Observing metabolic functions at the genome scale
Background High-throughput techniques have multiplied the amount and the types of available biological data, and for the first time achieving a global comprehension of the physiology of biological cells has become an achievable goal. This aim requires the integration of large amounts of heterogeneou...
Ausführliche Beschreibung
Autor*in: |
Schwartz, Jean-Marc [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Schwartz et al.; licensee BioMed Central Ltd. 2007. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( |
---|
Übergeordnetes Werk: |
Enthalten in: Genome biology - London : BioMed Central, 2000, 8(2007), 6 vom: 26. Juni |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2007 ; number:6 ; day:26 ; month:06 |
Links: |
---|
DOI / URN: |
10.1186/gb-2007-8-6-r123 |
---|
Katalog-ID: |
SPR029999804 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR029999804 | ||
003 | DE-627 | ||
005 | 20230519194132.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2007 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/gb-2007-8-6-r123 |2 doi | |
035 | |a (DE-627)SPR029999804 | ||
035 | |a (SPR)gb-2007-8-6-r123-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Schwartz, Jean-Marc |e verfasserin |4 aut | |
245 | 1 | 0 | |a Observing metabolic functions at the genome scale |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Schwartz et al.; licensee BioMed Central Ltd. 2007. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( | ||
520 | |a Background High-throughput techniques have multiplied the amount and the types of available biological data, and for the first time achieving a global comprehension of the physiology of biological cells has become an achievable goal. This aim requires the integration of large amounts of heterogeneous data at different scales. It is notably necessary to extend the traditional focus on genomic data towards a truly functional focus, where the activity of cells is described in terms of actual metabolic processes performing the functions necessary for cells to live. Results In this work, we present a new approach for metabolic analysis that allows us to observe the transcriptional activity of metabolic functions at the genome scale. These functions are described in terms of elementary modes, which can be computed in a genome-scale model thanks to a modular approach. We exemplify this new perspective by presenting a detailed analysis of the transcriptional metabolic response of yeast cells to stress. The integration of elementary mode analysis with gene expression data allows us to identify a number of functionally induced or repressed metabolic processes in different stress conditions. The assembly of these elementary modes leads to the identification of specific metabolic backbones. Conclusion This study opens a new framework for the cell-scale analysis of metabolism, where transcriptional activity can be analyzed in terms of whole processes instead of individual genes. We furthermore show that the set of active elementary modes exhibits a highly uneven organization, where most of them conduct specialized tasks while a smaller proportion performs multi-task functions and dominates the general stress response. | ||
650 | 4 | |a Metabolic Network |7 (dpeaa)DE-He213 | |
650 | 4 | |a Additional Data File |7 (dpeaa)DE-He213 | |
650 | 4 | |a Elementary Mode |7 (dpeaa)DE-He213 | |
650 | 4 | |a Amino Acid Starvation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Citrate Cycle |7 (dpeaa)DE-He213 | |
700 | 1 | |a Gaugain, Claire |4 aut | |
700 | 1 | |a Nacher, Jose C |4 aut | |
700 | 1 | |a de Daruvar, Antoine |4 aut | |
700 | 1 | |a Kanehisa, Minoru |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Genome biology |d London : BioMed Central, 2000 |g 8(2007), 6 vom: 26. Juni |w (DE-627)326173617 |w (DE-600)2040529-7 |x 1474-760X |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2007 |g number:6 |g day:26 |g month:06 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/gb-2007-8-6-r123 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2007 |e 6 |b 26 |c 06 |
author_variant |
j m s jms c g cg j c n jc jcn d a d da dad m k mk |
---|---|
matchkey_str |
article:1474760X:2007----::bevnmtblcucinat |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.1186/gb-2007-8-6-r123 doi (DE-627)SPR029999804 (SPR)gb-2007-8-6-r123-e DE-627 ger DE-627 rakwb eng Schwartz, Jean-Marc verfasserin aut Observing metabolic functions at the genome scale 2007 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Schwartz et al.; licensee BioMed Central Ltd. 2007. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Background High-throughput techniques have multiplied the amount and the types of available biological data, and for the first time achieving a global comprehension of the physiology of biological cells has become an achievable goal. This aim requires the integration of large amounts of heterogeneous data at different scales. It is notably necessary to extend the traditional focus on genomic data towards a truly functional focus, where the activity of cells is described in terms of actual metabolic processes performing the functions necessary for cells to live. Results In this work, we present a new approach for metabolic analysis that allows us to observe the transcriptional activity of metabolic functions at the genome scale. These functions are described in terms of elementary modes, which can be computed in a genome-scale model thanks to a modular approach. We exemplify this new perspective by presenting a detailed analysis of the transcriptional metabolic response of yeast cells to stress. The integration of elementary mode analysis with gene expression data allows us to identify a number of functionally induced or repressed metabolic processes in different stress conditions. The assembly of these elementary modes leads to the identification of specific metabolic backbones. Conclusion This study opens a new framework for the cell-scale analysis of metabolism, where transcriptional activity can be analyzed in terms of whole processes instead of individual genes. We furthermore show that the set of active elementary modes exhibits a highly uneven organization, where most of them conduct specialized tasks while a smaller proportion performs multi-task functions and dominates the general stress response. Metabolic Network (dpeaa)DE-He213 Additional Data File (dpeaa)DE-He213 Elementary Mode (dpeaa)DE-He213 Amino Acid Starvation (dpeaa)DE-He213 Citrate Cycle (dpeaa)DE-He213 Gaugain, Claire aut Nacher, Jose C aut de Daruvar, Antoine aut Kanehisa, Minoru aut Enthalten in Genome biology London : BioMed Central, 2000 8(2007), 6 vom: 26. Juni (DE-627)326173617 (DE-600)2040529-7 1474-760X nnns volume:8 year:2007 number:6 day:26 month:06 https://dx.doi.org/10.1186/gb-2007-8-6-r123 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2007 6 26 06 |
spelling |
10.1186/gb-2007-8-6-r123 doi (DE-627)SPR029999804 (SPR)gb-2007-8-6-r123-e DE-627 ger DE-627 rakwb eng Schwartz, Jean-Marc verfasserin aut Observing metabolic functions at the genome scale 2007 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Schwartz et al.; licensee BioMed Central Ltd. 2007. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Background High-throughput techniques have multiplied the amount and the types of available biological data, and for the first time achieving a global comprehension of the physiology of biological cells has become an achievable goal. This aim requires the integration of large amounts of heterogeneous data at different scales. It is notably necessary to extend the traditional focus on genomic data towards a truly functional focus, where the activity of cells is described in terms of actual metabolic processes performing the functions necessary for cells to live. Results In this work, we present a new approach for metabolic analysis that allows us to observe the transcriptional activity of metabolic functions at the genome scale. These functions are described in terms of elementary modes, which can be computed in a genome-scale model thanks to a modular approach. We exemplify this new perspective by presenting a detailed analysis of the transcriptional metabolic response of yeast cells to stress. The integration of elementary mode analysis with gene expression data allows us to identify a number of functionally induced or repressed metabolic processes in different stress conditions. The assembly of these elementary modes leads to the identification of specific metabolic backbones. Conclusion This study opens a new framework for the cell-scale analysis of metabolism, where transcriptional activity can be analyzed in terms of whole processes instead of individual genes. We furthermore show that the set of active elementary modes exhibits a highly uneven organization, where most of them conduct specialized tasks while a smaller proportion performs multi-task functions and dominates the general stress response. Metabolic Network (dpeaa)DE-He213 Additional Data File (dpeaa)DE-He213 Elementary Mode (dpeaa)DE-He213 Amino Acid Starvation (dpeaa)DE-He213 Citrate Cycle (dpeaa)DE-He213 Gaugain, Claire aut Nacher, Jose C aut de Daruvar, Antoine aut Kanehisa, Minoru aut Enthalten in Genome biology London : BioMed Central, 2000 8(2007), 6 vom: 26. Juni (DE-627)326173617 (DE-600)2040529-7 1474-760X nnns volume:8 year:2007 number:6 day:26 month:06 https://dx.doi.org/10.1186/gb-2007-8-6-r123 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2007 6 26 06 |
allfields_unstemmed |
10.1186/gb-2007-8-6-r123 doi (DE-627)SPR029999804 (SPR)gb-2007-8-6-r123-e DE-627 ger DE-627 rakwb eng Schwartz, Jean-Marc verfasserin aut Observing metabolic functions at the genome scale 2007 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Schwartz et al.; licensee BioMed Central Ltd. 2007. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Background High-throughput techniques have multiplied the amount and the types of available biological data, and for the first time achieving a global comprehension of the physiology of biological cells has become an achievable goal. This aim requires the integration of large amounts of heterogeneous data at different scales. It is notably necessary to extend the traditional focus on genomic data towards a truly functional focus, where the activity of cells is described in terms of actual metabolic processes performing the functions necessary for cells to live. Results In this work, we present a new approach for metabolic analysis that allows us to observe the transcriptional activity of metabolic functions at the genome scale. These functions are described in terms of elementary modes, which can be computed in a genome-scale model thanks to a modular approach. We exemplify this new perspective by presenting a detailed analysis of the transcriptional metabolic response of yeast cells to stress. The integration of elementary mode analysis with gene expression data allows us to identify a number of functionally induced or repressed metabolic processes in different stress conditions. The assembly of these elementary modes leads to the identification of specific metabolic backbones. Conclusion This study opens a new framework for the cell-scale analysis of metabolism, where transcriptional activity can be analyzed in terms of whole processes instead of individual genes. We furthermore show that the set of active elementary modes exhibits a highly uneven organization, where most of them conduct specialized tasks while a smaller proportion performs multi-task functions and dominates the general stress response. Metabolic Network (dpeaa)DE-He213 Additional Data File (dpeaa)DE-He213 Elementary Mode (dpeaa)DE-He213 Amino Acid Starvation (dpeaa)DE-He213 Citrate Cycle (dpeaa)DE-He213 Gaugain, Claire aut Nacher, Jose C aut de Daruvar, Antoine aut Kanehisa, Minoru aut Enthalten in Genome biology London : BioMed Central, 2000 8(2007), 6 vom: 26. Juni (DE-627)326173617 (DE-600)2040529-7 1474-760X nnns volume:8 year:2007 number:6 day:26 month:06 https://dx.doi.org/10.1186/gb-2007-8-6-r123 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2007 6 26 06 |
allfieldsGer |
10.1186/gb-2007-8-6-r123 doi (DE-627)SPR029999804 (SPR)gb-2007-8-6-r123-e DE-627 ger DE-627 rakwb eng Schwartz, Jean-Marc verfasserin aut Observing metabolic functions at the genome scale 2007 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Schwartz et al.; licensee BioMed Central Ltd. 2007. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Background High-throughput techniques have multiplied the amount and the types of available biological data, and for the first time achieving a global comprehension of the physiology of biological cells has become an achievable goal. This aim requires the integration of large amounts of heterogeneous data at different scales. It is notably necessary to extend the traditional focus on genomic data towards a truly functional focus, where the activity of cells is described in terms of actual metabolic processes performing the functions necessary for cells to live. Results In this work, we present a new approach for metabolic analysis that allows us to observe the transcriptional activity of metabolic functions at the genome scale. These functions are described in terms of elementary modes, which can be computed in a genome-scale model thanks to a modular approach. We exemplify this new perspective by presenting a detailed analysis of the transcriptional metabolic response of yeast cells to stress. The integration of elementary mode analysis with gene expression data allows us to identify a number of functionally induced or repressed metabolic processes in different stress conditions. The assembly of these elementary modes leads to the identification of specific metabolic backbones. Conclusion This study opens a new framework for the cell-scale analysis of metabolism, where transcriptional activity can be analyzed in terms of whole processes instead of individual genes. We furthermore show that the set of active elementary modes exhibits a highly uneven organization, where most of them conduct specialized tasks while a smaller proportion performs multi-task functions and dominates the general stress response. Metabolic Network (dpeaa)DE-He213 Additional Data File (dpeaa)DE-He213 Elementary Mode (dpeaa)DE-He213 Amino Acid Starvation (dpeaa)DE-He213 Citrate Cycle (dpeaa)DE-He213 Gaugain, Claire aut Nacher, Jose C aut de Daruvar, Antoine aut Kanehisa, Minoru aut Enthalten in Genome biology London : BioMed Central, 2000 8(2007), 6 vom: 26. Juni (DE-627)326173617 (DE-600)2040529-7 1474-760X nnns volume:8 year:2007 number:6 day:26 month:06 https://dx.doi.org/10.1186/gb-2007-8-6-r123 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2007 6 26 06 |
allfieldsSound |
10.1186/gb-2007-8-6-r123 doi (DE-627)SPR029999804 (SPR)gb-2007-8-6-r123-e DE-627 ger DE-627 rakwb eng Schwartz, Jean-Marc verfasserin aut Observing metabolic functions at the genome scale 2007 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Schwartz et al.; licensee BioMed Central Ltd. 2007. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Background High-throughput techniques have multiplied the amount and the types of available biological data, and for the first time achieving a global comprehension of the physiology of biological cells has become an achievable goal. This aim requires the integration of large amounts of heterogeneous data at different scales. It is notably necessary to extend the traditional focus on genomic data towards a truly functional focus, where the activity of cells is described in terms of actual metabolic processes performing the functions necessary for cells to live. Results In this work, we present a new approach for metabolic analysis that allows us to observe the transcriptional activity of metabolic functions at the genome scale. These functions are described in terms of elementary modes, which can be computed in a genome-scale model thanks to a modular approach. We exemplify this new perspective by presenting a detailed analysis of the transcriptional metabolic response of yeast cells to stress. The integration of elementary mode analysis with gene expression data allows us to identify a number of functionally induced or repressed metabolic processes in different stress conditions. The assembly of these elementary modes leads to the identification of specific metabolic backbones. Conclusion This study opens a new framework for the cell-scale analysis of metabolism, where transcriptional activity can be analyzed in terms of whole processes instead of individual genes. We furthermore show that the set of active elementary modes exhibits a highly uneven organization, where most of them conduct specialized tasks while a smaller proportion performs multi-task functions and dominates the general stress response. Metabolic Network (dpeaa)DE-He213 Additional Data File (dpeaa)DE-He213 Elementary Mode (dpeaa)DE-He213 Amino Acid Starvation (dpeaa)DE-He213 Citrate Cycle (dpeaa)DE-He213 Gaugain, Claire aut Nacher, Jose C aut de Daruvar, Antoine aut Kanehisa, Minoru aut Enthalten in Genome biology London : BioMed Central, 2000 8(2007), 6 vom: 26. Juni (DE-627)326173617 (DE-600)2040529-7 1474-760X nnns volume:8 year:2007 number:6 day:26 month:06 https://dx.doi.org/10.1186/gb-2007-8-6-r123 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2007 6 26 06 |
language |
English |
source |
Enthalten in Genome biology 8(2007), 6 vom: 26. Juni volume:8 year:2007 number:6 day:26 month:06 |
sourceStr |
Enthalten in Genome biology 8(2007), 6 vom: 26. Juni volume:8 year:2007 number:6 day:26 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Metabolic Network Additional Data File Elementary Mode Amino Acid Starvation Citrate Cycle |
isfreeaccess_bool |
true |
container_title |
Genome biology |
authorswithroles_txt_mv |
Schwartz, Jean-Marc @@aut@@ Gaugain, Claire @@aut@@ Nacher, Jose C @@aut@@ de Daruvar, Antoine @@aut@@ Kanehisa, Minoru @@aut@@ |
publishDateDaySort_date |
2007-06-26T00:00:00Z |
hierarchy_top_id |
326173617 |
id |
SPR029999804 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR029999804</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519194132.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2007 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/gb-2007-8-6-r123</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR029999804</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)gb-2007-8-6-r123-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schwartz, Jean-Marc</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Observing metabolic functions at the genome scale</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Schwartz et al.; licensee BioMed Central Ltd. 2007. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background High-throughput techniques have multiplied the amount and the types of available biological data, and for the first time achieving a global comprehension of the physiology of biological cells has become an achievable goal. This aim requires the integration of large amounts of heterogeneous data at different scales. It is notably necessary to extend the traditional focus on genomic data towards a truly functional focus, where the activity of cells is described in terms of actual metabolic processes performing the functions necessary for cells to live. Results In this work, we present a new approach for metabolic analysis that allows us to observe the transcriptional activity of metabolic functions at the genome scale. These functions are described in terms of elementary modes, which can be computed in a genome-scale model thanks to a modular approach. We exemplify this new perspective by presenting a detailed analysis of the transcriptional metabolic response of yeast cells to stress. The integration of elementary mode analysis with gene expression data allows us to identify a number of functionally induced or repressed metabolic processes in different stress conditions. The assembly of these elementary modes leads to the identification of specific metabolic backbones. Conclusion This study opens a new framework for the cell-scale analysis of metabolism, where transcriptional activity can be analyzed in terms of whole processes instead of individual genes. We furthermore show that the set of active elementary modes exhibits a highly uneven organization, where most of them conduct specialized tasks while a smaller proportion performs multi-task functions and dominates the general stress response.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metabolic Network</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Additional Data File</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elementary Mode</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amino Acid Starvation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Citrate Cycle</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gaugain, Claire</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nacher, Jose C</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Daruvar, Antoine</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kanehisa, Minoru</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Genome biology</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">8(2007), 6 vom: 26. Juni</subfield><subfield code="w">(DE-627)326173617</subfield><subfield code="w">(DE-600)2040529-7</subfield><subfield code="x">1474-760X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:6</subfield><subfield code="g">day:26</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/gb-2007-8-6-r123</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2007</subfield><subfield code="e">6</subfield><subfield code="b">26</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Schwartz, Jean-Marc |
spellingShingle |
Schwartz, Jean-Marc misc Metabolic Network misc Additional Data File misc Elementary Mode misc Amino Acid Starvation misc Citrate Cycle Observing metabolic functions at the genome scale |
authorStr |
Schwartz, Jean-Marc |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326173617 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1474-760X |
topic_title |
Observing metabolic functions at the genome scale Metabolic Network (dpeaa)DE-He213 Additional Data File (dpeaa)DE-He213 Elementary Mode (dpeaa)DE-He213 Amino Acid Starvation (dpeaa)DE-He213 Citrate Cycle (dpeaa)DE-He213 |
topic |
misc Metabolic Network misc Additional Data File misc Elementary Mode misc Amino Acid Starvation misc Citrate Cycle |
topic_unstemmed |
misc Metabolic Network misc Additional Data File misc Elementary Mode misc Amino Acid Starvation misc Citrate Cycle |
topic_browse |
misc Metabolic Network misc Additional Data File misc Elementary Mode misc Amino Acid Starvation misc Citrate Cycle |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Genome biology |
hierarchy_parent_id |
326173617 |
hierarchy_top_title |
Genome biology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326173617 (DE-600)2040529-7 |
title |
Observing metabolic functions at the genome scale |
ctrlnum |
(DE-627)SPR029999804 (SPR)gb-2007-8-6-r123-e |
title_full |
Observing metabolic functions at the genome scale |
author_sort |
Schwartz, Jean-Marc |
journal |
Genome biology |
journalStr |
Genome biology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
author_browse |
Schwartz, Jean-Marc Gaugain, Claire Nacher, Jose C de Daruvar, Antoine Kanehisa, Minoru |
container_volume |
8 |
format_se |
Elektronische Aufsätze |
author-letter |
Schwartz, Jean-Marc |
doi_str_mv |
10.1186/gb-2007-8-6-r123 |
title_sort |
observing metabolic functions at the genome scale |
title_auth |
Observing metabolic functions at the genome scale |
abstract |
Background High-throughput techniques have multiplied the amount and the types of available biological data, and for the first time achieving a global comprehension of the physiology of biological cells has become an achievable goal. This aim requires the integration of large amounts of heterogeneous data at different scales. It is notably necessary to extend the traditional focus on genomic data towards a truly functional focus, where the activity of cells is described in terms of actual metabolic processes performing the functions necessary for cells to live. Results In this work, we present a new approach for metabolic analysis that allows us to observe the transcriptional activity of metabolic functions at the genome scale. These functions are described in terms of elementary modes, which can be computed in a genome-scale model thanks to a modular approach. We exemplify this new perspective by presenting a detailed analysis of the transcriptional metabolic response of yeast cells to stress. The integration of elementary mode analysis with gene expression data allows us to identify a number of functionally induced or repressed metabolic processes in different stress conditions. The assembly of these elementary modes leads to the identification of specific metabolic backbones. Conclusion This study opens a new framework for the cell-scale analysis of metabolism, where transcriptional activity can be analyzed in terms of whole processes instead of individual genes. We furthermore show that the set of active elementary modes exhibits a highly uneven organization, where most of them conduct specialized tasks while a smaller proportion performs multi-task functions and dominates the general stress response. © Schwartz et al.; licensee BioMed Central Ltd. 2007. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( |
abstractGer |
Background High-throughput techniques have multiplied the amount and the types of available biological data, and for the first time achieving a global comprehension of the physiology of biological cells has become an achievable goal. This aim requires the integration of large amounts of heterogeneous data at different scales. It is notably necessary to extend the traditional focus on genomic data towards a truly functional focus, where the activity of cells is described in terms of actual metabolic processes performing the functions necessary for cells to live. Results In this work, we present a new approach for metabolic analysis that allows us to observe the transcriptional activity of metabolic functions at the genome scale. These functions are described in terms of elementary modes, which can be computed in a genome-scale model thanks to a modular approach. We exemplify this new perspective by presenting a detailed analysis of the transcriptional metabolic response of yeast cells to stress. The integration of elementary mode analysis with gene expression data allows us to identify a number of functionally induced or repressed metabolic processes in different stress conditions. The assembly of these elementary modes leads to the identification of specific metabolic backbones. Conclusion This study opens a new framework for the cell-scale analysis of metabolism, where transcriptional activity can be analyzed in terms of whole processes instead of individual genes. We furthermore show that the set of active elementary modes exhibits a highly uneven organization, where most of them conduct specialized tasks while a smaller proportion performs multi-task functions and dominates the general stress response. © Schwartz et al.; licensee BioMed Central Ltd. 2007. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( |
abstract_unstemmed |
Background High-throughput techniques have multiplied the amount and the types of available biological data, and for the first time achieving a global comprehension of the physiology of biological cells has become an achievable goal. This aim requires the integration of large amounts of heterogeneous data at different scales. It is notably necessary to extend the traditional focus on genomic data towards a truly functional focus, where the activity of cells is described in terms of actual metabolic processes performing the functions necessary for cells to live. Results In this work, we present a new approach for metabolic analysis that allows us to observe the transcriptional activity of metabolic functions at the genome scale. These functions are described in terms of elementary modes, which can be computed in a genome-scale model thanks to a modular approach. We exemplify this new perspective by presenting a detailed analysis of the transcriptional metabolic response of yeast cells to stress. The integration of elementary mode analysis with gene expression data allows us to identify a number of functionally induced or repressed metabolic processes in different stress conditions. The assembly of these elementary modes leads to the identification of specific metabolic backbones. Conclusion This study opens a new framework for the cell-scale analysis of metabolism, where transcriptional activity can be analyzed in terms of whole processes instead of individual genes. We furthermore show that the set of active elementary modes exhibits a highly uneven organization, where most of them conduct specialized tasks while a smaller proportion performs multi-task functions and dominates the general stress response. © Schwartz et al.; licensee BioMed Central Ltd. 2007. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6 |
title_short |
Observing metabolic functions at the genome scale |
url |
https://dx.doi.org/10.1186/gb-2007-8-6-r123 |
remote_bool |
true |
author2 |
Gaugain, Claire Nacher, Jose C de Daruvar, Antoine Kanehisa, Minoru |
author2Str |
Gaugain, Claire Nacher, Jose C de Daruvar, Antoine Kanehisa, Minoru |
ppnlink |
326173617 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/gb-2007-8-6-r123 |
up_date |
2024-07-04T02:55:57.595Z |
_version_ |
1803615477525643264 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR029999804</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519194132.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2007 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/gb-2007-8-6-r123</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR029999804</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)gb-2007-8-6-r123-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schwartz, Jean-Marc</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Observing metabolic functions at the genome scale</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Schwartz et al.; licensee BioMed Central Ltd. 2007. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background High-throughput techniques have multiplied the amount and the types of available biological data, and for the first time achieving a global comprehension of the physiology of biological cells has become an achievable goal. This aim requires the integration of large amounts of heterogeneous data at different scales. It is notably necessary to extend the traditional focus on genomic data towards a truly functional focus, where the activity of cells is described in terms of actual metabolic processes performing the functions necessary for cells to live. Results In this work, we present a new approach for metabolic analysis that allows us to observe the transcriptional activity of metabolic functions at the genome scale. These functions are described in terms of elementary modes, which can be computed in a genome-scale model thanks to a modular approach. We exemplify this new perspective by presenting a detailed analysis of the transcriptional metabolic response of yeast cells to stress. The integration of elementary mode analysis with gene expression data allows us to identify a number of functionally induced or repressed metabolic processes in different stress conditions. The assembly of these elementary modes leads to the identification of specific metabolic backbones. Conclusion This study opens a new framework for the cell-scale analysis of metabolism, where transcriptional activity can be analyzed in terms of whole processes instead of individual genes. We furthermore show that the set of active elementary modes exhibits a highly uneven organization, where most of them conduct specialized tasks while a smaller proportion performs multi-task functions and dominates the general stress response.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metabolic Network</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Additional Data File</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elementary Mode</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amino Acid Starvation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Citrate Cycle</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gaugain, Claire</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nacher, Jose C</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Daruvar, Antoine</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kanehisa, Minoru</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Genome biology</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">8(2007), 6 vom: 26. Juni</subfield><subfield code="w">(DE-627)326173617</subfield><subfield code="w">(DE-600)2040529-7</subfield><subfield code="x">1474-760X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:6</subfield><subfield code="g">day:26</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/gb-2007-8-6-r123</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2007</subfield><subfield code="e">6</subfield><subfield code="b">26</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.3993616 |