Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach
Background One of the main current challenges in computational biology is to make sense of the huge amounts of multidimensional experimental data that are being produced. For instance, large cohorts of patients are often screened using different high-throughput technologies, effectively producing mu...
Ausführliche Beschreibung
Autor*in: |
Tranchevent, Léon-Charles [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Biology direct - London : BioMed Central, 2006, 13(2018), 1 vom: 07. Juni |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2018 ; number:1 ; day:07 ; month:06 |
Links: |
---|
DOI / URN: |
10.1186/s13062-018-0214-9 |
---|
Katalog-ID: |
SPR03004703X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR03004703X | ||
003 | DE-627 | ||
005 | 20230519231550.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13062-018-0214-9 |2 doi | |
035 | |a (DE-627)SPR03004703X | ||
035 | |a (SPR)s13062-018-0214-9-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Tranchevent, Léon-Charles |e verfasserin |0 (orcid)0000-0002-1257-4824 |4 aut | |
245 | 1 | 0 | |a Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2018 | ||
520 | |a Background One of the main current challenges in computational biology is to make sense of the huge amounts of multidimensional experimental data that are being produced. For instance, large cohorts of patients are often screened using different high-throughput technologies, effectively producing multiple patient-specific molecular profiles for hundreds or thousands of patients. Results We propose and implement a network-based method that integrates such patient omics data into Patient Similarity Networks. Topological features derived from these networks were then used to predict relevant clinical features. As part of the 2017 CAMDA challenge, we have successfully applied this strategy to a neuroblastoma dataset, consisting of genomic and transcriptomic data. In particular, we observe that models built on our network-based approach perform at least as well as state of the art models. We furthermore explore the effectiveness of various topological features and observe, for instance, that redundant centrality metrics can be combined to build more powerful models. Conclusion We demonstrate that the networks inferred from omics data contain clinically relevant information and that patient clinical outcomes can be predicted using only network topological data. Reviewers This article was reviewed by Yang-Yu Liu, Tomislav Smuc and Isabel Nepomuceno. | ||
650 | 4 | |a Biological networks |7 (dpeaa)DE-He213 | |
650 | 4 | |a Network-based methods |7 (dpeaa)DE-He213 | |
650 | 4 | |a Network topology |7 (dpeaa)DE-He213 | |
700 | 1 | |a Nazarov, Petr V. |4 aut | |
700 | 1 | |a Kaoma, Tony |4 aut | |
700 | 1 | |a Schmartz, Georges P. |4 aut | |
700 | 1 | |a Muller, Arnaud |4 aut | |
700 | 1 | |a Kim, Sang-Yoon |4 aut | |
700 | 1 | |a Rajapakse, Jagath C. |4 aut | |
700 | 1 | |a Azuaje, Francisco |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Biology direct |d London : BioMed Central, 2006 |g 13(2018), 1 vom: 07. Juni |w (DE-627)507522516 |w (DE-600)2221028-3 |x 1745-6150 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2018 |g number:1 |g day:07 |g month:06 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13062-018-0214-9 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2018 |e 1 |b 07 |c 06 |
author_variant |
l c t lct p v n pv pvn t k tk g p s gp gps a m am s y k syk j c r jc jcr f a fa |
---|---|
matchkey_str |
article:17456150:2018----::rdciglnclucmonuolsoaainssnaitga |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1186/s13062-018-0214-9 doi (DE-627)SPR03004703X (SPR)s13062-018-0214-9-e DE-627 ger DE-627 rakwb eng Tranchevent, Léon-Charles verfasserin (orcid)0000-0002-1257-4824 aut Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Background One of the main current challenges in computational biology is to make sense of the huge amounts of multidimensional experimental data that are being produced. For instance, large cohorts of patients are often screened using different high-throughput technologies, effectively producing multiple patient-specific molecular profiles for hundreds or thousands of patients. Results We propose and implement a network-based method that integrates such patient omics data into Patient Similarity Networks. Topological features derived from these networks were then used to predict relevant clinical features. As part of the 2017 CAMDA challenge, we have successfully applied this strategy to a neuroblastoma dataset, consisting of genomic and transcriptomic data. In particular, we observe that models built on our network-based approach perform at least as well as state of the art models. We furthermore explore the effectiveness of various topological features and observe, for instance, that redundant centrality metrics can be combined to build more powerful models. Conclusion We demonstrate that the networks inferred from omics data contain clinically relevant information and that patient clinical outcomes can be predicted using only network topological data. Reviewers This article was reviewed by Yang-Yu Liu, Tomislav Smuc and Isabel Nepomuceno. Biological networks (dpeaa)DE-He213 Network-based methods (dpeaa)DE-He213 Network topology (dpeaa)DE-He213 Nazarov, Petr V. aut Kaoma, Tony aut Schmartz, Georges P. aut Muller, Arnaud aut Kim, Sang-Yoon aut Rajapakse, Jagath C. aut Azuaje, Francisco aut Enthalten in Biology direct London : BioMed Central, 2006 13(2018), 1 vom: 07. Juni (DE-627)507522516 (DE-600)2221028-3 1745-6150 nnns volume:13 year:2018 number:1 day:07 month:06 https://dx.doi.org/10.1186/s13062-018-0214-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2018 1 07 06 |
spelling |
10.1186/s13062-018-0214-9 doi (DE-627)SPR03004703X (SPR)s13062-018-0214-9-e DE-627 ger DE-627 rakwb eng Tranchevent, Léon-Charles verfasserin (orcid)0000-0002-1257-4824 aut Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Background One of the main current challenges in computational biology is to make sense of the huge amounts of multidimensional experimental data that are being produced. For instance, large cohorts of patients are often screened using different high-throughput technologies, effectively producing multiple patient-specific molecular profiles for hundreds or thousands of patients. Results We propose and implement a network-based method that integrates such patient omics data into Patient Similarity Networks. Topological features derived from these networks were then used to predict relevant clinical features. As part of the 2017 CAMDA challenge, we have successfully applied this strategy to a neuroblastoma dataset, consisting of genomic and transcriptomic data. In particular, we observe that models built on our network-based approach perform at least as well as state of the art models. We furthermore explore the effectiveness of various topological features and observe, for instance, that redundant centrality metrics can be combined to build more powerful models. Conclusion We demonstrate that the networks inferred from omics data contain clinically relevant information and that patient clinical outcomes can be predicted using only network topological data. Reviewers This article was reviewed by Yang-Yu Liu, Tomislav Smuc and Isabel Nepomuceno. Biological networks (dpeaa)DE-He213 Network-based methods (dpeaa)DE-He213 Network topology (dpeaa)DE-He213 Nazarov, Petr V. aut Kaoma, Tony aut Schmartz, Georges P. aut Muller, Arnaud aut Kim, Sang-Yoon aut Rajapakse, Jagath C. aut Azuaje, Francisco aut Enthalten in Biology direct London : BioMed Central, 2006 13(2018), 1 vom: 07. Juni (DE-627)507522516 (DE-600)2221028-3 1745-6150 nnns volume:13 year:2018 number:1 day:07 month:06 https://dx.doi.org/10.1186/s13062-018-0214-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2018 1 07 06 |
allfields_unstemmed |
10.1186/s13062-018-0214-9 doi (DE-627)SPR03004703X (SPR)s13062-018-0214-9-e DE-627 ger DE-627 rakwb eng Tranchevent, Léon-Charles verfasserin (orcid)0000-0002-1257-4824 aut Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Background One of the main current challenges in computational biology is to make sense of the huge amounts of multidimensional experimental data that are being produced. For instance, large cohorts of patients are often screened using different high-throughput technologies, effectively producing multiple patient-specific molecular profiles for hundreds or thousands of patients. Results We propose and implement a network-based method that integrates such patient omics data into Patient Similarity Networks. Topological features derived from these networks were then used to predict relevant clinical features. As part of the 2017 CAMDA challenge, we have successfully applied this strategy to a neuroblastoma dataset, consisting of genomic and transcriptomic data. In particular, we observe that models built on our network-based approach perform at least as well as state of the art models. We furthermore explore the effectiveness of various topological features and observe, for instance, that redundant centrality metrics can be combined to build more powerful models. Conclusion We demonstrate that the networks inferred from omics data contain clinically relevant information and that patient clinical outcomes can be predicted using only network topological data. Reviewers This article was reviewed by Yang-Yu Liu, Tomislav Smuc and Isabel Nepomuceno. Biological networks (dpeaa)DE-He213 Network-based methods (dpeaa)DE-He213 Network topology (dpeaa)DE-He213 Nazarov, Petr V. aut Kaoma, Tony aut Schmartz, Georges P. aut Muller, Arnaud aut Kim, Sang-Yoon aut Rajapakse, Jagath C. aut Azuaje, Francisco aut Enthalten in Biology direct London : BioMed Central, 2006 13(2018), 1 vom: 07. Juni (DE-627)507522516 (DE-600)2221028-3 1745-6150 nnns volume:13 year:2018 number:1 day:07 month:06 https://dx.doi.org/10.1186/s13062-018-0214-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2018 1 07 06 |
allfieldsGer |
10.1186/s13062-018-0214-9 doi (DE-627)SPR03004703X (SPR)s13062-018-0214-9-e DE-627 ger DE-627 rakwb eng Tranchevent, Léon-Charles verfasserin (orcid)0000-0002-1257-4824 aut Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Background One of the main current challenges in computational biology is to make sense of the huge amounts of multidimensional experimental data that are being produced. For instance, large cohorts of patients are often screened using different high-throughput technologies, effectively producing multiple patient-specific molecular profiles for hundreds or thousands of patients. Results We propose and implement a network-based method that integrates such patient omics data into Patient Similarity Networks. Topological features derived from these networks were then used to predict relevant clinical features. As part of the 2017 CAMDA challenge, we have successfully applied this strategy to a neuroblastoma dataset, consisting of genomic and transcriptomic data. In particular, we observe that models built on our network-based approach perform at least as well as state of the art models. We furthermore explore the effectiveness of various topological features and observe, for instance, that redundant centrality metrics can be combined to build more powerful models. Conclusion We demonstrate that the networks inferred from omics data contain clinically relevant information and that patient clinical outcomes can be predicted using only network topological data. Reviewers This article was reviewed by Yang-Yu Liu, Tomislav Smuc and Isabel Nepomuceno. Biological networks (dpeaa)DE-He213 Network-based methods (dpeaa)DE-He213 Network topology (dpeaa)DE-He213 Nazarov, Petr V. aut Kaoma, Tony aut Schmartz, Georges P. aut Muller, Arnaud aut Kim, Sang-Yoon aut Rajapakse, Jagath C. aut Azuaje, Francisco aut Enthalten in Biology direct London : BioMed Central, 2006 13(2018), 1 vom: 07. Juni (DE-627)507522516 (DE-600)2221028-3 1745-6150 nnns volume:13 year:2018 number:1 day:07 month:06 https://dx.doi.org/10.1186/s13062-018-0214-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2018 1 07 06 |
allfieldsSound |
10.1186/s13062-018-0214-9 doi (DE-627)SPR03004703X (SPR)s13062-018-0214-9-e DE-627 ger DE-627 rakwb eng Tranchevent, Léon-Charles verfasserin (orcid)0000-0002-1257-4824 aut Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Background One of the main current challenges in computational biology is to make sense of the huge amounts of multidimensional experimental data that are being produced. For instance, large cohorts of patients are often screened using different high-throughput technologies, effectively producing multiple patient-specific molecular profiles for hundreds or thousands of patients. Results We propose and implement a network-based method that integrates such patient omics data into Patient Similarity Networks. Topological features derived from these networks were then used to predict relevant clinical features. As part of the 2017 CAMDA challenge, we have successfully applied this strategy to a neuroblastoma dataset, consisting of genomic and transcriptomic data. In particular, we observe that models built on our network-based approach perform at least as well as state of the art models. We furthermore explore the effectiveness of various topological features and observe, for instance, that redundant centrality metrics can be combined to build more powerful models. Conclusion We demonstrate that the networks inferred from omics data contain clinically relevant information and that patient clinical outcomes can be predicted using only network topological data. Reviewers This article was reviewed by Yang-Yu Liu, Tomislav Smuc and Isabel Nepomuceno. Biological networks (dpeaa)DE-He213 Network-based methods (dpeaa)DE-He213 Network topology (dpeaa)DE-He213 Nazarov, Petr V. aut Kaoma, Tony aut Schmartz, Georges P. aut Muller, Arnaud aut Kim, Sang-Yoon aut Rajapakse, Jagath C. aut Azuaje, Francisco aut Enthalten in Biology direct London : BioMed Central, 2006 13(2018), 1 vom: 07. Juni (DE-627)507522516 (DE-600)2221028-3 1745-6150 nnns volume:13 year:2018 number:1 day:07 month:06 https://dx.doi.org/10.1186/s13062-018-0214-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2018 1 07 06 |
language |
English |
source |
Enthalten in Biology direct 13(2018), 1 vom: 07. Juni volume:13 year:2018 number:1 day:07 month:06 |
sourceStr |
Enthalten in Biology direct 13(2018), 1 vom: 07. Juni volume:13 year:2018 number:1 day:07 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Biological networks Network-based methods Network topology |
isfreeaccess_bool |
true |
container_title |
Biology direct |
authorswithroles_txt_mv |
Tranchevent, Léon-Charles @@aut@@ Nazarov, Petr V. @@aut@@ Kaoma, Tony @@aut@@ Schmartz, Georges P. @@aut@@ Muller, Arnaud @@aut@@ Kim, Sang-Yoon @@aut@@ Rajapakse, Jagath C. @@aut@@ Azuaje, Francisco @@aut@@ |
publishDateDaySort_date |
2018-06-07T00:00:00Z |
hierarchy_top_id |
507522516 |
id |
SPR03004703X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR03004703X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519231550.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13062-018-0214-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR03004703X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13062-018-0214-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tranchevent, Léon-Charles</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1257-4824</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background One of the main current challenges in computational biology is to make sense of the huge amounts of multidimensional experimental data that are being produced. For instance, large cohorts of patients are often screened using different high-throughput technologies, effectively producing multiple patient-specific molecular profiles for hundreds or thousands of patients. Results We propose and implement a network-based method that integrates such patient omics data into Patient Similarity Networks. Topological features derived from these networks were then used to predict relevant clinical features. As part of the 2017 CAMDA challenge, we have successfully applied this strategy to a neuroblastoma dataset, consisting of genomic and transcriptomic data. In particular, we observe that models built on our network-based approach perform at least as well as state of the art models. We furthermore explore the effectiveness of various topological features and observe, for instance, that redundant centrality metrics can be combined to build more powerful models. Conclusion We demonstrate that the networks inferred from omics data contain clinically relevant information and that patient clinical outcomes can be predicted using only network topological data. Reviewers This article was reviewed by Yang-Yu Liu, Tomislav Smuc and Isabel Nepomuceno.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biological networks</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network-based methods</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network topology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nazarov, Petr V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaoma, Tony</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schmartz, Georges P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Muller, Arnaud</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Sang-Yoon</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rajapakse, Jagath C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Azuaje, Francisco</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Biology direct</subfield><subfield code="d">London : BioMed Central, 2006</subfield><subfield code="g">13(2018), 1 vom: 07. Juni</subfield><subfield code="w">(DE-627)507522516</subfield><subfield code="w">(DE-600)2221028-3</subfield><subfield code="x">1745-6150</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:07</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13062-018-0214-9</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">07</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Tranchevent, Léon-Charles |
spellingShingle |
Tranchevent, Léon-Charles misc Biological networks misc Network-based methods misc Network topology Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach |
authorStr |
Tranchevent, Léon-Charles |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)507522516 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1745-6150 |
topic_title |
Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach Biological networks (dpeaa)DE-He213 Network-based methods (dpeaa)DE-He213 Network topology (dpeaa)DE-He213 |
topic |
misc Biological networks misc Network-based methods misc Network topology |
topic_unstemmed |
misc Biological networks misc Network-based methods misc Network topology |
topic_browse |
misc Biological networks misc Network-based methods misc Network topology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Biology direct |
hierarchy_parent_id |
507522516 |
hierarchy_top_title |
Biology direct |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)507522516 (DE-600)2221028-3 |
title |
Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach |
ctrlnum |
(DE-627)SPR03004703X (SPR)s13062-018-0214-9-e |
title_full |
Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach |
author_sort |
Tranchevent, Léon-Charles |
journal |
Biology direct |
journalStr |
Biology direct |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Tranchevent, Léon-Charles Nazarov, Petr V. Kaoma, Tony Schmartz, Georges P. Muller, Arnaud Kim, Sang-Yoon Rajapakse, Jagath C. Azuaje, Francisco |
container_volume |
13 |
format_se |
Elektronische Aufsätze |
author-letter |
Tranchevent, Léon-Charles |
doi_str_mv |
10.1186/s13062-018-0214-9 |
normlink |
(ORCID)0000-0002-1257-4824 |
normlink_prefix_str_mv |
(orcid)0000-0002-1257-4824 |
title_sort |
predicting clinical outcome of neuroblastoma patients using an integrative network-based approach |
title_auth |
Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach |
abstract |
Background One of the main current challenges in computational biology is to make sense of the huge amounts of multidimensional experimental data that are being produced. For instance, large cohorts of patients are often screened using different high-throughput technologies, effectively producing multiple patient-specific molecular profiles for hundreds or thousands of patients. Results We propose and implement a network-based method that integrates such patient omics data into Patient Similarity Networks. Topological features derived from these networks were then used to predict relevant clinical features. As part of the 2017 CAMDA challenge, we have successfully applied this strategy to a neuroblastoma dataset, consisting of genomic and transcriptomic data. In particular, we observe that models built on our network-based approach perform at least as well as state of the art models. We furthermore explore the effectiveness of various topological features and observe, for instance, that redundant centrality metrics can be combined to build more powerful models. Conclusion We demonstrate that the networks inferred from omics data contain clinically relevant information and that patient clinical outcomes can be predicted using only network topological data. Reviewers This article was reviewed by Yang-Yu Liu, Tomislav Smuc and Isabel Nepomuceno. © The Author(s) 2018 |
abstractGer |
Background One of the main current challenges in computational biology is to make sense of the huge amounts of multidimensional experimental data that are being produced. For instance, large cohorts of patients are often screened using different high-throughput technologies, effectively producing multiple patient-specific molecular profiles for hundreds or thousands of patients. Results We propose and implement a network-based method that integrates such patient omics data into Patient Similarity Networks. Topological features derived from these networks were then used to predict relevant clinical features. As part of the 2017 CAMDA challenge, we have successfully applied this strategy to a neuroblastoma dataset, consisting of genomic and transcriptomic data. In particular, we observe that models built on our network-based approach perform at least as well as state of the art models. We furthermore explore the effectiveness of various topological features and observe, for instance, that redundant centrality metrics can be combined to build more powerful models. Conclusion We demonstrate that the networks inferred from omics data contain clinically relevant information and that patient clinical outcomes can be predicted using only network topological data. Reviewers This article was reviewed by Yang-Yu Liu, Tomislav Smuc and Isabel Nepomuceno. © The Author(s) 2018 |
abstract_unstemmed |
Background One of the main current challenges in computational biology is to make sense of the huge amounts of multidimensional experimental data that are being produced. For instance, large cohorts of patients are often screened using different high-throughput technologies, effectively producing multiple patient-specific molecular profiles for hundreds or thousands of patients. Results We propose and implement a network-based method that integrates such patient omics data into Patient Similarity Networks. Topological features derived from these networks were then used to predict relevant clinical features. As part of the 2017 CAMDA challenge, we have successfully applied this strategy to a neuroblastoma dataset, consisting of genomic and transcriptomic data. In particular, we observe that models built on our network-based approach perform at least as well as state of the art models. We furthermore explore the effectiveness of various topological features and observe, for instance, that redundant centrality metrics can be combined to build more powerful models. Conclusion We demonstrate that the networks inferred from omics data contain clinically relevant information and that patient clinical outcomes can be predicted using only network topological data. Reviewers This article was reviewed by Yang-Yu Liu, Tomislav Smuc and Isabel Nepomuceno. © The Author(s) 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach |
url |
https://dx.doi.org/10.1186/s13062-018-0214-9 |
remote_bool |
true |
author2 |
Nazarov, Petr V. Kaoma, Tony Schmartz, Georges P. Muller, Arnaud Kim, Sang-Yoon Rajapakse, Jagath C. Azuaje, Francisco |
author2Str |
Nazarov, Petr V. Kaoma, Tony Schmartz, Georges P. Muller, Arnaud Kim, Sang-Yoon Rajapakse, Jagath C. Azuaje, Francisco |
ppnlink |
507522516 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13062-018-0214-9 |
up_date |
2024-07-03T13:33:03.967Z |
_version_ |
1803564963827023872 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR03004703X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519231550.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13062-018-0214-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR03004703X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13062-018-0214-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tranchevent, Léon-Charles</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1257-4824</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background One of the main current challenges in computational biology is to make sense of the huge amounts of multidimensional experimental data that are being produced. For instance, large cohorts of patients are often screened using different high-throughput technologies, effectively producing multiple patient-specific molecular profiles for hundreds or thousands of patients. Results We propose and implement a network-based method that integrates such patient omics data into Patient Similarity Networks. Topological features derived from these networks were then used to predict relevant clinical features. As part of the 2017 CAMDA challenge, we have successfully applied this strategy to a neuroblastoma dataset, consisting of genomic and transcriptomic data. In particular, we observe that models built on our network-based approach perform at least as well as state of the art models. We furthermore explore the effectiveness of various topological features and observe, for instance, that redundant centrality metrics can be combined to build more powerful models. Conclusion We demonstrate that the networks inferred from omics data contain clinically relevant information and that patient clinical outcomes can be predicted using only network topological data. Reviewers This article was reviewed by Yang-Yu Liu, Tomislav Smuc and Isabel Nepomuceno.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biological networks</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network-based methods</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network topology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nazarov, Petr V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaoma, Tony</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schmartz, Georges P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Muller, Arnaud</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Sang-Yoon</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rajapakse, Jagath C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Azuaje, Francisco</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Biology direct</subfield><subfield code="d">London : BioMed Central, 2006</subfield><subfield code="g">13(2018), 1 vom: 07. Juni</subfield><subfield code="w">(DE-627)507522516</subfield><subfield code="w">(DE-600)2221028-3</subfield><subfield code="x">1745-6150</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:07</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13062-018-0214-9</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">07</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.4018145 |