancer |7 (dpeaa)DE-He213 | |
650 | 4 | |a Estrogen |7 (dpeaa)DE-He213 | |
650 | 4 | |a Estrogen Receptor |7 (dpeaa)DE-He213 | |
650 | 4 | |a Breast Cancer Cell |7 (dpeaa)DE-He213 | |
650 | 4 | |a T47D Cell |7 (dpeaa)DE-He213 | |
700 | 1 | |a Ding, Keshuo |4 aut | |
700 | 1 | |a Li, Rui |4 aut | |
700 | 1 | |a Zhang, Weijie |4 aut | |
700 | 1 | |a Li, Gaopeng |4 aut | |
700 | 1 | |a Kong, Xiangjun |4 aut | |
700 | 1 | |a Qian, Pengxu |4 aut | |
700 | 1 | |a Lobie, Peter E |4 aut | |
700 | 1 | |a Zhu, Tao |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Breast cancer research |d London : BioMed Central, 1999 |g 16(2014), 2 vom: 15. Apr. |w (DE-627)326645950 |w (DE-600)2041618-0 |x 1465-542X |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2014 |g number:2 |g day:15 |g month:04 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/bcr3644 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 16 |j 2014 |e 2 |b 15 |c 04 |
author_variant |
s t st k d kd r l rl w z wz g l gl x k xk p q pq p e l pe pel t z tz |
---|---|
matchkey_str |
article:1465542X:2014----::dniiainfi2aaemdaooetoesiuaeclpoieainy |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1186/bcr3644 doi (DE-627)SPR029952271 (SPR)bcr3644-e DE-627 ger DE-627 rakwb eng Tan, Sheng verfasserin aut Identification of miR-26 as a key mediator of estrogen stimulated cell proliferation by targeting CHD1, GREB1 and KPNA2 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Tan et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Introduction Estrogen signaling is pivotal in the progression of estrogen receptor positive breast cancer primarily by the regulation of cell survival and proliferation. Micro (mi)RNAs have been demonstrated to be regulated by estrogen to mediate estrogenic effects. Herein, we determined the role of estrogen regulated miR-26 and its underlying molecular mechanisms associated with estrogen receptor (ER)+ breast cancer proliferation. Methods The expression of miR-26a and miR-26b was evaluated by real-time quantitative (RT)-PCR. The expression of miR-26a or miR-26b was modulated in ER+ breast cancer cells (MCF-7 and T47D) and tumor cell growth in vitro and an in vivo xenograft model was determined. Bioinformatics analyses were utilized to screen for estrogen responsive genes, which were also predicted to be targeted by miR-26. Luciferase reporter assays were performed to confirm miR-26 regulation of the 3' UTR of target genes. The levels of miR-26 target genes (CHD1, GREB1 and KPNA2) were evaluated by western blotting and immunohistochemistry. Results Estrogen reduced the expression of miR-26a and miR-26b in ER+ breast cancer cells. Forced expression of miR-26a or miR-26b significantly inhibited the estrogen stimulated growth of ER+ breast cancer cells and tumor growth in xenograft models, whereas miR-26a/b depletion increased the growth of ER+ breast cancer cells in the absence of estrogen treatment. Screening of estrogen responsive genes, which were also predicted to be targeted by miR-26, identified GREB1 and nine other genes (AGPAT5, AMMECR1, CHD1, ERLIN1, HSPA8, KPNA2, MREG, NARG1, and PLOD2). Further verification has identified nine genes (AGPAT5, CHD1, ERLIN1, GREB1, HSPA8, KPNA2, MREG, NARG1 and PLOD2) which were directly targeted by miR-26 via their 3′ UTR. Functional screening suggested only three estrogen regulated miR-26 target genes (CHD1, GREB1 and KPNA2) were involved in the regulation of estrogen promoted cell proliferation. Depletion of either CHD1, GREB1 or KPNA2 significantly abrogated the enhanced growth of ER+ breast cancer cells due to miR-26 depletion. We further demonstrated that estrogen stimulated c-MYC expression was both sufficient and necessary for the diminished expression of miR-26a and miR-26b. Conclusions We have identified a novel estrogen/MYC/miR-26 axis that mediates estrogen stimulated cell growth via CHD1, GREB1 and KPNA2. Breast Cancer (dpeaa)DE-He213 Estrogen (dpeaa)DE-He213 Estrogen Receptor (dpeaa)DE-He213 Breast Cancer Cell (dpeaa)DE-He213 T47D Cell (dpeaa)DE-He213 Ding, Keshuo aut Li, Rui aut Zhang, Weijie aut Li, Gaopeng aut Kong, Xiangjun aut Qian, Pengxu aut Lobie, Peter E aut Zhu, Tao aut Enthalten in Breast cancer research London : BioMed Central, 1999 16(2014), 2 vom: 15. Apr. (DE-627)326645950 (DE-600)2041618-0 1465-542X nnns volume:16 year:2014 number:2 day:15 month:04 https://dx.doi.org/10.1186/bcr3644 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2106 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2014 2 15 04 |
spelling |
10.1186/bcr3644 doi (DE-627)SPR029952271 (SPR)bcr3644-e DE-627 ger DE-627 rakwb eng Tan, Sheng verfasserin aut Identification of miR-26 as a key mediator of estrogen stimulated cell proliferation by targeting CHD1, GREB1 and KPNA2 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Tan et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Introduction Estrogen signaling is pivotal in the progression of estrogen receptor positive breast cancer primarily by the regulation of cell survival and proliferation. Micro (mi)RNAs have been demonstrated to be regulated by estrogen to mediate estrogenic effects. Herein, we determined the role of estrogen regulated miR-26 and its underlying molecular mechanisms associated with estrogen receptor (ER)+ breast cancer proliferation. Methods The expression of miR-26a and miR-26b was evaluated by real-time quantitative (RT)-PCR. The expression of miR-26a or miR-26b was modulated in ER+ breast cancer cells (MCF-7 and T47D) and tumor cell growth in vitro and an in vivo xenograft model was determined. Bioinformatics analyses were utilized to screen for estrogen responsive genes, which were also predicted to be targeted by miR-26. Luciferase reporter assays were performed to confirm miR-26 regulation of the 3' UTR of target genes. The levels of miR-26 target genes (CHD1, GREB1 and KPNA2) were evaluated by western blotting and immunohistochemistry. Results Estrogen reduced the expression of miR-26a and miR-26b in ER+ breast cancer cells. Forced expression of miR-26a or miR-26b significantly inhibited the estrogen stimulated growth of ER+ breast cancer cells and tumor growth in xenograft models, whereas miR-26a/b depletion increased the growth of ER+ breast cancer cells in the absence of estrogen treatment. Screening of estrogen responsive genes, which were also predicted to be targeted by miR-26, identified GREB1 and nine other genes (AGPAT5, AMMECR1, CHD1, ERLIN1, HSPA8, KPNA2, MREG, NARG1, and PLOD2). Further verification has identified nine genes (AGPAT5, CHD1, ERLIN1, GREB1, HSPA8, KPNA2, MREG, NARG1 and PLOD2) which were directly targeted by miR-26 via their 3′ UTR. Functional screening suggested only three estrogen regulated miR-26 target genes (CHD1, GREB1 and KPNA2) were involved in the regulation of estrogen promoted cell proliferation. Depletion of either CHD1, GREB1 or KPNA2 significantly abrogated the enhanced growth of ER+ breast cancer cells due to miR-26 depletion. We further demonstrated that estrogen stimulated c-MYC expression was both sufficient and necessary for the diminished expression of miR-26a and miR-26b. Conclusions We have identified a novel estrogen/MYC/miR-26 axis that mediates estrogen stimulated cell growth via CHD1, GREB1 and KPNA2. Breast Cancer (dpeaa)DE-He213 Estrogen (dpeaa)DE-He213 Estrogen Receptor (dpeaa)DE-He213 Breast Cancer Cell (dpeaa)DE-He213 T47D Cell (dpeaa)DE-He213 Ding, Keshuo aut Li, Rui aut Zhang, Weijie aut Li, Gaopeng aut Kong, Xiangjun aut Qian, Pengxu aut Lobie, Peter E aut Zhu, Tao aut Enthalten in Breast cancer research London : BioMed Central, 1999 16(2014), 2 vom: 15. Apr. (DE-627)326645950 (DE-600)2041618-0 1465-542X nnns volume:16 year:2014 number:2 day:15 month:04 https://dx.doi.org/10.1186/bcr3644 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2106 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2014 2 15 04 |
allfields_unstemmed |
10.1186/bcr3644 doi (DE-627)SPR029952271 (SPR)bcr3644-e DE-627 ger DE-627 rakwb eng Tan, Sheng verfasserin aut Identification of miR-26 as a key mediator of estrogen stimulated cell proliferation by targeting CHD1, GREB1 and KPNA2 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Tan et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Introduction Estrogen signaling is pivotal in the progression of estrogen receptor positive breast cancer primarily by the regulation of cell survival and proliferation. Micro (mi)RNAs have been demonstrated to be regulated by estrogen to mediate estrogenic effects. Herein, we determined the role of estrogen regulated miR-26 and its underlying molecular mechanisms associated with estrogen receptor (ER)+ breast cancer proliferation. Methods The expression of miR-26a and miR-26b was evaluated by real-time quantitative (RT)-PCR. The expression of miR-26a or miR-26b was modulated in ER+ breast cancer cells (MCF-7 and T47D) and tumor cell growth in vitro and an in vivo xenograft model was determined. Bioinformatics analyses were utilized to screen for estrogen responsive genes, which were also predicted to be targeted by miR-26. Luciferase reporter assays were performed to confirm miR-26 regulation of the 3' UTR of target genes. The levels of miR-26 target genes (CHD1, GREB1 and KPNA2) were evaluated by western blotting and immunohistochemistry. Results Estrogen reduced the expression of miR-26a and miR-26b in ER+ breast cancer cells. Forced expression of miR-26a or miR-26b significantly inhibited the estrogen stimulated growth of ER+ breast cancer cells and tumor growth in xenograft models, whereas miR-26a/b depletion increased the growth of ER+ breast cancer cells in the absence of estrogen treatment. Screening of estrogen responsive genes, which were also predicted to be targeted by miR-26, identified GREB1 and nine other genes (AGPAT5, AMMECR1, CHD1, ERLIN1, HSPA8, KPNA2, MREG, NARG1, and PLOD2). Further verification has identified nine genes (AGPAT5, CHD1, ERLIN1, GREB1, HSPA8, KPNA2, MREG, NARG1 and PLOD2) which were directly targeted by miR-26 via their 3′ UTR. Functional screening suggested only three estrogen regulated miR-26 target genes (CHD1, GREB1 and KPNA2) were involved in the regulation of estrogen promoted cell proliferation. Depletion of either CHD1, GREB1 or KPNA2 significantly abrogated the enhanced growth of ER+ breast cancer cells due to miR-26 depletion. We further demonstrated that estrogen stimulated c-MYC expression was both sufficient and necessary for the diminished expression of miR-26a and miR-26b. Conclusions We have identified a novel estrogen/MYC/miR-26 axis that mediates estrogen stimulated cell growth via CHD1, GREB1 and KPNA2. Breast Cancer (dpeaa)DE-He213 Estrogen (dpeaa)DE-He213 Estrogen Receptor (dpeaa)DE-He213 Breast Cancer Cell (dpeaa)DE-He213 T47D Cell (dpeaa)DE-He213 Ding, Keshuo aut Li, Rui aut Zhang, Weijie aut Li, Gaopeng aut Kong, Xiangjun aut Qian, Pengxu aut Lobie, Peter E aut Zhu, Tao aut Enthalten in Breast cancer research London : BioMed Central, 1999 16(2014), 2 vom: 15. Apr. (DE-627)326645950 (DE-600)2041618-0 1465-542X nnns volume:16 year:2014 number:2 day:15 month:04 https://dx.doi.org/10.1186/bcr3644 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2106 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2014 2 15 04 |
allfieldsGer |
10.1186/bcr3644 doi (DE-627)SPR029952271 (SPR)bcr3644-e DE-627 ger DE-627 rakwb eng Tan, Sheng verfasserin aut Identification of miR-26 as a key mediator of estrogen stimulated cell proliferation by targeting CHD1, GREB1 and KPNA2 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Tan et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Introduction Estrogen signaling is pivotal in the progression of estrogen receptor positive breast cancer primarily by the regulation of cell survival and proliferation. Micro (mi)RNAs have been demonstrated to be regulated by estrogen to mediate estrogenic effects. Herein, we determined the role of estrogen regulated miR-26 and its underlying molecular mechanisms associated with estrogen receptor (ER)+ breast cancer proliferation. Methods The expression of miR-26a and miR-26b was evaluated by real-time quantitative (RT)-PCR. The expression of miR-26a or miR-26b was modulated in ER+ breast cancer cells (MCF-7 and T47D) and tumor cell growth in vitro and an in vivo xenograft model was determined. Bioinformatics analyses were utilized to screen for estrogen responsive genes, which were also predicted to be targeted by miR-26. Luciferase reporter assays were performed to confirm miR-26 regulation of the 3' UTR of target genes. The levels of miR-26 target genes (CHD1, GREB1 and KPNA2) were evaluated by western blotting and immunohistochemistry. Results Estrogen reduced the expression of miR-26a and miR-26b in ER+ breast cancer cells. Forced expression of miR-26a or miR-26b significantly inhibited the estrogen stimulated growth of ER+ breast cancer cells and tumor growth in xenograft models, whereas miR-26a/b depletion increased the growth of ER+ breast cancer cells in the absence of estrogen treatment. Screening of estrogen responsive genes, which were also predicted to be targeted by miR-26, identified GREB1 and nine other genes (AGPAT5, AMMECR1, CHD1, ERLIN1, HSPA8, KPNA2, MREG, NARG1, and PLOD2). Further verification has identified nine genes (AGPAT5, CHD1, ERLIN1, GREB1, HSPA8, KPNA2, MREG, NARG1 and PLOD2) which were directly targeted by miR-26 via their 3′ UTR. Functional screening suggested only three estrogen regulated miR-26 target genes (CHD1, GREB1 and KPNA2) were involved in the regulation of estrogen promoted cell proliferation. Depletion of either CHD1, GREB1 or KPNA2 significantly abrogated the enhanced growth of ER+ breast cancer cells due to miR-26 depletion. We further demonstrated that estrogen stimulated c-MYC expression was both sufficient and necessary for the diminished expression of miR-26a and miR-26b. Conclusions We have identified a novel estrogen/MYC/miR-26 axis that mediates estrogen stimulated cell growth via CHD1, GREB1 and KPNA2. Breast Cancer (dpeaa)DE-He213 Estrogen (dpeaa)DE-He213 Estrogen Receptor (dpeaa)DE-He213 Breast Cancer Cell (dpeaa)DE-He213 T47D Cell (dpeaa)DE-He213 Ding, Keshuo aut Li, Rui aut Zhang, Weijie aut Li, Gaopeng aut Kong, Xiangjun aut Qian, Pengxu aut Lobie, Peter E aut Zhu, Tao aut Enthalten in Breast cancer research London : BioMed Central, 1999 16(2014), 2 vom: 15. Apr. (DE-627)326645950 (DE-600)2041618-0 1465-542X nnns volume:16 year:2014 number:2 day:15 month:04 https://dx.doi.org/10.1186/bcr3644 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2106 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2014 2 15 04 |
allfieldsSound |
10.1186/bcr3644 doi (DE-627)SPR029952271 (SPR)bcr3644-e DE-627 ger DE-627 rakwb eng Tan, Sheng verfasserin aut Identification of miR-26 as a key mediator of estrogen stimulated cell proliferation by targeting CHD1, GREB1 and KPNA2 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Tan et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Introduction Estrogen signaling is pivotal in the progression of estrogen receptor positive breast cancer primarily by the regulation of cell survival and proliferation. Micro (mi)RNAs have been demonstrated to be regulated by estrogen to mediate estrogenic effects. Herein, we determined the role of estrogen regulated miR-26 and its underlying molecular mechanisms associated with estrogen receptor (ER)+ breast cancer proliferation. Methods The expression of miR-26a and miR-26b was evaluated by real-time quantitative (RT)-PCR. The expression of miR-26a or miR-26b was modulated in ER+ breast cancer cells (MCF-7 and T47D) and tumor cell growth in vitro and an in vivo xenograft model was determined. Bioinformatics analyses were utilized to screen for estrogen responsive genes, which were also predicted to be targeted by miR-26. Luciferase reporter assays were performed to confirm miR-26 regulation of the 3' UTR of target genes. The levels of miR-26 target genes (CHD1, GREB1 and KPNA2) were evaluated by western blotting and immunohistochemistry. Results Estrogen reduced the expression of miR-26a and miR-26b in ER+ breast cancer cells. Forced expression of miR-26a or miR-26b significantly inhibited the estrogen stimulated growth of ER+ breast cancer cells and tumor growth in xenograft models, whereas miR-26a/b depletion increased the growth of ER+ breast cancer cells in the absence of estrogen treatment. Screening of estrogen responsive genes, which were also predicted to be targeted by miR-26, identified GREB1 and nine other genes (AGPAT5, AMMECR1, CHD1, ERLIN1, HSPA8, KPNA2, MREG, NARG1, and PLOD2). Further verification has identified nine genes (AGPAT5, CHD1, ERLIN1, GREB1, HSPA8, KPNA2, MREG, NARG1 and PLOD2) which were directly targeted by miR-26 via their 3′ UTR. Functional screening suggested only three estrogen regulated miR-26 target genes (CHD1, GREB1 and KPNA2) were involved in the regulation of estrogen promoted cell proliferation. Depletion of either CHD1, GREB1 or KPNA2 significantly abrogated the enhanced growth of ER+ breast cancer cells due to miR-26 depletion. We further demonstrated that estrogen stimulated c-MYC expression was both sufficient and necessary for the diminished expression of miR-26a and miR-26b. Conclusions We have identified a novel estrogen/MYC/miR-26 axis that mediates estrogen stimulated cell growth via CHD1, GREB1 and KPNA2. Breast Cancer (dpeaa)DE-He213 Estrogen (dpeaa)DE-He213 Estrogen Receptor (dpeaa)DE-He213 Breast Cancer Cell (dpeaa)DE-He213 T47D Cell (dpeaa)DE-He213 Ding, Keshuo aut Li, Rui aut Zhang, Weijie aut Li, Gaopeng aut Kong, Xiangjun aut Qian, Pengxu aut Lobie, Peter E aut Zhu, Tao aut Enthalten in Breast cancer research London : BioMed Central, 1999 16(2014), 2 vom: 15. Apr. (DE-627)326645950 (DE-600)2041618-0 1465-542X nnns volume:16 year:2014 number:2 day:15 month:04 https://dx.doi.org/10.1186/bcr3644 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2106 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2014 2 15 04 |
language |
English |
source |
Enthalten in Breast cancer research 16(2014), 2 vom: 15. Apr. volume:16 year:2014 number:2 day:15 month:04 |
sourceStr |
Enthalten in Breast cancer research 16(2014), 2 vom: 15. Apr. volume:16 year:2014 number:2 day:15 month:04 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Breast Cancer Estrogen Estrogen Receptor Breast Cancer Cell T47D Cell |
isfreeaccess_bool |
false |
container_title |
Breast cancer research |
authorswithroles_txt_mv |
Tan, Sheng @@aut@@ Ding, Keshuo @@aut@@ Li, Rui @@aut@@ Zhang, Weijie @@aut@@ Li, Gaopeng @@aut@@ Kong, Xiangjun @@aut@@ Qian, Pengxu @@aut@@ Lobie, Peter E @@aut@@ Zhu, Tao @@aut@@ |
publishDateDaySort_date |
2014-04-15T00:00:00Z |
hierarchy_top_id |
326645950 |
id |
SPR029952271 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR029952271</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519184921.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/bcr3644</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR029952271</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)bcr3644-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tan, Sheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Identification of miR-26 as a key mediator of estrogen stimulated cell proliferation by targeting CHD1, GREB1 and KPNA2</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Tan et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Introduction Estrogen signaling is pivotal in the progression of estrogen receptor positive breast cancer primarily by the regulation of cell survival and proliferation. Micro (mi)RNAs have been demonstrated to be regulated by estrogen to mediate estrogenic effects. Herein, we determined the role of estrogen regulated miR-26 and its underlying molecular mechanisms associated with estrogen receptor (ER)+ breast cancer proliferation. Methods The expression of miR-26a and miR-26b was evaluated by real-time quantitative (RT)-PCR. The expression of miR-26a or miR-26b was modulated in ER+ breast cancer cells (MCF-7 and T47D) and tumor cell growth in vitro and an in vivo xenograft model was determined. Bioinformatics analyses were utilized to screen for estrogen responsive genes, which were also predicted to be targeted by miR-26. Luciferase reporter assays were performed to confirm miR-26 regulation of the 3' UTR of target genes. The levels of miR-26 target genes (CHD1, GREB1 and KPNA2) were evaluated by western blotting and immunohistochemistry. Results Estrogen reduced the expression of miR-26a and miR-26b in ER+ breast cancer cells. Forced expression of miR-26a or miR-26b significantly inhibited the estrogen stimulated growth of ER+ breast cancer cells and tumor growth in xenograft models, whereas miR-26a/b depletion increased the growth of ER+ breast cancer cells in the absence of estrogen treatment. Screening of estrogen responsive genes, which were also predicted to be targeted by miR-26, identified GREB1 and nine other genes (AGPAT5, AMMECR1, CHD1, ERLIN1, HSPA8, KPNA2, MREG, NARG1, and PLOD2). Further verification has identified nine genes (AGPAT5, CHD1, ERLIN1, GREB1, HSPA8, KPNA2, MREG, NARG1 and PLOD2) which were directly targeted by miR-26 via their 3′ UTR. Functional screening suggested only three estrogen regulated miR-26 target genes (CHD1, GREB1 and KPNA2) were involved in the regulation of estrogen promoted cell proliferation. Depletion of either CHD1, GREB1 or KPNA2 significantly abrogated the enhanced growth of ER+ breast cancer cells due to miR-26 depletion. We further demonstrated that estrogen stimulated c-MYC expression was both sufficient and necessary for the diminished expression of miR-26a and miR-26b. Conclusions We have identified a novel estrogen/MYC/miR-26 axis that mediates estrogen stimulated cell growth via CHD1, GREB1 and KPNA2.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breast Cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estrogen</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estrogen Receptor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breast Cancer Cell</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">T47D Cell</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ding, Keshuo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Rui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Weijie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Gaopeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kong, Xiangjun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qian, Pengxu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lobie, Peter E</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Tao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Breast cancer research</subfield><subfield code="d">London : BioMed Central, 1999</subfield><subfield code="g">16(2014), 2 vom: 15. Apr.</subfield><subfield code="w">(DE-627)326645950</subfield><subfield code="w">(DE-600)2041618-0</subfield><subfield code="x">1465-542X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:2</subfield><subfield code="g">day:15</subfield><subfield code="g">month:04</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/bcr3644</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2014</subfield><subfield code="e">2</subfield><subfield code="b">15</subfield><subfield code="c">04</subfield></datafield></record></collection>
|
author |
Tan, Sheng |
spellingShingle |
Tan, Sheng misc Breast Cancer misc Estrogen misc Estrogen Receptor misc Breast Cancer Cell misc T47D Cell Identification of miR-26 as a key mediator of estrogen stimulated cell proliferation by targeting CHD1, GREB1 and KPNA2 |
authorStr |
Tan, Sheng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326645950 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1465-542X |
topic_title |
Identification of miR-26 as a key mediator of estrogen stimulated cell proliferation by targeting CHD1, GREB1 and KPNA2 Breast Cancer (dpeaa)DE-He213 Estrogen (dpeaa)DE-He213 Estrogen Receptor (dpeaa)DE-He213 Breast Cancer Cell (dpeaa)DE-He213 T47D Cell (dpeaa)DE-He213 |
topic |
misc Breast Cancer misc Estrogen misc Estrogen Receptor misc Breast Cancer Cell misc T47D Cell |
topic_unstemmed |
misc Breast Cancer misc Estrogen misc Estrogen Receptor misc Breast Cancer Cell misc T47D Cell |
topic_browse |
misc Breast Cancer misc Estrogen misc Estrogen Receptor misc Breast Cancer Cell misc T47D Cell |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Breast cancer research |
hierarchy_parent_id |
326645950 |
hierarchy_top_title |
Breast cancer research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)326645950 (DE-600)2041618-0 |
title |
Identification of miR-26 as a key mediator of estrogen stimulated cell proliferation by targeting CHD1, GREB1 and KPNA2 |
ctrlnum |
(DE-627)SPR029952271 (SPR)bcr3644-e |
title_full |
Identification of miR-26 as a key mediator of estrogen stimulated cell proliferation by targeting CHD1, GREB1 and KPNA2 |
author_sort |
Tan, Sheng |
journal |
Breast cancer research |
journalStr |
Breast cancer research |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
author_browse |
Tan, Sheng Ding, Keshuo Li, Rui Zhang, Weijie Li, Gaopeng Kong, Xiangjun Qian, Pengxu Lobie, Peter E Zhu, Tao |
container_volume |
16 |
format_se |
Elektronische Aufsätze |
author-letter |
Tan, Sheng |
doi_str_mv |
10.1186/bcr3644 |
title_sort |
identification of mir-26 as a key mediator of estrogen stimulated cell proliferation by targeting chd1, greb1 and kpna2 |
title_auth |
Identification of miR-26 as a key mediator of estrogen stimulated cell proliferation by targeting CHD1, GREB1 and KPNA2 |
abstract |
Introduction Estrogen signaling is pivotal in the progression of estrogen receptor positive breast cancer primarily by the regulation of cell survival and proliferation. Micro (mi)RNAs have been demonstrated to be regulated by estrogen to mediate estrogenic effects. Herein, we determined the role of estrogen regulated miR-26 and its underlying molecular mechanisms associated with estrogen receptor (ER)+ breast cancer proliferation. Methods The expression of miR-26a and miR-26b was evaluated by real-time quantitative (RT)-PCR. The expression of miR-26a or miR-26b was modulated in ER+ breast cancer cells (MCF-7 and T47D) and tumor cell growth in vitro and an in vivo xenograft model was determined. Bioinformatics analyses were utilized to screen for estrogen responsive genes, which were also predicted to be targeted by miR-26. Luciferase reporter assays were performed to confirm miR-26 regulation of the 3' UTR of target genes. The levels of miR-26 target genes (CHD1, GREB1 and KPNA2) were evaluated by western blotting and immunohistochemistry. Results Estrogen reduced the expression of miR-26a and miR-26b in ER+ breast cancer cells. Forced expression of miR-26a or miR-26b significantly inhibited the estrogen stimulated growth of ER+ breast cancer cells and tumor growth in xenograft models, whereas miR-26a/b depletion increased the growth of ER+ breast cancer cells in the absence of estrogen treatment. Screening of estrogen responsive genes, which were also predicted to be targeted by miR-26, identified GREB1 and nine other genes (AGPAT5, AMMECR1, CHD1, ERLIN1, HSPA8, KPNA2, MREG, NARG1, and PLOD2). Further verification has identified nine genes (AGPAT5, CHD1, ERLIN1, GREB1, HSPA8, KPNA2, MREG, NARG1 and PLOD2) which were directly targeted by miR-26 via their 3′ UTR. Functional screening suggested only three estrogen regulated miR-26 target genes (CHD1, GREB1 and KPNA2) were involved in the regulation of estrogen promoted cell proliferation. Depletion of either CHD1, GREB1 or KPNA2 significantly abrogated the enhanced growth of ER+ breast cancer cells due to miR-26 depletion. We further demonstrated that estrogen stimulated c-MYC expression was both sufficient and necessary for the diminished expression of miR-26a and miR-26b. Conclusions We have identified a novel estrogen/MYC/miR-26 axis that mediates estrogen stimulated cell growth via CHD1, GREB1 and KPNA2. © Tan et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
abstractGer |
Introduction Estrogen signaling is pivotal in the progression of estrogen receptor positive breast cancer primarily by the regulation of cell survival and proliferation. Micro (mi)RNAs have been demonstrated to be regulated by estrogen to mediate estrogenic effects. Herein, we determined the role of estrogen regulated miR-26 and its underlying molecular mechanisms associated with estrogen receptor (ER)+ breast cancer proliferation. Methods The expression of miR-26a and miR-26b was evaluated by real-time quantitative (RT)-PCR. The expression of miR-26a or miR-26b was modulated in ER+ breast cancer cells (MCF-7 and T47D) and tumor cell growth in vitro and an in vivo xenograft model was determined. Bioinformatics analyses were utilized to screen for estrogen responsive genes, which were also predicted to be targeted by miR-26. Luciferase reporter assays were performed to confirm miR-26 regulation of the 3' UTR of target genes. The levels of miR-26 target genes (CHD1, GREB1 and KPNA2) were evaluated by western blotting and immunohistochemistry. Results Estrogen reduced the expression of miR-26a and miR-26b in ER+ breast cancer cells. Forced expression of miR-26a or miR-26b significantly inhibited the estrogen stimulated growth of ER+ breast cancer cells and tumor growth in xenograft models, whereas miR-26a/b depletion increased the growth of ER+ breast cancer cells in the absence of estrogen treatment. Screening of estrogen responsive genes, which were also predicted to be targeted by miR-26, identified GREB1 and nine other genes (AGPAT5, AMMECR1, CHD1, ERLIN1, HSPA8, KPNA2, MREG, NARG1, and PLOD2). Further verification has identified nine genes (AGPAT5, CHD1, ERLIN1, GREB1, HSPA8, KPNA2, MREG, NARG1 and PLOD2) which were directly targeted by miR-26 via their 3′ UTR. Functional screening suggested only three estrogen regulated miR-26 target genes (CHD1, GREB1 and KPNA2) were involved in the regulation of estrogen promoted cell proliferation. Depletion of either CHD1, GREB1 or KPNA2 significantly abrogated the enhanced growth of ER+ breast cancer cells due to miR-26 depletion. We further demonstrated that estrogen stimulated c-MYC expression was both sufficient and necessary for the diminished expression of miR-26a and miR-26b. Conclusions We have identified a novel estrogen/MYC/miR-26 axis that mediates estrogen stimulated cell growth via CHD1, GREB1 and KPNA2. © Tan et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
abstract_unstemmed |
Introduction Estrogen signaling is pivotal in the progression of estrogen receptor positive breast cancer primarily by the regulation of cell survival and proliferation. Micro (mi)RNAs have been demonstrated to be regulated by estrogen to mediate estrogenic effects. Herein, we determined the role of estrogen regulated miR-26 and its underlying molecular mechanisms associated with estrogen receptor (ER)+ breast cancer proliferation. Methods The expression of miR-26a and miR-26b was evaluated by real-time quantitative (RT)-PCR. The expression of miR-26a or miR-26b was modulated in ER+ breast cancer cells (MCF-7 and T47D) and tumor cell growth in vitro and an in vivo xenograft model was determined. Bioinformatics analyses were utilized to screen for estrogen responsive genes, which were also predicted to be targeted by miR-26. Luciferase reporter assays were performed to confirm miR-26 regulation of the 3' UTR of target genes. The levels of miR-26 target genes (CHD1, GREB1 and KPNA2) were evaluated by western blotting and immunohistochemistry. Results Estrogen reduced the expression of miR-26a and miR-26b in ER+ breast cancer cells. Forced expression of miR-26a or miR-26b significantly inhibited the estrogen stimulated growth of ER+ breast cancer cells and tumor growth in xenograft models, whereas miR-26a/b depletion increased the growth of ER+ breast cancer cells in the absence of estrogen treatment. Screening of estrogen responsive genes, which were also predicted to be targeted by miR-26, identified GREB1 and nine other genes (AGPAT5, AMMECR1, CHD1, ERLIN1, HSPA8, KPNA2, MREG, NARG1, and PLOD2). Further verification has identified nine genes (AGPAT5, CHD1, ERLIN1, GREB1, HSPA8, KPNA2, MREG, NARG1 and PLOD2) which were directly targeted by miR-26 via their 3′ UTR. Functional screening suggested only three estrogen regulated miR-26 target genes (CHD1, GREB1 and KPNA2) were involved in the regulation of estrogen promoted cell proliferation. Depletion of either CHD1, GREB1 or KPNA2 significantly abrogated the enhanced growth of ER+ breast cancer cells due to miR-26 depletion. We further demonstrated that estrogen stimulated c-MYC expression was both sufficient and necessary for the diminished expression of miR-26a and miR-26b. Conclusions We have identified a novel estrogen/MYC/miR-26 axis that mediates estrogen stimulated cell growth via CHD1, GREB1 and KPNA2. © Tan et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2106 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Identification of miR-26 as a key mediator of estrogen stimulated cell proliferation by targeting CHD1, GREB1 and KPNA2 |
url |
https://dx.doi.org/10.1186/bcr3644 |
remote_bool |
true |
author2 |
Ding, Keshuo Li, Rui Zhang, Weijie Li, Gaopeng Kong, Xiangjun Qian, Pengxu Lobie, Peter E Zhu, Tao |
author2Str |
Ding, Keshuo Li, Rui Zhang, Weijie Li, Gaopeng Kong, Xiangjun Qian, Pengxu Lobie, Peter E Zhu, Tao |
ppnlink |
326645950 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1186/bcr3644 |
up_date |
2024-07-04T02:48:14.747Z |
_version_ |
1803614992196435968 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR029952271</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519184921.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/bcr3644</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR029952271</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)bcr3644-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tan, Sheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Identification of miR-26 as a key mediator of estrogen stimulated cell proliferation by targeting CHD1, GREB1 and KPNA2</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Tan et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Introduction Estrogen signaling is pivotal in the progression of estrogen receptor positive breast cancer primarily by the regulation of cell survival and proliferation. Micro (mi)RNAs have been demonstrated to be regulated by estrogen to mediate estrogenic effects. Herein, we determined the role of estrogen regulated miR-26 and its underlying molecular mechanisms associated with estrogen receptor (ER)+ breast cancer proliferation. Methods The expression of miR-26a and miR-26b was evaluated by real-time quantitative (RT)-PCR. The expression of miR-26a or miR-26b was modulated in ER+ breast cancer cells (MCF-7 and T47D) and tumor cell growth in vitro and an in vivo xenograft model was determined. Bioinformatics analyses were utilized to screen for estrogen responsive genes, which were also predicted to be targeted by miR-26. Luciferase reporter assays were performed to confirm miR-26 regulation of the 3' UTR of target genes. The levels of miR-26 target genes (CHD1, GREB1 and KPNA2) were evaluated by western blotting and immunohistochemistry. Results Estrogen reduced the expression of miR-26a and miR-26b in ER+ breast cancer cells. Forced expression of miR-26a or miR-26b significantly inhibited the estrogen stimulated growth of ER+ breast cancer cells and tumor growth in xenograft models, whereas miR-26a/b depletion increased the growth of ER+ breast cancer cells in the absence of estrogen treatment. Screening of estrogen responsive genes, which were also predicted to be targeted by miR-26, identified GREB1 and nine other genes (AGPAT5, AMMECR1, CHD1, ERLIN1, HSPA8, KPNA2, MREG, NARG1, and PLOD2). Further verification has identified nine genes (AGPAT5, CHD1, ERLIN1, GREB1, HSPA8, KPNA2, MREG, NARG1 and PLOD2) which were directly targeted by miR-26 via their 3′ UTR. Functional screening suggested only three estrogen regulated miR-26 target genes (CHD1, GREB1 and KPNA2) were involved in the regulation of estrogen promoted cell proliferation. Depletion of either CHD1, GREB1 or KPNA2 significantly abrogated the enhanced growth of ER+ breast cancer cells due to miR-26 depletion. We further demonstrated that estrogen stimulated c-MYC expression was both sufficient and necessary for the diminished expression of miR-26a and miR-26b. Conclusions We have identified a novel estrogen/MYC/miR-26 axis that mediates estrogen stimulated cell growth via CHD1, GREB1 and KPNA2.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breast Cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estrogen</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estrogen Receptor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breast Cancer Cell</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">T47D Cell</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ding, Keshuo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Rui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Weijie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Gaopeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kong, Xiangjun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qian, Pengxu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lobie, Peter E</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Tao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Breast cancer research</subfield><subfield code="d">London : BioMed Central, 1999</subfield><subfield code="g">16(2014), 2 vom: 15. Apr.</subfield><subfield code="w">(DE-627)326645950</subfield><subfield code="w">(DE-600)2041618-0</subfield><subfield code="x">1465-542X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:2</subfield><subfield code="g">day:15</subfield><subfield code="g">month:04</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/bcr3644</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2014</subfield><subfield code="e">2</subfield><subfield code="b">15</subfield><subfield code="c">04</subfield></datafield></record></collection>
|
score |
7.4010305 |