Preference-adaptive randomization in comparative effectiveness studies
Background Determination of comparative effectiveness in a randomized controlled trial requires consideration of an intervention’s comparative uptake (or acceptance) among randomized participants and the intervention’s comparative efficacy among participants who use their assigned intervention. If a...
Ausführliche Beschreibung
Autor*in: |
French, Benjamin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© French et al.; licensee BioMed Central. 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Trials - London : BioMed Central, 2000, 16(2015), 1 vom: 18. März |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2015 ; number:1 ; day:18 ; month:03 |
Links: |
---|
DOI / URN: |
10.1186/s13063-015-0592-6 |
---|
Katalog-ID: |
SPR030077044 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR030077044 | ||
003 | DE-627 | ||
005 | 20230519194944.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13063-015-0592-6 |2 doi | |
035 | |a (DE-627)SPR030077044 | ||
035 | |a (SPR)s13063-015-0592-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a French, Benjamin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Preference-adaptive randomization in comparative effectiveness studies |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © French et al.; licensee BioMed Central. 2015 | ||
520 | |a Background Determination of comparative effectiveness in a randomized controlled trial requires consideration of an intervention’s comparative uptake (or acceptance) among randomized participants and the intervention’s comparative efficacy among participants who use their assigned intervention. If acceptance differs across interventions, then simple randomization of participants can result in post-randomization losses that introduce bias and limit statistical power. Methods We develop a novel preference-adaptive randomization procedure in which the allocation probabilities are updated based on the inverse of the relative acceptance rates among randomized participants in each arm. In simulation studies, we determine the optimal frequency with which to update the allocation probabilities based on the number of participants randomized. We illustrate the development and application of preference-adaptive randomization using a randomized controlled trial comparing the effectiveness of different financial incentive structures on prolonged smoking cessation. Results Simulation studies indicated that preference-adaptive randomization performed best with frequent updating, accommodated differences in acceptance across arms, and performed well even if the initial values for the allocation probabilities were not equal to their true values. Updating the allocation probabilities after randomizing each participant minimized imbalances in the number of accepting participants across arms over time. In the smoking cessation trial, unexpectedly large differences in acceptance among arms required us to limit the allocation of participants to less acceptable interventions. Nonetheless, the procedure achieved equal numbers of accepting participants in the more acceptable arms, and balanced the characteristics of participants across assigned interventions. Conclusions Preference-adaptive randomization, coupled with analysis methods based on instrumental variables, can enhance the validity and generalizability of comparative effectiveness studies. In particular, preference-adaptive randomization augments statistical power by maintaining balanced sample sizes in efficacy analyses, while retaining the ability of randomization to balance covariates across arms in effectiveness analyses. Trial registration ClinicalTrials.gov, NCT01526265; https://clinicaltrials.gov/ct2/show/NCT01526265 31 January 2012 | ||
650 | 4 | |a Adaptive design |7 (dpeaa)DE-He213 | |
650 | 4 | |a Adherence |7 (dpeaa)DE-He213 | |
650 | 4 | |a Comparative effectiveness research |7 (dpeaa)DE-He213 | |
650 | 4 | |a Efficacy |7 (dpeaa)DE-He213 | |
650 | 4 | |a Instrumental variables |7 (dpeaa)DE-He213 | |
700 | 1 | |a Small, Dylan S |4 aut | |
700 | 1 | |a Novak, Julie |4 aut | |
700 | 1 | |a Saulsgiver, Kathryn A |4 aut | |
700 | 1 | |a Harhay, Michael O |4 aut | |
700 | 1 | |a Asch, David A |4 aut | |
700 | 1 | |a Volpp, Kevin G |4 aut | |
700 | 1 | |a Halpern, Scott D |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Trials |d London : BioMed Central, 2000 |g 16(2015), 1 vom: 18. März |w (DE-627)326173552 |w (DE-600)2040523-6 |x 1745-6215 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2015 |g number:1 |g day:18 |g month:03 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13063-015-0592-6 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 16 |j 2015 |e 1 |b 18 |c 03 |
author_variant |
b f bf d s s ds dss j n jn k a s ka kas m o h mo moh d a a da daa k g v kg kgv s d h sd sdh |
---|---|
matchkey_str |
article:17456215:2015----::rfrnedpieadmztoicmaaiefe |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1186/s13063-015-0592-6 doi (DE-627)SPR030077044 (SPR)s13063-015-0592-6-e DE-627 ger DE-627 rakwb eng French, Benjamin verfasserin aut Preference-adaptive randomization in comparative effectiveness studies 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © French et al.; licensee BioMed Central. 2015 Background Determination of comparative effectiveness in a randomized controlled trial requires consideration of an intervention’s comparative uptake (or acceptance) among randomized participants and the intervention’s comparative efficacy among participants who use their assigned intervention. If acceptance differs across interventions, then simple randomization of participants can result in post-randomization losses that introduce bias and limit statistical power. Methods We develop a novel preference-adaptive randomization procedure in which the allocation probabilities are updated based on the inverse of the relative acceptance rates among randomized participants in each arm. In simulation studies, we determine the optimal frequency with which to update the allocation probabilities based on the number of participants randomized. We illustrate the development and application of preference-adaptive randomization using a randomized controlled trial comparing the effectiveness of different financial incentive structures on prolonged smoking cessation. Results Simulation studies indicated that preference-adaptive randomization performed best with frequent updating, accommodated differences in acceptance across arms, and performed well even if the initial values for the allocation probabilities were not equal to their true values. Updating the allocation probabilities after randomizing each participant minimized imbalances in the number of accepting participants across arms over time. In the smoking cessation trial, unexpectedly large differences in acceptance among arms required us to limit the allocation of participants to less acceptable interventions. Nonetheless, the procedure achieved equal numbers of accepting participants in the more acceptable arms, and balanced the characteristics of participants across assigned interventions. Conclusions Preference-adaptive randomization, coupled with analysis methods based on instrumental variables, can enhance the validity and generalizability of comparative effectiveness studies. In particular, preference-adaptive randomization augments statistical power by maintaining balanced sample sizes in efficacy analyses, while retaining the ability of randomization to balance covariates across arms in effectiveness analyses. Trial registration ClinicalTrials.gov, NCT01526265; https://clinicaltrials.gov/ct2/show/NCT01526265 31 January 2012 Adaptive design (dpeaa)DE-He213 Adherence (dpeaa)DE-He213 Comparative effectiveness research (dpeaa)DE-He213 Efficacy (dpeaa)DE-He213 Instrumental variables (dpeaa)DE-He213 Small, Dylan S aut Novak, Julie aut Saulsgiver, Kathryn A aut Harhay, Michael O aut Asch, David A aut Volpp, Kevin G aut Halpern, Scott D aut Enthalten in Trials London : BioMed Central, 2000 16(2015), 1 vom: 18. März (DE-627)326173552 (DE-600)2040523-6 1745-6215 nnns volume:16 year:2015 number:1 day:18 month:03 https://dx.doi.org/10.1186/s13063-015-0592-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2015 1 18 03 |
spelling |
10.1186/s13063-015-0592-6 doi (DE-627)SPR030077044 (SPR)s13063-015-0592-6-e DE-627 ger DE-627 rakwb eng French, Benjamin verfasserin aut Preference-adaptive randomization in comparative effectiveness studies 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © French et al.; licensee BioMed Central. 2015 Background Determination of comparative effectiveness in a randomized controlled trial requires consideration of an intervention’s comparative uptake (or acceptance) among randomized participants and the intervention’s comparative efficacy among participants who use their assigned intervention. If acceptance differs across interventions, then simple randomization of participants can result in post-randomization losses that introduce bias and limit statistical power. Methods We develop a novel preference-adaptive randomization procedure in which the allocation probabilities are updated based on the inverse of the relative acceptance rates among randomized participants in each arm. In simulation studies, we determine the optimal frequency with which to update the allocation probabilities based on the number of participants randomized. We illustrate the development and application of preference-adaptive randomization using a randomized controlled trial comparing the effectiveness of different financial incentive structures on prolonged smoking cessation. Results Simulation studies indicated that preference-adaptive randomization performed best with frequent updating, accommodated differences in acceptance across arms, and performed well even if the initial values for the allocation probabilities were not equal to their true values. Updating the allocation probabilities after randomizing each participant minimized imbalances in the number of accepting participants across arms over time. In the smoking cessation trial, unexpectedly large differences in acceptance among arms required us to limit the allocation of participants to less acceptable interventions. Nonetheless, the procedure achieved equal numbers of accepting participants in the more acceptable arms, and balanced the characteristics of participants across assigned interventions. Conclusions Preference-adaptive randomization, coupled with analysis methods based on instrumental variables, can enhance the validity and generalizability of comparative effectiveness studies. In particular, preference-adaptive randomization augments statistical power by maintaining balanced sample sizes in efficacy analyses, while retaining the ability of randomization to balance covariates across arms in effectiveness analyses. Trial registration ClinicalTrials.gov, NCT01526265; https://clinicaltrials.gov/ct2/show/NCT01526265 31 January 2012 Adaptive design (dpeaa)DE-He213 Adherence (dpeaa)DE-He213 Comparative effectiveness research (dpeaa)DE-He213 Efficacy (dpeaa)DE-He213 Instrumental variables (dpeaa)DE-He213 Small, Dylan S aut Novak, Julie aut Saulsgiver, Kathryn A aut Harhay, Michael O aut Asch, David A aut Volpp, Kevin G aut Halpern, Scott D aut Enthalten in Trials London : BioMed Central, 2000 16(2015), 1 vom: 18. März (DE-627)326173552 (DE-600)2040523-6 1745-6215 nnns volume:16 year:2015 number:1 day:18 month:03 https://dx.doi.org/10.1186/s13063-015-0592-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2015 1 18 03 |
allfields_unstemmed |
10.1186/s13063-015-0592-6 doi (DE-627)SPR030077044 (SPR)s13063-015-0592-6-e DE-627 ger DE-627 rakwb eng French, Benjamin verfasserin aut Preference-adaptive randomization in comparative effectiveness studies 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © French et al.; licensee BioMed Central. 2015 Background Determination of comparative effectiveness in a randomized controlled trial requires consideration of an intervention’s comparative uptake (or acceptance) among randomized participants and the intervention’s comparative efficacy among participants who use their assigned intervention. If acceptance differs across interventions, then simple randomization of participants can result in post-randomization losses that introduce bias and limit statistical power. Methods We develop a novel preference-adaptive randomization procedure in which the allocation probabilities are updated based on the inverse of the relative acceptance rates among randomized participants in each arm. In simulation studies, we determine the optimal frequency with which to update the allocation probabilities based on the number of participants randomized. We illustrate the development and application of preference-adaptive randomization using a randomized controlled trial comparing the effectiveness of different financial incentive structures on prolonged smoking cessation. Results Simulation studies indicated that preference-adaptive randomization performed best with frequent updating, accommodated differences in acceptance across arms, and performed well even if the initial values for the allocation probabilities were not equal to their true values. Updating the allocation probabilities after randomizing each participant minimized imbalances in the number of accepting participants across arms over time. In the smoking cessation trial, unexpectedly large differences in acceptance among arms required us to limit the allocation of participants to less acceptable interventions. Nonetheless, the procedure achieved equal numbers of accepting participants in the more acceptable arms, and balanced the characteristics of participants across assigned interventions. Conclusions Preference-adaptive randomization, coupled with analysis methods based on instrumental variables, can enhance the validity and generalizability of comparative effectiveness studies. In particular, preference-adaptive randomization augments statistical power by maintaining balanced sample sizes in efficacy analyses, while retaining the ability of randomization to balance covariates across arms in effectiveness analyses. Trial registration ClinicalTrials.gov, NCT01526265; https://clinicaltrials.gov/ct2/show/NCT01526265 31 January 2012 Adaptive design (dpeaa)DE-He213 Adherence (dpeaa)DE-He213 Comparative effectiveness research (dpeaa)DE-He213 Efficacy (dpeaa)DE-He213 Instrumental variables (dpeaa)DE-He213 Small, Dylan S aut Novak, Julie aut Saulsgiver, Kathryn A aut Harhay, Michael O aut Asch, David A aut Volpp, Kevin G aut Halpern, Scott D aut Enthalten in Trials London : BioMed Central, 2000 16(2015), 1 vom: 18. März (DE-627)326173552 (DE-600)2040523-6 1745-6215 nnns volume:16 year:2015 number:1 day:18 month:03 https://dx.doi.org/10.1186/s13063-015-0592-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2015 1 18 03 |
allfieldsGer |
10.1186/s13063-015-0592-6 doi (DE-627)SPR030077044 (SPR)s13063-015-0592-6-e DE-627 ger DE-627 rakwb eng French, Benjamin verfasserin aut Preference-adaptive randomization in comparative effectiveness studies 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © French et al.; licensee BioMed Central. 2015 Background Determination of comparative effectiveness in a randomized controlled trial requires consideration of an intervention’s comparative uptake (or acceptance) among randomized participants and the intervention’s comparative efficacy among participants who use their assigned intervention. If acceptance differs across interventions, then simple randomization of participants can result in post-randomization losses that introduce bias and limit statistical power. Methods We develop a novel preference-adaptive randomization procedure in which the allocation probabilities are updated based on the inverse of the relative acceptance rates among randomized participants in each arm. In simulation studies, we determine the optimal frequency with which to update the allocation probabilities based on the number of participants randomized. We illustrate the development and application of preference-adaptive randomization using a randomized controlled trial comparing the effectiveness of different financial incentive structures on prolonged smoking cessation. Results Simulation studies indicated that preference-adaptive randomization performed best with frequent updating, accommodated differences in acceptance across arms, and performed well even if the initial values for the allocation probabilities were not equal to their true values. Updating the allocation probabilities after randomizing each participant minimized imbalances in the number of accepting participants across arms over time. In the smoking cessation trial, unexpectedly large differences in acceptance among arms required us to limit the allocation of participants to less acceptable interventions. Nonetheless, the procedure achieved equal numbers of accepting participants in the more acceptable arms, and balanced the characteristics of participants across assigned interventions. Conclusions Preference-adaptive randomization, coupled with analysis methods based on instrumental variables, can enhance the validity and generalizability of comparative effectiveness studies. In particular, preference-adaptive randomization augments statistical power by maintaining balanced sample sizes in efficacy analyses, while retaining the ability of randomization to balance covariates across arms in effectiveness analyses. Trial registration ClinicalTrials.gov, NCT01526265; https://clinicaltrials.gov/ct2/show/NCT01526265 31 January 2012 Adaptive design (dpeaa)DE-He213 Adherence (dpeaa)DE-He213 Comparative effectiveness research (dpeaa)DE-He213 Efficacy (dpeaa)DE-He213 Instrumental variables (dpeaa)DE-He213 Small, Dylan S aut Novak, Julie aut Saulsgiver, Kathryn A aut Harhay, Michael O aut Asch, David A aut Volpp, Kevin G aut Halpern, Scott D aut Enthalten in Trials London : BioMed Central, 2000 16(2015), 1 vom: 18. März (DE-627)326173552 (DE-600)2040523-6 1745-6215 nnns volume:16 year:2015 number:1 day:18 month:03 https://dx.doi.org/10.1186/s13063-015-0592-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2015 1 18 03 |
allfieldsSound |
10.1186/s13063-015-0592-6 doi (DE-627)SPR030077044 (SPR)s13063-015-0592-6-e DE-627 ger DE-627 rakwb eng French, Benjamin verfasserin aut Preference-adaptive randomization in comparative effectiveness studies 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © French et al.; licensee BioMed Central. 2015 Background Determination of comparative effectiveness in a randomized controlled trial requires consideration of an intervention’s comparative uptake (or acceptance) among randomized participants and the intervention’s comparative efficacy among participants who use their assigned intervention. If acceptance differs across interventions, then simple randomization of participants can result in post-randomization losses that introduce bias and limit statistical power. Methods We develop a novel preference-adaptive randomization procedure in which the allocation probabilities are updated based on the inverse of the relative acceptance rates among randomized participants in each arm. In simulation studies, we determine the optimal frequency with which to update the allocation probabilities based on the number of participants randomized. We illustrate the development and application of preference-adaptive randomization using a randomized controlled trial comparing the effectiveness of different financial incentive structures on prolonged smoking cessation. Results Simulation studies indicated that preference-adaptive randomization performed best with frequent updating, accommodated differences in acceptance across arms, and performed well even if the initial values for the allocation probabilities were not equal to their true values. Updating the allocation probabilities after randomizing each participant minimized imbalances in the number of accepting participants across arms over time. In the smoking cessation trial, unexpectedly large differences in acceptance among arms required us to limit the allocation of participants to less acceptable interventions. Nonetheless, the procedure achieved equal numbers of accepting participants in the more acceptable arms, and balanced the characteristics of participants across assigned interventions. Conclusions Preference-adaptive randomization, coupled with analysis methods based on instrumental variables, can enhance the validity and generalizability of comparative effectiveness studies. In particular, preference-adaptive randomization augments statistical power by maintaining balanced sample sizes in efficacy analyses, while retaining the ability of randomization to balance covariates across arms in effectiveness analyses. Trial registration ClinicalTrials.gov, NCT01526265; https://clinicaltrials.gov/ct2/show/NCT01526265 31 January 2012 Adaptive design (dpeaa)DE-He213 Adherence (dpeaa)DE-He213 Comparative effectiveness research (dpeaa)DE-He213 Efficacy (dpeaa)DE-He213 Instrumental variables (dpeaa)DE-He213 Small, Dylan S aut Novak, Julie aut Saulsgiver, Kathryn A aut Harhay, Michael O aut Asch, David A aut Volpp, Kevin G aut Halpern, Scott D aut Enthalten in Trials London : BioMed Central, 2000 16(2015), 1 vom: 18. März (DE-627)326173552 (DE-600)2040523-6 1745-6215 nnns volume:16 year:2015 number:1 day:18 month:03 https://dx.doi.org/10.1186/s13063-015-0592-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2015 1 18 03 |
language |
English |
source |
Enthalten in Trials 16(2015), 1 vom: 18. März volume:16 year:2015 number:1 day:18 month:03 |
sourceStr |
Enthalten in Trials 16(2015), 1 vom: 18. März volume:16 year:2015 number:1 day:18 month:03 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Adaptive design Adherence Comparative effectiveness research Efficacy Instrumental variables |
isfreeaccess_bool |
true |
container_title |
Trials |
authorswithroles_txt_mv |
French, Benjamin @@aut@@ Small, Dylan S @@aut@@ Novak, Julie @@aut@@ Saulsgiver, Kathryn A @@aut@@ Harhay, Michael O @@aut@@ Asch, David A @@aut@@ Volpp, Kevin G @@aut@@ Halpern, Scott D @@aut@@ |
publishDateDaySort_date |
2015-03-18T00:00:00Z |
hierarchy_top_id |
326173552 |
id |
SPR030077044 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030077044</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519194944.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13063-015-0592-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030077044</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13063-015-0592-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">French, Benjamin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Preference-adaptive randomization in comparative effectiveness studies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© French et al.; licensee BioMed Central. 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Determination of comparative effectiveness in a randomized controlled trial requires consideration of an intervention’s comparative uptake (or acceptance) among randomized participants and the intervention’s comparative efficacy among participants who use their assigned intervention. If acceptance differs across interventions, then simple randomization of participants can result in post-randomization losses that introduce bias and limit statistical power. Methods We develop a novel preference-adaptive randomization procedure in which the allocation probabilities are updated based on the inverse of the relative acceptance rates among randomized participants in each arm. In simulation studies, we determine the optimal frequency with which to update the allocation probabilities based on the number of participants randomized. We illustrate the development and application of preference-adaptive randomization using a randomized controlled trial comparing the effectiveness of different financial incentive structures on prolonged smoking cessation. Results Simulation studies indicated that preference-adaptive randomization performed best with frequent updating, accommodated differences in acceptance across arms, and performed well even if the initial values for the allocation probabilities were not equal to their true values. Updating the allocation probabilities after randomizing each participant minimized imbalances in the number of accepting participants across arms over time. In the smoking cessation trial, unexpectedly large differences in acceptance among arms required us to limit the allocation of participants to less acceptable interventions. Nonetheless, the procedure achieved equal numbers of accepting participants in the more acceptable arms, and balanced the characteristics of participants across assigned interventions. Conclusions Preference-adaptive randomization, coupled with analysis methods based on instrumental variables, can enhance the validity and generalizability of comparative effectiveness studies. In particular, preference-adaptive randomization augments statistical power by maintaining balanced sample sizes in efficacy analyses, while retaining the ability of randomization to balance covariates across arms in effectiveness analyses. Trial registration ClinicalTrials.gov, NCT01526265; https://clinicaltrials.gov/ct2/show/NCT01526265 31 January 2012</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive design</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adherence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Comparative effectiveness research</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Efficacy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instrumental variables</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Small, Dylan S</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Novak, Julie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saulsgiver, Kathryn A</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Harhay, Michael O</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Asch, David A</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Volpp, Kevin G</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Halpern, Scott D</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Trials</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">16(2015), 1 vom: 18. März</subfield><subfield code="w">(DE-627)326173552</subfield><subfield code="w">(DE-600)2040523-6</subfield><subfield code="x">1745-6215</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:18</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13063-015-0592-6</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">18</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
author |
French, Benjamin |
spellingShingle |
French, Benjamin misc Adaptive design misc Adherence misc Comparative effectiveness research misc Efficacy misc Instrumental variables Preference-adaptive randomization in comparative effectiveness studies |
authorStr |
French, Benjamin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326173552 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1745-6215 |
topic_title |
Preference-adaptive randomization in comparative effectiveness studies Adaptive design (dpeaa)DE-He213 Adherence (dpeaa)DE-He213 Comparative effectiveness research (dpeaa)DE-He213 Efficacy (dpeaa)DE-He213 Instrumental variables (dpeaa)DE-He213 |
topic |
misc Adaptive design misc Adherence misc Comparative effectiveness research misc Efficacy misc Instrumental variables |
topic_unstemmed |
misc Adaptive design misc Adherence misc Comparative effectiveness research misc Efficacy misc Instrumental variables |
topic_browse |
misc Adaptive design misc Adherence misc Comparative effectiveness research misc Efficacy misc Instrumental variables |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Trials |
hierarchy_parent_id |
326173552 |
hierarchy_top_title |
Trials |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326173552 (DE-600)2040523-6 |
title |
Preference-adaptive randomization in comparative effectiveness studies |
ctrlnum |
(DE-627)SPR030077044 (SPR)s13063-015-0592-6-e |
title_full |
Preference-adaptive randomization in comparative effectiveness studies |
author_sort |
French, Benjamin |
journal |
Trials |
journalStr |
Trials |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
author_browse |
French, Benjamin Small, Dylan S Novak, Julie Saulsgiver, Kathryn A Harhay, Michael O Asch, David A Volpp, Kevin G Halpern, Scott D |
container_volume |
16 |
format_se |
Elektronische Aufsätze |
author-letter |
French, Benjamin |
doi_str_mv |
10.1186/s13063-015-0592-6 |
title_sort |
preference-adaptive randomization in comparative effectiveness studies |
title_auth |
Preference-adaptive randomization in comparative effectiveness studies |
abstract |
Background Determination of comparative effectiveness in a randomized controlled trial requires consideration of an intervention’s comparative uptake (or acceptance) among randomized participants and the intervention’s comparative efficacy among participants who use their assigned intervention. If acceptance differs across interventions, then simple randomization of participants can result in post-randomization losses that introduce bias and limit statistical power. Methods We develop a novel preference-adaptive randomization procedure in which the allocation probabilities are updated based on the inverse of the relative acceptance rates among randomized participants in each arm. In simulation studies, we determine the optimal frequency with which to update the allocation probabilities based on the number of participants randomized. We illustrate the development and application of preference-adaptive randomization using a randomized controlled trial comparing the effectiveness of different financial incentive structures on prolonged smoking cessation. Results Simulation studies indicated that preference-adaptive randomization performed best with frequent updating, accommodated differences in acceptance across arms, and performed well even if the initial values for the allocation probabilities were not equal to their true values. Updating the allocation probabilities after randomizing each participant minimized imbalances in the number of accepting participants across arms over time. In the smoking cessation trial, unexpectedly large differences in acceptance among arms required us to limit the allocation of participants to less acceptable interventions. Nonetheless, the procedure achieved equal numbers of accepting participants in the more acceptable arms, and balanced the characteristics of participants across assigned interventions. Conclusions Preference-adaptive randomization, coupled with analysis methods based on instrumental variables, can enhance the validity and generalizability of comparative effectiveness studies. In particular, preference-adaptive randomization augments statistical power by maintaining balanced sample sizes in efficacy analyses, while retaining the ability of randomization to balance covariates across arms in effectiveness analyses. Trial registration ClinicalTrials.gov, NCT01526265; https://clinicaltrials.gov/ct2/show/NCT01526265 31 January 2012 © French et al.; licensee BioMed Central. 2015 |
abstractGer |
Background Determination of comparative effectiveness in a randomized controlled trial requires consideration of an intervention’s comparative uptake (or acceptance) among randomized participants and the intervention’s comparative efficacy among participants who use their assigned intervention. If acceptance differs across interventions, then simple randomization of participants can result in post-randomization losses that introduce bias and limit statistical power. Methods We develop a novel preference-adaptive randomization procedure in which the allocation probabilities are updated based on the inverse of the relative acceptance rates among randomized participants in each arm. In simulation studies, we determine the optimal frequency with which to update the allocation probabilities based on the number of participants randomized. We illustrate the development and application of preference-adaptive randomization using a randomized controlled trial comparing the effectiveness of different financial incentive structures on prolonged smoking cessation. Results Simulation studies indicated that preference-adaptive randomization performed best with frequent updating, accommodated differences in acceptance across arms, and performed well even if the initial values for the allocation probabilities were not equal to their true values. Updating the allocation probabilities after randomizing each participant minimized imbalances in the number of accepting participants across arms over time. In the smoking cessation trial, unexpectedly large differences in acceptance among arms required us to limit the allocation of participants to less acceptable interventions. Nonetheless, the procedure achieved equal numbers of accepting participants in the more acceptable arms, and balanced the characteristics of participants across assigned interventions. Conclusions Preference-adaptive randomization, coupled with analysis methods based on instrumental variables, can enhance the validity and generalizability of comparative effectiveness studies. In particular, preference-adaptive randomization augments statistical power by maintaining balanced sample sizes in efficacy analyses, while retaining the ability of randomization to balance covariates across arms in effectiveness analyses. Trial registration ClinicalTrials.gov, NCT01526265; https://clinicaltrials.gov/ct2/show/NCT01526265 31 January 2012 © French et al.; licensee BioMed Central. 2015 |
abstract_unstemmed |
Background Determination of comparative effectiveness in a randomized controlled trial requires consideration of an intervention’s comparative uptake (or acceptance) among randomized participants and the intervention’s comparative efficacy among participants who use their assigned intervention. If acceptance differs across interventions, then simple randomization of participants can result in post-randomization losses that introduce bias and limit statistical power. Methods We develop a novel preference-adaptive randomization procedure in which the allocation probabilities are updated based on the inverse of the relative acceptance rates among randomized participants in each arm. In simulation studies, we determine the optimal frequency with which to update the allocation probabilities based on the number of participants randomized. We illustrate the development and application of preference-adaptive randomization using a randomized controlled trial comparing the effectiveness of different financial incentive structures on prolonged smoking cessation. Results Simulation studies indicated that preference-adaptive randomization performed best with frequent updating, accommodated differences in acceptance across arms, and performed well even if the initial values for the allocation probabilities were not equal to their true values. Updating the allocation probabilities after randomizing each participant minimized imbalances in the number of accepting participants across arms over time. In the smoking cessation trial, unexpectedly large differences in acceptance among arms required us to limit the allocation of participants to less acceptable interventions. Nonetheless, the procedure achieved equal numbers of accepting participants in the more acceptable arms, and balanced the characteristics of participants across assigned interventions. Conclusions Preference-adaptive randomization, coupled with analysis methods based on instrumental variables, can enhance the validity and generalizability of comparative effectiveness studies. In particular, preference-adaptive randomization augments statistical power by maintaining balanced sample sizes in efficacy analyses, while retaining the ability of randomization to balance covariates across arms in effectiveness analyses. Trial registration ClinicalTrials.gov, NCT01526265; https://clinicaltrials.gov/ct2/show/NCT01526265 31 January 2012 © French et al.; licensee BioMed Central. 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Preference-adaptive randomization in comparative effectiveness studies |
url |
https://dx.doi.org/10.1186/s13063-015-0592-6 |
remote_bool |
true |
author2 |
Small, Dylan S Novak, Julie Saulsgiver, Kathryn A Harhay, Michael O Asch, David A Volpp, Kevin G Halpern, Scott D |
author2Str |
Small, Dylan S Novak, Julie Saulsgiver, Kathryn A Harhay, Michael O Asch, David A Volpp, Kevin G Halpern, Scott D |
ppnlink |
326173552 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13063-015-0592-6 |
up_date |
2024-07-03T13:45:46.430Z |
_version_ |
1803565763329523712 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030077044</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519194944.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13063-015-0592-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030077044</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13063-015-0592-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">French, Benjamin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Preference-adaptive randomization in comparative effectiveness studies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© French et al.; licensee BioMed Central. 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Determination of comparative effectiveness in a randomized controlled trial requires consideration of an intervention’s comparative uptake (or acceptance) among randomized participants and the intervention’s comparative efficacy among participants who use their assigned intervention. If acceptance differs across interventions, then simple randomization of participants can result in post-randomization losses that introduce bias and limit statistical power. Methods We develop a novel preference-adaptive randomization procedure in which the allocation probabilities are updated based on the inverse of the relative acceptance rates among randomized participants in each arm. In simulation studies, we determine the optimal frequency with which to update the allocation probabilities based on the number of participants randomized. We illustrate the development and application of preference-adaptive randomization using a randomized controlled trial comparing the effectiveness of different financial incentive structures on prolonged smoking cessation. Results Simulation studies indicated that preference-adaptive randomization performed best with frequent updating, accommodated differences in acceptance across arms, and performed well even if the initial values for the allocation probabilities were not equal to their true values. Updating the allocation probabilities after randomizing each participant minimized imbalances in the number of accepting participants across arms over time. In the smoking cessation trial, unexpectedly large differences in acceptance among arms required us to limit the allocation of participants to less acceptable interventions. Nonetheless, the procedure achieved equal numbers of accepting participants in the more acceptable arms, and balanced the characteristics of participants across assigned interventions. Conclusions Preference-adaptive randomization, coupled with analysis methods based on instrumental variables, can enhance the validity and generalizability of comparative effectiveness studies. In particular, preference-adaptive randomization augments statistical power by maintaining balanced sample sizes in efficacy analyses, while retaining the ability of randomization to balance covariates across arms in effectiveness analyses. Trial registration ClinicalTrials.gov, NCT01526265; https://clinicaltrials.gov/ct2/show/NCT01526265 31 January 2012</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive design</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adherence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Comparative effectiveness research</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Efficacy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instrumental variables</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Small, Dylan S</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Novak, Julie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saulsgiver, Kathryn A</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Harhay, Michael O</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Asch, David A</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Volpp, Kevin G</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Halpern, Scott D</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Trials</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">16(2015), 1 vom: 18. März</subfield><subfield code="w">(DE-627)326173552</subfield><subfield code="w">(DE-600)2040523-6</subfield><subfield code="x">1745-6215</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:18</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13063-015-0592-6</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">18</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
score |
7.400943 |