A high utility integrated map of the pig genome
Background The domestic pig is being increasingly exploited as a system for modeling human disease. It also has substantial economic importance for meat-based protein production. Physical clone maps have underpinned large-scale genomic sequencing and enabled focused cloning efforts for many genomes....
Ausführliche Beschreibung
Autor*in: |
Humphray, Sean J [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Schlagwörter: |
Bacterial Artificial Chromosome |
---|
Anmerkung: |
© Humphray et al.; licensee BioMed Central Ltd. 2007. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( |
---|
Übergeordnetes Werk: |
Enthalten in: Genome biology - London : BioMed Central, 2000, 8(2007), 7 vom: 11. Juli |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2007 ; number:7 ; day:11 ; month:07 |
Links: |
---|
DOI / URN: |
10.1186/gb-2007-8-7-r139 |
---|
Katalog-ID: |
SPR030000068 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR030000068 | ||
003 | DE-627 | ||
005 | 20230519194132.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2007 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/gb-2007-8-7-r139 |2 doi | |
035 | |a (DE-627)SPR030000068 | ||
035 | |a (SPR)gb-2007-8-7-r139-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Humphray, Sean J |e verfasserin |4 aut | |
245 | 1 | 2 | |a A high utility integrated map of the pig genome |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Humphray et al.; licensee BioMed Central Ltd. 2007. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( | ||
520 | |a Background The domestic pig is being increasingly exploited as a system for modeling human disease. It also has substantial economic importance for meat-based protein production. Physical clone maps have underpinned large-scale genomic sequencing and enabled focused cloning efforts for many genomes. Comparative genetic maps indicate that there is more structural similarity between pig and human than, for example, mouse and human, and we have used this close relationship between human and pig as a way of facilitating map construction. Results Here we report the construction of the most highly continuous bacterial artificial chromosome (BAC) map of any mammalian genome, for the pig (Sus scrofa domestica) genome. The map provides a template for the generation and assembly of high-quality anchored sequence across the genome. The physical map integrates previous landmark maps with restriction fingerprints and BAC end sequences from over 260,000 BACs derived from 4 BAC libraries and takes advantage of alignments to the human genome to improve the continuity and local ordering of the clone contigs. We estimate that over 98% of the euchromatin of the 18 pig autosomes and the X chromosome along with localized coverage on Y is represented in 172 contigs, with chromosome 13 (218 Mb) represented by a single contig. The map is accessible through pre-Ensembl, where links to marker and sequence data can be found. Conclusion The map will enable immediate electronic positional cloning of genes, benefiting the pig research community and further facilitating use of the pig as an alternative animal model for human disease. The clone map and BAC end sequence data can also help to support the assembly of maps and genome sequences of other artiodactyls. | ||
650 | 4 | |a Bacterial Artificial Chromosome |7 (dpeaa)DE-He213 | |
650 | 4 | |a Additional Data File |7 (dpeaa)DE-He213 | |
650 | 4 | |a Bacterial Artificial Chromosome Clone |7 (dpeaa)DE-He213 | |
650 | 4 | |a Radiation Hybrid |7 (dpeaa)DE-He213 | |
650 | 4 | |a Minimum Tile Path |7 (dpeaa)DE-He213 | |
700 | 1 | |a Scott, Carol E |4 aut | |
700 | 1 | |a Clark, Richard |4 aut | |
700 | 1 | |a Marron, Brandy |4 aut | |
700 | 1 | |a Bender, Clare |4 aut | |
700 | 1 | |a Camm, Nick |4 aut | |
700 | 1 | |a Davis, Jayne |4 aut | |
700 | 1 | |a Jenks, Andrew |4 aut | |
700 | 1 | |a Noon, Angela |4 aut | |
700 | 1 | |a Patel, Manish |4 aut | |
700 | 1 | |a Sehra, Harminder |4 aut | |
700 | 1 | |a Yang, Fengtang |4 aut | |
700 | 1 | |a Rogatcheva, Margarita B |4 aut | |
700 | 1 | |a Milan, Denis |4 aut | |
700 | 1 | |a Chardon, Patrick |4 aut | |
700 | 1 | |a Rohrer, Gary |4 aut | |
700 | 1 | |a Nonneman, Dan |4 aut | |
700 | 1 | |a de Jong, Pieter |4 aut | |
700 | 1 | |a Meyers, Stacey N |4 aut | |
700 | 1 | |a Archibald, Alan |4 aut | |
700 | 1 | |a Beever, Jonathan E |4 aut | |
700 | 1 | |a Schook, Lawrence B |4 aut | |
700 | 1 | |a Rogers, Jane |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Genome biology |d London : BioMed Central, 2000 |g 8(2007), 7 vom: 11. Juli |w (DE-627)326173617 |w (DE-600)2040529-7 |x 1474-760X |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2007 |g number:7 |g day:11 |g month:07 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/gb-2007-8-7-r139 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2007 |e 7 |b 11 |c 07 |
author_variant |
s j h sj sjh c e s ce ces r c rc b m bm c b cb n c nc j d jd a j aj a n an m p mp h s hs f y fy m b r mb mbr d m dm p c pc g r gr d n dn j p d jp jpd s n m sn snm a a aa j e b je jeb l b s lb lbs j r jr |
---|---|
matchkey_str |
article:1474760X:2007----::hguiiynertdao |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.1186/gb-2007-8-7-r139 doi (DE-627)SPR030000068 (SPR)gb-2007-8-7-r139-e DE-627 ger DE-627 rakwb eng Humphray, Sean J verfasserin aut A high utility integrated map of the pig genome 2007 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Humphray et al.; licensee BioMed Central Ltd. 2007. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Background The domestic pig is being increasingly exploited as a system for modeling human disease. It also has substantial economic importance for meat-based protein production. Physical clone maps have underpinned large-scale genomic sequencing and enabled focused cloning efforts for many genomes. Comparative genetic maps indicate that there is more structural similarity between pig and human than, for example, mouse and human, and we have used this close relationship between human and pig as a way of facilitating map construction. Results Here we report the construction of the most highly continuous bacterial artificial chromosome (BAC) map of any mammalian genome, for the pig (Sus scrofa domestica) genome. The map provides a template for the generation and assembly of high-quality anchored sequence across the genome. The physical map integrates previous landmark maps with restriction fingerprints and BAC end sequences from over 260,000 BACs derived from 4 BAC libraries and takes advantage of alignments to the human genome to improve the continuity and local ordering of the clone contigs. We estimate that over 98% of the euchromatin of the 18 pig autosomes and the X chromosome along with localized coverage on Y is represented in 172 contigs, with chromosome 13 (218 Mb) represented by a single contig. The map is accessible through pre-Ensembl, where links to marker and sequence data can be found. Conclusion The map will enable immediate electronic positional cloning of genes, benefiting the pig research community and further facilitating use of the pig as an alternative animal model for human disease. The clone map and BAC end sequence data can also help to support the assembly of maps and genome sequences of other artiodactyls. Bacterial Artificial Chromosome (dpeaa)DE-He213 Additional Data File (dpeaa)DE-He213 Bacterial Artificial Chromosome Clone (dpeaa)DE-He213 Radiation Hybrid (dpeaa)DE-He213 Minimum Tile Path (dpeaa)DE-He213 Scott, Carol E aut Clark, Richard aut Marron, Brandy aut Bender, Clare aut Camm, Nick aut Davis, Jayne aut Jenks, Andrew aut Noon, Angela aut Patel, Manish aut Sehra, Harminder aut Yang, Fengtang aut Rogatcheva, Margarita B aut Milan, Denis aut Chardon, Patrick aut Rohrer, Gary aut Nonneman, Dan aut de Jong, Pieter aut Meyers, Stacey N aut Archibald, Alan aut Beever, Jonathan E aut Schook, Lawrence B aut Rogers, Jane aut Enthalten in Genome biology London : BioMed Central, 2000 8(2007), 7 vom: 11. Juli (DE-627)326173617 (DE-600)2040529-7 1474-760X nnns volume:8 year:2007 number:7 day:11 month:07 https://dx.doi.org/10.1186/gb-2007-8-7-r139 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2007 7 11 07 |
spelling |
10.1186/gb-2007-8-7-r139 doi (DE-627)SPR030000068 (SPR)gb-2007-8-7-r139-e DE-627 ger DE-627 rakwb eng Humphray, Sean J verfasserin aut A high utility integrated map of the pig genome 2007 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Humphray et al.; licensee BioMed Central Ltd. 2007. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Background The domestic pig is being increasingly exploited as a system for modeling human disease. It also has substantial economic importance for meat-based protein production. Physical clone maps have underpinned large-scale genomic sequencing and enabled focused cloning efforts for many genomes. Comparative genetic maps indicate that there is more structural similarity between pig and human than, for example, mouse and human, and we have used this close relationship between human and pig as a way of facilitating map construction. Results Here we report the construction of the most highly continuous bacterial artificial chromosome (BAC) map of any mammalian genome, for the pig (Sus scrofa domestica) genome. The map provides a template for the generation and assembly of high-quality anchored sequence across the genome. The physical map integrates previous landmark maps with restriction fingerprints and BAC end sequences from over 260,000 BACs derived from 4 BAC libraries and takes advantage of alignments to the human genome to improve the continuity and local ordering of the clone contigs. We estimate that over 98% of the euchromatin of the 18 pig autosomes and the X chromosome along with localized coverage on Y is represented in 172 contigs, with chromosome 13 (218 Mb) represented by a single contig. The map is accessible through pre-Ensembl, where links to marker and sequence data can be found. Conclusion The map will enable immediate electronic positional cloning of genes, benefiting the pig research community and further facilitating use of the pig as an alternative animal model for human disease. The clone map and BAC end sequence data can also help to support the assembly of maps and genome sequences of other artiodactyls. Bacterial Artificial Chromosome (dpeaa)DE-He213 Additional Data File (dpeaa)DE-He213 Bacterial Artificial Chromosome Clone (dpeaa)DE-He213 Radiation Hybrid (dpeaa)DE-He213 Minimum Tile Path (dpeaa)DE-He213 Scott, Carol E aut Clark, Richard aut Marron, Brandy aut Bender, Clare aut Camm, Nick aut Davis, Jayne aut Jenks, Andrew aut Noon, Angela aut Patel, Manish aut Sehra, Harminder aut Yang, Fengtang aut Rogatcheva, Margarita B aut Milan, Denis aut Chardon, Patrick aut Rohrer, Gary aut Nonneman, Dan aut de Jong, Pieter aut Meyers, Stacey N aut Archibald, Alan aut Beever, Jonathan E aut Schook, Lawrence B aut Rogers, Jane aut Enthalten in Genome biology London : BioMed Central, 2000 8(2007), 7 vom: 11. Juli (DE-627)326173617 (DE-600)2040529-7 1474-760X nnns volume:8 year:2007 number:7 day:11 month:07 https://dx.doi.org/10.1186/gb-2007-8-7-r139 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2007 7 11 07 |
allfields_unstemmed |
10.1186/gb-2007-8-7-r139 doi (DE-627)SPR030000068 (SPR)gb-2007-8-7-r139-e DE-627 ger DE-627 rakwb eng Humphray, Sean J verfasserin aut A high utility integrated map of the pig genome 2007 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Humphray et al.; licensee BioMed Central Ltd. 2007. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Background The domestic pig is being increasingly exploited as a system for modeling human disease. It also has substantial economic importance for meat-based protein production. Physical clone maps have underpinned large-scale genomic sequencing and enabled focused cloning efforts for many genomes. Comparative genetic maps indicate that there is more structural similarity between pig and human than, for example, mouse and human, and we have used this close relationship between human and pig as a way of facilitating map construction. Results Here we report the construction of the most highly continuous bacterial artificial chromosome (BAC) map of any mammalian genome, for the pig (Sus scrofa domestica) genome. The map provides a template for the generation and assembly of high-quality anchored sequence across the genome. The physical map integrates previous landmark maps with restriction fingerprints and BAC end sequences from over 260,000 BACs derived from 4 BAC libraries and takes advantage of alignments to the human genome to improve the continuity and local ordering of the clone contigs. We estimate that over 98% of the euchromatin of the 18 pig autosomes and the X chromosome along with localized coverage on Y is represented in 172 contigs, with chromosome 13 (218 Mb) represented by a single contig. The map is accessible through pre-Ensembl, where links to marker and sequence data can be found. Conclusion The map will enable immediate electronic positional cloning of genes, benefiting the pig research community and further facilitating use of the pig as an alternative animal model for human disease. The clone map and BAC end sequence data can also help to support the assembly of maps and genome sequences of other artiodactyls. Bacterial Artificial Chromosome (dpeaa)DE-He213 Additional Data File (dpeaa)DE-He213 Bacterial Artificial Chromosome Clone (dpeaa)DE-He213 Radiation Hybrid (dpeaa)DE-He213 Minimum Tile Path (dpeaa)DE-He213 Scott, Carol E aut Clark, Richard aut Marron, Brandy aut Bender, Clare aut Camm, Nick aut Davis, Jayne aut Jenks, Andrew aut Noon, Angela aut Patel, Manish aut Sehra, Harminder aut Yang, Fengtang aut Rogatcheva, Margarita B aut Milan, Denis aut Chardon, Patrick aut Rohrer, Gary aut Nonneman, Dan aut de Jong, Pieter aut Meyers, Stacey N aut Archibald, Alan aut Beever, Jonathan E aut Schook, Lawrence B aut Rogers, Jane aut Enthalten in Genome biology London : BioMed Central, 2000 8(2007), 7 vom: 11. Juli (DE-627)326173617 (DE-600)2040529-7 1474-760X nnns volume:8 year:2007 number:7 day:11 month:07 https://dx.doi.org/10.1186/gb-2007-8-7-r139 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2007 7 11 07 |
allfieldsGer |
10.1186/gb-2007-8-7-r139 doi (DE-627)SPR030000068 (SPR)gb-2007-8-7-r139-e DE-627 ger DE-627 rakwb eng Humphray, Sean J verfasserin aut A high utility integrated map of the pig genome 2007 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Humphray et al.; licensee BioMed Central Ltd. 2007. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Background The domestic pig is being increasingly exploited as a system for modeling human disease. It also has substantial economic importance for meat-based protein production. Physical clone maps have underpinned large-scale genomic sequencing and enabled focused cloning efforts for many genomes. Comparative genetic maps indicate that there is more structural similarity between pig and human than, for example, mouse and human, and we have used this close relationship between human and pig as a way of facilitating map construction. Results Here we report the construction of the most highly continuous bacterial artificial chromosome (BAC) map of any mammalian genome, for the pig (Sus scrofa domestica) genome. The map provides a template for the generation and assembly of high-quality anchored sequence across the genome. The physical map integrates previous landmark maps with restriction fingerprints and BAC end sequences from over 260,000 BACs derived from 4 BAC libraries and takes advantage of alignments to the human genome to improve the continuity and local ordering of the clone contigs. We estimate that over 98% of the euchromatin of the 18 pig autosomes and the X chromosome along with localized coverage on Y is represented in 172 contigs, with chromosome 13 (218 Mb) represented by a single contig. The map is accessible through pre-Ensembl, where links to marker and sequence data can be found. Conclusion The map will enable immediate electronic positional cloning of genes, benefiting the pig research community and further facilitating use of the pig as an alternative animal model for human disease. The clone map and BAC end sequence data can also help to support the assembly of maps and genome sequences of other artiodactyls. Bacterial Artificial Chromosome (dpeaa)DE-He213 Additional Data File (dpeaa)DE-He213 Bacterial Artificial Chromosome Clone (dpeaa)DE-He213 Radiation Hybrid (dpeaa)DE-He213 Minimum Tile Path (dpeaa)DE-He213 Scott, Carol E aut Clark, Richard aut Marron, Brandy aut Bender, Clare aut Camm, Nick aut Davis, Jayne aut Jenks, Andrew aut Noon, Angela aut Patel, Manish aut Sehra, Harminder aut Yang, Fengtang aut Rogatcheva, Margarita B aut Milan, Denis aut Chardon, Patrick aut Rohrer, Gary aut Nonneman, Dan aut de Jong, Pieter aut Meyers, Stacey N aut Archibald, Alan aut Beever, Jonathan E aut Schook, Lawrence B aut Rogers, Jane aut Enthalten in Genome biology London : BioMed Central, 2000 8(2007), 7 vom: 11. Juli (DE-627)326173617 (DE-600)2040529-7 1474-760X nnns volume:8 year:2007 number:7 day:11 month:07 https://dx.doi.org/10.1186/gb-2007-8-7-r139 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2007 7 11 07 |
allfieldsSound |
10.1186/gb-2007-8-7-r139 doi (DE-627)SPR030000068 (SPR)gb-2007-8-7-r139-e DE-627 ger DE-627 rakwb eng Humphray, Sean J verfasserin aut A high utility integrated map of the pig genome 2007 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Humphray et al.; licensee BioMed Central Ltd. 2007. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Background The domestic pig is being increasingly exploited as a system for modeling human disease. It also has substantial economic importance for meat-based protein production. Physical clone maps have underpinned large-scale genomic sequencing and enabled focused cloning efforts for many genomes. Comparative genetic maps indicate that there is more structural similarity between pig and human than, for example, mouse and human, and we have used this close relationship between human and pig as a way of facilitating map construction. Results Here we report the construction of the most highly continuous bacterial artificial chromosome (BAC) map of any mammalian genome, for the pig (Sus scrofa domestica) genome. The map provides a template for the generation and assembly of high-quality anchored sequence across the genome. The physical map integrates previous landmark maps with restriction fingerprints and BAC end sequences from over 260,000 BACs derived from 4 BAC libraries and takes advantage of alignments to the human genome to improve the continuity and local ordering of the clone contigs. We estimate that over 98% of the euchromatin of the 18 pig autosomes and the X chromosome along with localized coverage on Y is represented in 172 contigs, with chromosome 13 (218 Mb) represented by a single contig. The map is accessible through pre-Ensembl, where links to marker and sequence data can be found. Conclusion The map will enable immediate electronic positional cloning of genes, benefiting the pig research community and further facilitating use of the pig as an alternative animal model for human disease. The clone map and BAC end sequence data can also help to support the assembly of maps and genome sequences of other artiodactyls. Bacterial Artificial Chromosome (dpeaa)DE-He213 Additional Data File (dpeaa)DE-He213 Bacterial Artificial Chromosome Clone (dpeaa)DE-He213 Radiation Hybrid (dpeaa)DE-He213 Minimum Tile Path (dpeaa)DE-He213 Scott, Carol E aut Clark, Richard aut Marron, Brandy aut Bender, Clare aut Camm, Nick aut Davis, Jayne aut Jenks, Andrew aut Noon, Angela aut Patel, Manish aut Sehra, Harminder aut Yang, Fengtang aut Rogatcheva, Margarita B aut Milan, Denis aut Chardon, Patrick aut Rohrer, Gary aut Nonneman, Dan aut de Jong, Pieter aut Meyers, Stacey N aut Archibald, Alan aut Beever, Jonathan E aut Schook, Lawrence B aut Rogers, Jane aut Enthalten in Genome biology London : BioMed Central, 2000 8(2007), 7 vom: 11. Juli (DE-627)326173617 (DE-600)2040529-7 1474-760X nnns volume:8 year:2007 number:7 day:11 month:07 https://dx.doi.org/10.1186/gb-2007-8-7-r139 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2007 7 11 07 |
language |
English |
source |
Enthalten in Genome biology 8(2007), 7 vom: 11. Juli volume:8 year:2007 number:7 day:11 month:07 |
sourceStr |
Enthalten in Genome biology 8(2007), 7 vom: 11. Juli volume:8 year:2007 number:7 day:11 month:07 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Bacterial Artificial Chromosome Additional Data File Bacterial Artificial Chromosome Clone Radiation Hybrid Minimum Tile Path |
isfreeaccess_bool |
true |
container_title |
Genome biology |
authorswithroles_txt_mv |
Humphray, Sean J @@aut@@ Scott, Carol E @@aut@@ Clark, Richard @@aut@@ Marron, Brandy @@aut@@ Bender, Clare @@aut@@ Camm, Nick @@aut@@ Davis, Jayne @@aut@@ Jenks, Andrew @@aut@@ Noon, Angela @@aut@@ Patel, Manish @@aut@@ Sehra, Harminder @@aut@@ Yang, Fengtang @@aut@@ Rogatcheva, Margarita B @@aut@@ Milan, Denis @@aut@@ Chardon, Patrick @@aut@@ Rohrer, Gary @@aut@@ Nonneman, Dan @@aut@@ de Jong, Pieter @@aut@@ Meyers, Stacey N @@aut@@ Archibald, Alan @@aut@@ Beever, Jonathan E @@aut@@ Schook, Lawrence B @@aut@@ Rogers, Jane @@aut@@ |
publishDateDaySort_date |
2007-07-11T00:00:00Z |
hierarchy_top_id |
326173617 |
id |
SPR030000068 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030000068</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519194132.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2007 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/gb-2007-8-7-r139</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030000068</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)gb-2007-8-7-r139-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Humphray, Sean J</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A high utility integrated map of the pig genome</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Humphray et al.; licensee BioMed Central Ltd. 2007. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The domestic pig is being increasingly exploited as a system for modeling human disease. It also has substantial economic importance for meat-based protein production. Physical clone maps have underpinned large-scale genomic sequencing and enabled focused cloning efforts for many genomes. Comparative genetic maps indicate that there is more structural similarity between pig and human than, for example, mouse and human, and we have used this close relationship between human and pig as a way of facilitating map construction. Results Here we report the construction of the most highly continuous bacterial artificial chromosome (BAC) map of any mammalian genome, for the pig (Sus scrofa domestica) genome. The map provides a template for the generation and assembly of high-quality anchored sequence across the genome. The physical map integrates previous landmark maps with restriction fingerprints and BAC end sequences from over 260,000 BACs derived from 4 BAC libraries and takes advantage of alignments to the human genome to improve the continuity and local ordering of the clone contigs. We estimate that over 98% of the euchromatin of the 18 pig autosomes and the X chromosome along with localized coverage on Y is represented in 172 contigs, with chromosome 13 (218 Mb) represented by a single contig. The map is accessible through pre-Ensembl, where links to marker and sequence data can be found. Conclusion The map will enable immediate electronic positional cloning of genes, benefiting the pig research community and further facilitating use of the pig as an alternative animal model for human disease. The clone map and BAC end sequence data can also help to support the assembly of maps and genome sequences of other artiodactyls.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bacterial Artificial Chromosome</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Additional Data File</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bacterial Artificial Chromosome Clone</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiation Hybrid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimum Tile Path</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Scott, Carol E</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Clark, Richard</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marron, Brandy</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bender, Clare</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Camm, Nick</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Davis, Jayne</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jenks, Andrew</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Noon, Angela</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Patel, Manish</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sehra, Harminder</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Fengtang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rogatcheva, Margarita B</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Milan, Denis</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chardon, Patrick</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rohrer, Gary</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nonneman, Dan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Jong, Pieter</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meyers, Stacey N</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Archibald, Alan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beever, Jonathan E</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schook, Lawrence B</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rogers, Jane</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Genome biology</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">8(2007), 7 vom: 11. Juli</subfield><subfield code="w">(DE-627)326173617</subfield><subfield code="w">(DE-600)2040529-7</subfield><subfield code="x">1474-760X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:7</subfield><subfield code="g">day:11</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/gb-2007-8-7-r139</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2007</subfield><subfield code="e">7</subfield><subfield code="b">11</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
author |
Humphray, Sean J |
spellingShingle |
Humphray, Sean J misc Bacterial Artificial Chromosome misc Additional Data File misc Bacterial Artificial Chromosome Clone misc Radiation Hybrid misc Minimum Tile Path A high utility integrated map of the pig genome |
authorStr |
Humphray, Sean J |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326173617 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1474-760X |
topic_title |
A high utility integrated map of the pig genome Bacterial Artificial Chromosome (dpeaa)DE-He213 Additional Data File (dpeaa)DE-He213 Bacterial Artificial Chromosome Clone (dpeaa)DE-He213 Radiation Hybrid (dpeaa)DE-He213 Minimum Tile Path (dpeaa)DE-He213 |
topic |
misc Bacterial Artificial Chromosome misc Additional Data File misc Bacterial Artificial Chromosome Clone misc Radiation Hybrid misc Minimum Tile Path |
topic_unstemmed |
misc Bacterial Artificial Chromosome misc Additional Data File misc Bacterial Artificial Chromosome Clone misc Radiation Hybrid misc Minimum Tile Path |
topic_browse |
misc Bacterial Artificial Chromosome misc Additional Data File misc Bacterial Artificial Chromosome Clone misc Radiation Hybrid misc Minimum Tile Path |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Genome biology |
hierarchy_parent_id |
326173617 |
hierarchy_top_title |
Genome biology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326173617 (DE-600)2040529-7 |
title |
A high utility integrated map of the pig genome |
ctrlnum |
(DE-627)SPR030000068 (SPR)gb-2007-8-7-r139-e |
title_full |
A high utility integrated map of the pig genome |
author_sort |
Humphray, Sean J |
journal |
Genome biology |
journalStr |
Genome biology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
author_browse |
Humphray, Sean J Scott, Carol E Clark, Richard Marron, Brandy Bender, Clare Camm, Nick Davis, Jayne Jenks, Andrew Noon, Angela Patel, Manish Sehra, Harminder Yang, Fengtang Rogatcheva, Margarita B Milan, Denis Chardon, Patrick Rohrer, Gary Nonneman, Dan de Jong, Pieter Meyers, Stacey N Archibald, Alan Beever, Jonathan E Schook, Lawrence B Rogers, Jane |
container_volume |
8 |
format_se |
Elektronische Aufsätze |
author-letter |
Humphray, Sean J |
doi_str_mv |
10.1186/gb-2007-8-7-r139 |
title_sort |
high utility integrated map of the pig genome |
title_auth |
A high utility integrated map of the pig genome |
abstract |
Background The domestic pig is being increasingly exploited as a system for modeling human disease. It also has substantial economic importance for meat-based protein production. Physical clone maps have underpinned large-scale genomic sequencing and enabled focused cloning efforts for many genomes. Comparative genetic maps indicate that there is more structural similarity between pig and human than, for example, mouse and human, and we have used this close relationship between human and pig as a way of facilitating map construction. Results Here we report the construction of the most highly continuous bacterial artificial chromosome (BAC) map of any mammalian genome, for the pig (Sus scrofa domestica) genome. The map provides a template for the generation and assembly of high-quality anchored sequence across the genome. The physical map integrates previous landmark maps with restriction fingerprints and BAC end sequences from over 260,000 BACs derived from 4 BAC libraries and takes advantage of alignments to the human genome to improve the continuity and local ordering of the clone contigs. We estimate that over 98% of the euchromatin of the 18 pig autosomes and the X chromosome along with localized coverage on Y is represented in 172 contigs, with chromosome 13 (218 Mb) represented by a single contig. The map is accessible through pre-Ensembl, where links to marker and sequence data can be found. Conclusion The map will enable immediate electronic positional cloning of genes, benefiting the pig research community and further facilitating use of the pig as an alternative animal model for human disease. The clone map and BAC end sequence data can also help to support the assembly of maps and genome sequences of other artiodactyls. © Humphray et al.; licensee BioMed Central Ltd. 2007. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( |
abstractGer |
Background The domestic pig is being increasingly exploited as a system for modeling human disease. It also has substantial economic importance for meat-based protein production. Physical clone maps have underpinned large-scale genomic sequencing and enabled focused cloning efforts for many genomes. Comparative genetic maps indicate that there is more structural similarity between pig and human than, for example, mouse and human, and we have used this close relationship between human and pig as a way of facilitating map construction. Results Here we report the construction of the most highly continuous bacterial artificial chromosome (BAC) map of any mammalian genome, for the pig (Sus scrofa domestica) genome. The map provides a template for the generation and assembly of high-quality anchored sequence across the genome. The physical map integrates previous landmark maps with restriction fingerprints and BAC end sequences from over 260,000 BACs derived from 4 BAC libraries and takes advantage of alignments to the human genome to improve the continuity and local ordering of the clone contigs. We estimate that over 98% of the euchromatin of the 18 pig autosomes and the X chromosome along with localized coverage on Y is represented in 172 contigs, with chromosome 13 (218 Mb) represented by a single contig. The map is accessible through pre-Ensembl, where links to marker and sequence data can be found. Conclusion The map will enable immediate electronic positional cloning of genes, benefiting the pig research community and further facilitating use of the pig as an alternative animal model for human disease. The clone map and BAC end sequence data can also help to support the assembly of maps and genome sequences of other artiodactyls. © Humphray et al.; licensee BioMed Central Ltd. 2007. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( |
abstract_unstemmed |
Background The domestic pig is being increasingly exploited as a system for modeling human disease. It also has substantial economic importance for meat-based protein production. Physical clone maps have underpinned large-scale genomic sequencing and enabled focused cloning efforts for many genomes. Comparative genetic maps indicate that there is more structural similarity between pig and human than, for example, mouse and human, and we have used this close relationship between human and pig as a way of facilitating map construction. Results Here we report the construction of the most highly continuous bacterial artificial chromosome (BAC) map of any mammalian genome, for the pig (Sus scrofa domestica) genome. The map provides a template for the generation and assembly of high-quality anchored sequence across the genome. The physical map integrates previous landmark maps with restriction fingerprints and BAC end sequences from over 260,000 BACs derived from 4 BAC libraries and takes advantage of alignments to the human genome to improve the continuity and local ordering of the clone contigs. We estimate that over 98% of the euchromatin of the 18 pig autosomes and the X chromosome along with localized coverage on Y is represented in 172 contigs, with chromosome 13 (218 Mb) represented by a single contig. The map is accessible through pre-Ensembl, where links to marker and sequence data can be found. Conclusion The map will enable immediate electronic positional cloning of genes, benefiting the pig research community and further facilitating use of the pig as an alternative animal model for human disease. The clone map and BAC end sequence data can also help to support the assembly of maps and genome sequences of other artiodactyls. © Humphray et al.; licensee BioMed Central Ltd. 2007. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
7 |
title_short |
A high utility integrated map of the pig genome |
url |
https://dx.doi.org/10.1186/gb-2007-8-7-r139 |
remote_bool |
true |
author2 |
Scott, Carol E Clark, Richard Marron, Brandy Bender, Clare Camm, Nick Davis, Jayne Jenks, Andrew Noon, Angela Patel, Manish Sehra, Harminder Yang, Fengtang Rogatcheva, Margarita B Milan, Denis Chardon, Patrick Rohrer, Gary Nonneman, Dan de Jong, Pieter Meyers, Stacey N Archibald, Alan Beever, Jonathan E Schook, Lawrence B Rogers, Jane |
author2Str |
Scott, Carol E Clark, Richard Marron, Brandy Bender, Clare Camm, Nick Davis, Jayne Jenks, Andrew Noon, Angela Patel, Manish Sehra, Harminder Yang, Fengtang Rogatcheva, Margarita B Milan, Denis Chardon, Patrick Rohrer, Gary Nonneman, Dan de Jong, Pieter Meyers, Stacey N Archibald, Alan Beever, Jonathan E Schook, Lawrence B Rogers, Jane |
ppnlink |
326173617 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/gb-2007-8-7-r139 |
up_date |
2024-07-04T02:56:00.376Z |
_version_ |
1803615480454316032 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030000068</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519194132.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2007 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/gb-2007-8-7-r139</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030000068</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)gb-2007-8-7-r139-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Humphray, Sean J</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A high utility integrated map of the pig genome</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Humphray et al.; licensee BioMed Central Ltd. 2007. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The domestic pig is being increasingly exploited as a system for modeling human disease. It also has substantial economic importance for meat-based protein production. Physical clone maps have underpinned large-scale genomic sequencing and enabled focused cloning efforts for many genomes. Comparative genetic maps indicate that there is more structural similarity between pig and human than, for example, mouse and human, and we have used this close relationship between human and pig as a way of facilitating map construction. Results Here we report the construction of the most highly continuous bacterial artificial chromosome (BAC) map of any mammalian genome, for the pig (Sus scrofa domestica) genome. The map provides a template for the generation and assembly of high-quality anchored sequence across the genome. The physical map integrates previous landmark maps with restriction fingerprints and BAC end sequences from over 260,000 BACs derived from 4 BAC libraries and takes advantage of alignments to the human genome to improve the continuity and local ordering of the clone contigs. We estimate that over 98% of the euchromatin of the 18 pig autosomes and the X chromosome along with localized coverage on Y is represented in 172 contigs, with chromosome 13 (218 Mb) represented by a single contig. The map is accessible through pre-Ensembl, where links to marker and sequence data can be found. Conclusion The map will enable immediate electronic positional cloning of genes, benefiting the pig research community and further facilitating use of the pig as an alternative animal model for human disease. The clone map and BAC end sequence data can also help to support the assembly of maps and genome sequences of other artiodactyls.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bacterial Artificial Chromosome</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Additional Data File</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bacterial Artificial Chromosome Clone</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiation Hybrid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimum Tile Path</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Scott, Carol E</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Clark, Richard</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marron, Brandy</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bender, Clare</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Camm, Nick</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Davis, Jayne</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jenks, Andrew</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Noon, Angela</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Patel, Manish</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sehra, Harminder</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Fengtang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rogatcheva, Margarita B</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Milan, Denis</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chardon, Patrick</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rohrer, Gary</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nonneman, Dan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Jong, Pieter</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meyers, Stacey N</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Archibald, Alan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beever, Jonathan E</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schook, Lawrence B</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rogers, Jane</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Genome biology</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">8(2007), 7 vom: 11. Juli</subfield><subfield code="w">(DE-627)326173617</subfield><subfield code="w">(DE-600)2040529-7</subfield><subfield code="x">1474-760X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:7</subfield><subfield code="g">day:11</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/gb-2007-8-7-r139</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2007</subfield><subfield code="e">7</subfield><subfield code="b">11</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
score |
7.400985 |