Overcoming challenges to data quality in the ASPREE clinical trial
Background Large-scale studies risk generating inaccurate and missing data due to the complexity of data collection. Technology has the potential to improve data quality by providing operational support to data collectors. However, this potential is under-explored in community-based trials. The Aspi...
Ausführliche Beschreibung
Autor*in: |
Lockery, Jessica E. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s). 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Trials - London : BioMed Central, 2000, 20(2019), 1 vom: 09. Dez. |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2019 ; number:1 ; day:09 ; month:12 |
Links: |
---|
DOI / URN: |
10.1186/s13063-019-3789-2 |
---|
Katalog-ID: |
SPR030115302 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR030115302 | ||
003 | DE-627 | ||
005 | 20230519161910.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13063-019-3789-2 |2 doi | |
035 | |a (DE-627)SPR030115302 | ||
035 | |a (SPR)s13063-019-3789-2-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Lockery, Jessica E. |e verfasserin |0 (orcid)0000-0001-6664-1239 |4 aut | |
245 | 1 | 0 | |a Overcoming challenges to data quality in the ASPREE clinical trial |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s). 2019 | ||
520 | |a Background Large-scale studies risk generating inaccurate and missing data due to the complexity of data collection. Technology has the potential to improve data quality by providing operational support to data collectors. However, this potential is under-explored in community-based trials. The Aspirin in reducing events in the elderly (ASPREE) trial developed a data suite that was specifically designed to support data collectors: the ASPREE Web Accessible Relational Database (AWARD). This paper describes AWARD and the impact of system design on data quality. Methods AWARD’s operational requirements, conceptual design, key challenges and design solutions for data quality are presented. Impact of design features is assessed through comparison of baseline data collected prior to implementation of key functionality (n = 1000) with data collected post implementation (n = 18,114). Overall data quality is assessed according to data category. Results At baseline, implementation of user-driven functionality reduced staff error (from 0.3% to 0.01%), out-of-range data entry (from 0.14% to 0.04%) and protocol deviations (from 0.4% to 0.08%). In the longitudinal data set, which contained more than 39 million data values collected within AWARD, 96.6% of data values were entered within specified query range or found to be accurate upon querying. The remaining data were missing (3.4%). Participant non-attendance at scheduled study activity was the most common cause of missing data. Costs associated with cleaning data in ASPREE were lower than expected compared with reports from other trials. Conclusions Clinical trials undertake complex operational activity in order to collect data, but technology rarely provides sufficient support. We find the AWARD suite provides proof of principle that designing technology to support data collectors can mitigate known causes of poor data quality and produce higher-quality data. Health information technology (IT) products that support the conduct of scheduled activity in addition to traditional data entry will enhance community-based clinical trials. A standardised framework for reporting data quality would aid comparisons across clinical trials. Trial registration International Standard Randomized Controlled Trial Number Register, ISRCTN83772183. Registered on 3 March 2005. | ||
650 | 4 | |a Health data |7 (dpeaa)DE-He213 | |
650 | 4 | |a Clinical trial |7 (dpeaa)DE-He213 | |
650 | 4 | |a Data quality |7 (dpeaa)DE-He213 | |
650 | 4 | |a Health technology |7 (dpeaa)DE-He213 | |
700 | 1 | |a Collyer, Taya A. |4 aut | |
700 | 1 | |a Reid, Christopher M. |4 aut | |
700 | 1 | |a Ernst, Michael E. |4 aut | |
700 | 1 | |a Gilbertson, David |4 aut | |
700 | 1 | |a Hay, Nino |4 aut | |
700 | 1 | |a Kirpach, Brenda |4 aut | |
700 | 1 | |a McNeil, John J. |4 aut | |
700 | 1 | |a Nelson, Mark R. |4 aut | |
700 | 1 | |a Orchard, Suzanne G. |4 aut | |
700 | 1 | |a Pruksawongsin, Kunnapoj |4 aut | |
700 | 1 | |a Shah, Raj C. |4 aut | |
700 | 1 | |a Wolfe, Rory |4 aut | |
700 | 1 | |a Woods, Robyn L. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Trials |d London : BioMed Central, 2000 |g 20(2019), 1 vom: 09. Dez. |w (DE-627)326173552 |w (DE-600)2040523-6 |x 1745-6215 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2019 |g number:1 |g day:09 |g month:12 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13063-019-3789-2 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 20 |j 2019 |e 1 |b 09 |c 12 |
author_variant |
j e l je jel t a c ta tac c m r cm cmr m e e me mee d g dg n h nh b k bk j j m jj jjm m r n mr mrn s g o sg sgo k p kp r c s rc rcs r w rw r l w rl rlw |
---|---|
matchkey_str |
article:17456215:2019----::vroighlegsoaaultitesr |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1186/s13063-019-3789-2 doi (DE-627)SPR030115302 (SPR)s13063-019-3789-2-e DE-627 ger DE-627 rakwb eng Lockery, Jessica E. verfasserin (orcid)0000-0001-6664-1239 aut Overcoming challenges to data quality in the ASPREE clinical trial 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2019 Background Large-scale studies risk generating inaccurate and missing data due to the complexity of data collection. Technology has the potential to improve data quality by providing operational support to data collectors. However, this potential is under-explored in community-based trials. The Aspirin in reducing events in the elderly (ASPREE) trial developed a data suite that was specifically designed to support data collectors: the ASPREE Web Accessible Relational Database (AWARD). This paper describes AWARD and the impact of system design on data quality. Methods AWARD’s operational requirements, conceptual design, key challenges and design solutions for data quality are presented. Impact of design features is assessed through comparison of baseline data collected prior to implementation of key functionality (n = 1000) with data collected post implementation (n = 18,114). Overall data quality is assessed according to data category. Results At baseline, implementation of user-driven functionality reduced staff error (from 0.3% to 0.01%), out-of-range data entry (from 0.14% to 0.04%) and protocol deviations (from 0.4% to 0.08%). In the longitudinal data set, which contained more than 39 million data values collected within AWARD, 96.6% of data values were entered within specified query range or found to be accurate upon querying. The remaining data were missing (3.4%). Participant non-attendance at scheduled study activity was the most common cause of missing data. Costs associated with cleaning data in ASPREE were lower than expected compared with reports from other trials. Conclusions Clinical trials undertake complex operational activity in order to collect data, but technology rarely provides sufficient support. We find the AWARD suite provides proof of principle that designing technology to support data collectors can mitigate known causes of poor data quality and produce higher-quality data. Health information technology (IT) products that support the conduct of scheduled activity in addition to traditional data entry will enhance community-based clinical trials. A standardised framework for reporting data quality would aid comparisons across clinical trials. Trial registration International Standard Randomized Controlled Trial Number Register, ISRCTN83772183. Registered on 3 March 2005. Health data (dpeaa)DE-He213 Clinical trial (dpeaa)DE-He213 Data quality (dpeaa)DE-He213 Health technology (dpeaa)DE-He213 Collyer, Taya A. aut Reid, Christopher M. aut Ernst, Michael E. aut Gilbertson, David aut Hay, Nino aut Kirpach, Brenda aut McNeil, John J. aut Nelson, Mark R. aut Orchard, Suzanne G. aut Pruksawongsin, Kunnapoj aut Shah, Raj C. aut Wolfe, Rory aut Woods, Robyn L. aut Enthalten in Trials London : BioMed Central, 2000 20(2019), 1 vom: 09. Dez. (DE-627)326173552 (DE-600)2040523-6 1745-6215 nnns volume:20 year:2019 number:1 day:09 month:12 https://dx.doi.org/10.1186/s13063-019-3789-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2019 1 09 12 |
spelling |
10.1186/s13063-019-3789-2 doi (DE-627)SPR030115302 (SPR)s13063-019-3789-2-e DE-627 ger DE-627 rakwb eng Lockery, Jessica E. verfasserin (orcid)0000-0001-6664-1239 aut Overcoming challenges to data quality in the ASPREE clinical trial 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2019 Background Large-scale studies risk generating inaccurate and missing data due to the complexity of data collection. Technology has the potential to improve data quality by providing operational support to data collectors. However, this potential is under-explored in community-based trials. The Aspirin in reducing events in the elderly (ASPREE) trial developed a data suite that was specifically designed to support data collectors: the ASPREE Web Accessible Relational Database (AWARD). This paper describes AWARD and the impact of system design on data quality. Methods AWARD’s operational requirements, conceptual design, key challenges and design solutions for data quality are presented. Impact of design features is assessed through comparison of baseline data collected prior to implementation of key functionality (n = 1000) with data collected post implementation (n = 18,114). Overall data quality is assessed according to data category. Results At baseline, implementation of user-driven functionality reduced staff error (from 0.3% to 0.01%), out-of-range data entry (from 0.14% to 0.04%) and protocol deviations (from 0.4% to 0.08%). In the longitudinal data set, which contained more than 39 million data values collected within AWARD, 96.6% of data values were entered within specified query range or found to be accurate upon querying. The remaining data were missing (3.4%). Participant non-attendance at scheduled study activity was the most common cause of missing data. Costs associated with cleaning data in ASPREE were lower than expected compared with reports from other trials. Conclusions Clinical trials undertake complex operational activity in order to collect data, but technology rarely provides sufficient support. We find the AWARD suite provides proof of principle that designing technology to support data collectors can mitigate known causes of poor data quality and produce higher-quality data. Health information technology (IT) products that support the conduct of scheduled activity in addition to traditional data entry will enhance community-based clinical trials. A standardised framework for reporting data quality would aid comparisons across clinical trials. Trial registration International Standard Randomized Controlled Trial Number Register, ISRCTN83772183. Registered on 3 March 2005. Health data (dpeaa)DE-He213 Clinical trial (dpeaa)DE-He213 Data quality (dpeaa)DE-He213 Health technology (dpeaa)DE-He213 Collyer, Taya A. aut Reid, Christopher M. aut Ernst, Michael E. aut Gilbertson, David aut Hay, Nino aut Kirpach, Brenda aut McNeil, John J. aut Nelson, Mark R. aut Orchard, Suzanne G. aut Pruksawongsin, Kunnapoj aut Shah, Raj C. aut Wolfe, Rory aut Woods, Robyn L. aut Enthalten in Trials London : BioMed Central, 2000 20(2019), 1 vom: 09. Dez. (DE-627)326173552 (DE-600)2040523-6 1745-6215 nnns volume:20 year:2019 number:1 day:09 month:12 https://dx.doi.org/10.1186/s13063-019-3789-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2019 1 09 12 |
allfields_unstemmed |
10.1186/s13063-019-3789-2 doi (DE-627)SPR030115302 (SPR)s13063-019-3789-2-e DE-627 ger DE-627 rakwb eng Lockery, Jessica E. verfasserin (orcid)0000-0001-6664-1239 aut Overcoming challenges to data quality in the ASPREE clinical trial 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2019 Background Large-scale studies risk generating inaccurate and missing data due to the complexity of data collection. Technology has the potential to improve data quality by providing operational support to data collectors. However, this potential is under-explored in community-based trials. The Aspirin in reducing events in the elderly (ASPREE) trial developed a data suite that was specifically designed to support data collectors: the ASPREE Web Accessible Relational Database (AWARD). This paper describes AWARD and the impact of system design on data quality. Methods AWARD’s operational requirements, conceptual design, key challenges and design solutions for data quality are presented. Impact of design features is assessed through comparison of baseline data collected prior to implementation of key functionality (n = 1000) with data collected post implementation (n = 18,114). Overall data quality is assessed according to data category. Results At baseline, implementation of user-driven functionality reduced staff error (from 0.3% to 0.01%), out-of-range data entry (from 0.14% to 0.04%) and protocol deviations (from 0.4% to 0.08%). In the longitudinal data set, which contained more than 39 million data values collected within AWARD, 96.6% of data values were entered within specified query range or found to be accurate upon querying. The remaining data were missing (3.4%). Participant non-attendance at scheduled study activity was the most common cause of missing data. Costs associated with cleaning data in ASPREE were lower than expected compared with reports from other trials. Conclusions Clinical trials undertake complex operational activity in order to collect data, but technology rarely provides sufficient support. We find the AWARD suite provides proof of principle that designing technology to support data collectors can mitigate known causes of poor data quality and produce higher-quality data. Health information technology (IT) products that support the conduct of scheduled activity in addition to traditional data entry will enhance community-based clinical trials. A standardised framework for reporting data quality would aid comparisons across clinical trials. Trial registration International Standard Randomized Controlled Trial Number Register, ISRCTN83772183. Registered on 3 March 2005. Health data (dpeaa)DE-He213 Clinical trial (dpeaa)DE-He213 Data quality (dpeaa)DE-He213 Health technology (dpeaa)DE-He213 Collyer, Taya A. aut Reid, Christopher M. aut Ernst, Michael E. aut Gilbertson, David aut Hay, Nino aut Kirpach, Brenda aut McNeil, John J. aut Nelson, Mark R. aut Orchard, Suzanne G. aut Pruksawongsin, Kunnapoj aut Shah, Raj C. aut Wolfe, Rory aut Woods, Robyn L. aut Enthalten in Trials London : BioMed Central, 2000 20(2019), 1 vom: 09. Dez. (DE-627)326173552 (DE-600)2040523-6 1745-6215 nnns volume:20 year:2019 number:1 day:09 month:12 https://dx.doi.org/10.1186/s13063-019-3789-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2019 1 09 12 |
allfieldsGer |
10.1186/s13063-019-3789-2 doi (DE-627)SPR030115302 (SPR)s13063-019-3789-2-e DE-627 ger DE-627 rakwb eng Lockery, Jessica E. verfasserin (orcid)0000-0001-6664-1239 aut Overcoming challenges to data quality in the ASPREE clinical trial 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2019 Background Large-scale studies risk generating inaccurate and missing data due to the complexity of data collection. Technology has the potential to improve data quality by providing operational support to data collectors. However, this potential is under-explored in community-based trials. The Aspirin in reducing events in the elderly (ASPREE) trial developed a data suite that was specifically designed to support data collectors: the ASPREE Web Accessible Relational Database (AWARD). This paper describes AWARD and the impact of system design on data quality. Methods AWARD’s operational requirements, conceptual design, key challenges and design solutions for data quality are presented. Impact of design features is assessed through comparison of baseline data collected prior to implementation of key functionality (n = 1000) with data collected post implementation (n = 18,114). Overall data quality is assessed according to data category. Results At baseline, implementation of user-driven functionality reduced staff error (from 0.3% to 0.01%), out-of-range data entry (from 0.14% to 0.04%) and protocol deviations (from 0.4% to 0.08%). In the longitudinal data set, which contained more than 39 million data values collected within AWARD, 96.6% of data values were entered within specified query range or found to be accurate upon querying. The remaining data were missing (3.4%). Participant non-attendance at scheduled study activity was the most common cause of missing data. Costs associated with cleaning data in ASPREE were lower than expected compared with reports from other trials. Conclusions Clinical trials undertake complex operational activity in order to collect data, but technology rarely provides sufficient support. We find the AWARD suite provides proof of principle that designing technology to support data collectors can mitigate known causes of poor data quality and produce higher-quality data. Health information technology (IT) products that support the conduct of scheduled activity in addition to traditional data entry will enhance community-based clinical trials. A standardised framework for reporting data quality would aid comparisons across clinical trials. Trial registration International Standard Randomized Controlled Trial Number Register, ISRCTN83772183. Registered on 3 March 2005. Health data (dpeaa)DE-He213 Clinical trial (dpeaa)DE-He213 Data quality (dpeaa)DE-He213 Health technology (dpeaa)DE-He213 Collyer, Taya A. aut Reid, Christopher M. aut Ernst, Michael E. aut Gilbertson, David aut Hay, Nino aut Kirpach, Brenda aut McNeil, John J. aut Nelson, Mark R. aut Orchard, Suzanne G. aut Pruksawongsin, Kunnapoj aut Shah, Raj C. aut Wolfe, Rory aut Woods, Robyn L. aut Enthalten in Trials London : BioMed Central, 2000 20(2019), 1 vom: 09. Dez. (DE-627)326173552 (DE-600)2040523-6 1745-6215 nnns volume:20 year:2019 number:1 day:09 month:12 https://dx.doi.org/10.1186/s13063-019-3789-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2019 1 09 12 |
allfieldsSound |
10.1186/s13063-019-3789-2 doi (DE-627)SPR030115302 (SPR)s13063-019-3789-2-e DE-627 ger DE-627 rakwb eng Lockery, Jessica E. verfasserin (orcid)0000-0001-6664-1239 aut Overcoming challenges to data quality in the ASPREE clinical trial 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2019 Background Large-scale studies risk generating inaccurate and missing data due to the complexity of data collection. Technology has the potential to improve data quality by providing operational support to data collectors. However, this potential is under-explored in community-based trials. The Aspirin in reducing events in the elderly (ASPREE) trial developed a data suite that was specifically designed to support data collectors: the ASPREE Web Accessible Relational Database (AWARD). This paper describes AWARD and the impact of system design on data quality. Methods AWARD’s operational requirements, conceptual design, key challenges and design solutions for data quality are presented. Impact of design features is assessed through comparison of baseline data collected prior to implementation of key functionality (n = 1000) with data collected post implementation (n = 18,114). Overall data quality is assessed according to data category. Results At baseline, implementation of user-driven functionality reduced staff error (from 0.3% to 0.01%), out-of-range data entry (from 0.14% to 0.04%) and protocol deviations (from 0.4% to 0.08%). In the longitudinal data set, which contained more than 39 million data values collected within AWARD, 96.6% of data values were entered within specified query range or found to be accurate upon querying. The remaining data were missing (3.4%). Participant non-attendance at scheduled study activity was the most common cause of missing data. Costs associated with cleaning data in ASPREE were lower than expected compared with reports from other trials. Conclusions Clinical trials undertake complex operational activity in order to collect data, but technology rarely provides sufficient support. We find the AWARD suite provides proof of principle that designing technology to support data collectors can mitigate known causes of poor data quality and produce higher-quality data. Health information technology (IT) products that support the conduct of scheduled activity in addition to traditional data entry will enhance community-based clinical trials. A standardised framework for reporting data quality would aid comparisons across clinical trials. Trial registration International Standard Randomized Controlled Trial Number Register, ISRCTN83772183. Registered on 3 March 2005. Health data (dpeaa)DE-He213 Clinical trial (dpeaa)DE-He213 Data quality (dpeaa)DE-He213 Health technology (dpeaa)DE-He213 Collyer, Taya A. aut Reid, Christopher M. aut Ernst, Michael E. aut Gilbertson, David aut Hay, Nino aut Kirpach, Brenda aut McNeil, John J. aut Nelson, Mark R. aut Orchard, Suzanne G. aut Pruksawongsin, Kunnapoj aut Shah, Raj C. aut Wolfe, Rory aut Woods, Robyn L. aut Enthalten in Trials London : BioMed Central, 2000 20(2019), 1 vom: 09. Dez. (DE-627)326173552 (DE-600)2040523-6 1745-6215 nnns volume:20 year:2019 number:1 day:09 month:12 https://dx.doi.org/10.1186/s13063-019-3789-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2019 1 09 12 |
language |
English |
source |
Enthalten in Trials 20(2019), 1 vom: 09. Dez. volume:20 year:2019 number:1 day:09 month:12 |
sourceStr |
Enthalten in Trials 20(2019), 1 vom: 09. Dez. volume:20 year:2019 number:1 day:09 month:12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Health data Clinical trial Data quality Health technology |
isfreeaccess_bool |
true |
container_title |
Trials |
authorswithroles_txt_mv |
Lockery, Jessica E. @@aut@@ Collyer, Taya A. @@aut@@ Reid, Christopher M. @@aut@@ Ernst, Michael E. @@aut@@ Gilbertson, David @@aut@@ Hay, Nino @@aut@@ Kirpach, Brenda @@aut@@ McNeil, John J. @@aut@@ Nelson, Mark R. @@aut@@ Orchard, Suzanne G. @@aut@@ Pruksawongsin, Kunnapoj @@aut@@ Shah, Raj C. @@aut@@ Wolfe, Rory @@aut@@ Woods, Robyn L. @@aut@@ |
publishDateDaySort_date |
2019-12-09T00:00:00Z |
hierarchy_top_id |
326173552 |
id |
SPR030115302 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030115302</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519161910.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13063-019-3789-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030115302</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13063-019-3789-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lockery, Jessica E.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6664-1239</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Overcoming challenges to data quality in the ASPREE clinical trial</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Large-scale studies risk generating inaccurate and missing data due to the complexity of data collection. Technology has the potential to improve data quality by providing operational support to data collectors. However, this potential is under-explored in community-based trials. The Aspirin in reducing events in the elderly (ASPREE) trial developed a data suite that was specifically designed to support data collectors: the ASPREE Web Accessible Relational Database (AWARD). This paper describes AWARD and the impact of system design on data quality. Methods AWARD’s operational requirements, conceptual design, key challenges and design solutions for data quality are presented. Impact of design features is assessed through comparison of baseline data collected prior to implementation of key functionality (n = 1000) with data collected post implementation (n = 18,114). Overall data quality is assessed according to data category. Results At baseline, implementation of user-driven functionality reduced staff error (from 0.3% to 0.01%), out-of-range data entry (from 0.14% to 0.04%) and protocol deviations (from 0.4% to 0.08%). In the longitudinal data set, which contained more than 39 million data values collected within AWARD, 96.6% of data values were entered within specified query range or found to be accurate upon querying. The remaining data were missing (3.4%). Participant non-attendance at scheduled study activity was the most common cause of missing data. Costs associated with cleaning data in ASPREE were lower than expected compared with reports from other trials. Conclusions Clinical trials undertake complex operational activity in order to collect data, but technology rarely provides sufficient support. We find the AWARD suite provides proof of principle that designing technology to support data collectors can mitigate known causes of poor data quality and produce higher-quality data. Health information technology (IT) products that support the conduct of scheduled activity in addition to traditional data entry will enhance community-based clinical trials. A standardised framework for reporting data quality would aid comparisons across clinical trials. Trial registration International Standard Randomized Controlled Trial Number Register, ISRCTN83772183. Registered on 3 March 2005.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Health data</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clinical trial</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data quality</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Health technology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Collyer, Taya A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reid, Christopher M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ernst, Michael E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gilbertson, David</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hay, Nino</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kirpach, Brenda</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McNeil, John J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nelson, Mark R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Orchard, Suzanne G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pruksawongsin, Kunnapoj</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shah, Raj C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wolfe, Rory</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Woods, Robyn L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Trials</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">20(2019), 1 vom: 09. Dez.</subfield><subfield code="w">(DE-627)326173552</subfield><subfield code="w">(DE-600)2040523-6</subfield><subfield code="x">1745-6215</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:09</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13063-019-3789-2</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">09</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
author |
Lockery, Jessica E. |
spellingShingle |
Lockery, Jessica E. misc Health data misc Clinical trial misc Data quality misc Health technology Overcoming challenges to data quality in the ASPREE clinical trial |
authorStr |
Lockery, Jessica E. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326173552 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1745-6215 |
topic_title |
Overcoming challenges to data quality in the ASPREE clinical trial Health data (dpeaa)DE-He213 Clinical trial (dpeaa)DE-He213 Data quality (dpeaa)DE-He213 Health technology (dpeaa)DE-He213 |
topic |
misc Health data misc Clinical trial misc Data quality misc Health technology |
topic_unstemmed |
misc Health data misc Clinical trial misc Data quality misc Health technology |
topic_browse |
misc Health data misc Clinical trial misc Data quality misc Health technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Trials |
hierarchy_parent_id |
326173552 |
hierarchy_top_title |
Trials |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326173552 (DE-600)2040523-6 |
title |
Overcoming challenges to data quality in the ASPREE clinical trial |
ctrlnum |
(DE-627)SPR030115302 (SPR)s13063-019-3789-2-e |
title_full |
Overcoming challenges to data quality in the ASPREE clinical trial |
author_sort |
Lockery, Jessica E. |
journal |
Trials |
journalStr |
Trials |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Lockery, Jessica E. Collyer, Taya A. Reid, Christopher M. Ernst, Michael E. Gilbertson, David Hay, Nino Kirpach, Brenda McNeil, John J. Nelson, Mark R. Orchard, Suzanne G. Pruksawongsin, Kunnapoj Shah, Raj C. Wolfe, Rory Woods, Robyn L. |
container_volume |
20 |
format_se |
Elektronische Aufsätze |
author-letter |
Lockery, Jessica E. |
doi_str_mv |
10.1186/s13063-019-3789-2 |
normlink |
(ORCID)0000-0001-6664-1239 |
normlink_prefix_str_mv |
(orcid)0000-0001-6664-1239 |
title_sort |
overcoming challenges to data quality in the aspree clinical trial |
title_auth |
Overcoming challenges to data quality in the ASPREE clinical trial |
abstract |
Background Large-scale studies risk generating inaccurate and missing data due to the complexity of data collection. Technology has the potential to improve data quality by providing operational support to data collectors. However, this potential is under-explored in community-based trials. The Aspirin in reducing events in the elderly (ASPREE) trial developed a data suite that was specifically designed to support data collectors: the ASPREE Web Accessible Relational Database (AWARD). This paper describes AWARD and the impact of system design on data quality. Methods AWARD’s operational requirements, conceptual design, key challenges and design solutions for data quality are presented. Impact of design features is assessed through comparison of baseline data collected prior to implementation of key functionality (n = 1000) with data collected post implementation (n = 18,114). Overall data quality is assessed according to data category. Results At baseline, implementation of user-driven functionality reduced staff error (from 0.3% to 0.01%), out-of-range data entry (from 0.14% to 0.04%) and protocol deviations (from 0.4% to 0.08%). In the longitudinal data set, which contained more than 39 million data values collected within AWARD, 96.6% of data values were entered within specified query range or found to be accurate upon querying. The remaining data were missing (3.4%). Participant non-attendance at scheduled study activity was the most common cause of missing data. Costs associated with cleaning data in ASPREE were lower than expected compared with reports from other trials. Conclusions Clinical trials undertake complex operational activity in order to collect data, but technology rarely provides sufficient support. We find the AWARD suite provides proof of principle that designing technology to support data collectors can mitigate known causes of poor data quality and produce higher-quality data. Health information technology (IT) products that support the conduct of scheduled activity in addition to traditional data entry will enhance community-based clinical trials. A standardised framework for reporting data quality would aid comparisons across clinical trials. Trial registration International Standard Randomized Controlled Trial Number Register, ISRCTN83772183. Registered on 3 March 2005. © The Author(s). 2019 |
abstractGer |
Background Large-scale studies risk generating inaccurate and missing data due to the complexity of data collection. Technology has the potential to improve data quality by providing operational support to data collectors. However, this potential is under-explored in community-based trials. The Aspirin in reducing events in the elderly (ASPREE) trial developed a data suite that was specifically designed to support data collectors: the ASPREE Web Accessible Relational Database (AWARD). This paper describes AWARD and the impact of system design on data quality. Methods AWARD’s operational requirements, conceptual design, key challenges and design solutions for data quality are presented. Impact of design features is assessed through comparison of baseline data collected prior to implementation of key functionality (n = 1000) with data collected post implementation (n = 18,114). Overall data quality is assessed according to data category. Results At baseline, implementation of user-driven functionality reduced staff error (from 0.3% to 0.01%), out-of-range data entry (from 0.14% to 0.04%) and protocol deviations (from 0.4% to 0.08%). In the longitudinal data set, which contained more than 39 million data values collected within AWARD, 96.6% of data values were entered within specified query range or found to be accurate upon querying. The remaining data were missing (3.4%). Participant non-attendance at scheduled study activity was the most common cause of missing data. Costs associated with cleaning data in ASPREE were lower than expected compared with reports from other trials. Conclusions Clinical trials undertake complex operational activity in order to collect data, but technology rarely provides sufficient support. We find the AWARD suite provides proof of principle that designing technology to support data collectors can mitigate known causes of poor data quality and produce higher-quality data. Health information technology (IT) products that support the conduct of scheduled activity in addition to traditional data entry will enhance community-based clinical trials. A standardised framework for reporting data quality would aid comparisons across clinical trials. Trial registration International Standard Randomized Controlled Trial Number Register, ISRCTN83772183. Registered on 3 March 2005. © The Author(s). 2019 |
abstract_unstemmed |
Background Large-scale studies risk generating inaccurate and missing data due to the complexity of data collection. Technology has the potential to improve data quality by providing operational support to data collectors. However, this potential is under-explored in community-based trials. The Aspirin in reducing events in the elderly (ASPREE) trial developed a data suite that was specifically designed to support data collectors: the ASPREE Web Accessible Relational Database (AWARD). This paper describes AWARD and the impact of system design on data quality. Methods AWARD’s operational requirements, conceptual design, key challenges and design solutions for data quality are presented. Impact of design features is assessed through comparison of baseline data collected prior to implementation of key functionality (n = 1000) with data collected post implementation (n = 18,114). Overall data quality is assessed according to data category. Results At baseline, implementation of user-driven functionality reduced staff error (from 0.3% to 0.01%), out-of-range data entry (from 0.14% to 0.04%) and protocol deviations (from 0.4% to 0.08%). In the longitudinal data set, which contained more than 39 million data values collected within AWARD, 96.6% of data values were entered within specified query range or found to be accurate upon querying. The remaining data were missing (3.4%). Participant non-attendance at scheduled study activity was the most common cause of missing data. Costs associated with cleaning data in ASPREE were lower than expected compared with reports from other trials. Conclusions Clinical trials undertake complex operational activity in order to collect data, but technology rarely provides sufficient support. We find the AWARD suite provides proof of principle that designing technology to support data collectors can mitigate known causes of poor data quality and produce higher-quality data. Health information technology (IT) products that support the conduct of scheduled activity in addition to traditional data entry will enhance community-based clinical trials. A standardised framework for reporting data quality would aid comparisons across clinical trials. Trial registration International Standard Randomized Controlled Trial Number Register, ISRCTN83772183. Registered on 3 March 2005. © The Author(s). 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Overcoming challenges to data quality in the ASPREE clinical trial |
url |
https://dx.doi.org/10.1186/s13063-019-3789-2 |
remote_bool |
true |
author2 |
Collyer, Taya A. Reid, Christopher M. Ernst, Michael E. Gilbertson, David Hay, Nino Kirpach, Brenda McNeil, John J. Nelson, Mark R. Orchard, Suzanne G. Pruksawongsin, Kunnapoj Shah, Raj C. Wolfe, Rory Woods, Robyn L. |
author2Str |
Collyer, Taya A. Reid, Christopher M. Ernst, Michael E. Gilbertson, David Hay, Nino Kirpach, Brenda McNeil, John J. Nelson, Mark R. Orchard, Suzanne G. Pruksawongsin, Kunnapoj Shah, Raj C. Wolfe, Rory Woods, Robyn L. |
ppnlink |
326173552 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13063-019-3789-2 |
up_date |
2024-07-03T14:03:05.183Z |
_version_ |
1803566852539940864 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030115302</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519161910.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13063-019-3789-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030115302</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13063-019-3789-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lockery, Jessica E.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6664-1239</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Overcoming challenges to data quality in the ASPREE clinical trial</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Large-scale studies risk generating inaccurate and missing data due to the complexity of data collection. Technology has the potential to improve data quality by providing operational support to data collectors. However, this potential is under-explored in community-based trials. The Aspirin in reducing events in the elderly (ASPREE) trial developed a data suite that was specifically designed to support data collectors: the ASPREE Web Accessible Relational Database (AWARD). This paper describes AWARD and the impact of system design on data quality. Methods AWARD’s operational requirements, conceptual design, key challenges and design solutions for data quality are presented. Impact of design features is assessed through comparison of baseline data collected prior to implementation of key functionality (n = 1000) with data collected post implementation (n = 18,114). Overall data quality is assessed according to data category. Results At baseline, implementation of user-driven functionality reduced staff error (from 0.3% to 0.01%), out-of-range data entry (from 0.14% to 0.04%) and protocol deviations (from 0.4% to 0.08%). In the longitudinal data set, which contained more than 39 million data values collected within AWARD, 96.6% of data values were entered within specified query range or found to be accurate upon querying. The remaining data were missing (3.4%). Participant non-attendance at scheduled study activity was the most common cause of missing data. Costs associated with cleaning data in ASPREE were lower than expected compared with reports from other trials. Conclusions Clinical trials undertake complex operational activity in order to collect data, but technology rarely provides sufficient support. We find the AWARD suite provides proof of principle that designing technology to support data collectors can mitigate known causes of poor data quality and produce higher-quality data. Health information technology (IT) products that support the conduct of scheduled activity in addition to traditional data entry will enhance community-based clinical trials. A standardised framework for reporting data quality would aid comparisons across clinical trials. Trial registration International Standard Randomized Controlled Trial Number Register, ISRCTN83772183. Registered on 3 March 2005.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Health data</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clinical trial</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data quality</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Health technology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Collyer, Taya A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reid, Christopher M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ernst, Michael E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gilbertson, David</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hay, Nino</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kirpach, Brenda</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McNeil, John J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nelson, Mark R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Orchard, Suzanne G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pruksawongsin, Kunnapoj</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shah, Raj C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wolfe, Rory</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Woods, Robyn L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Trials</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">20(2019), 1 vom: 09. Dez.</subfield><subfield code="w">(DE-627)326173552</subfield><subfield code="w">(DE-600)2040523-6</subfield><subfield code="x">1745-6215</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:09</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13063-019-3789-2</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">09</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
score |
7.40131 |