Modeling tool using neural networks for l(+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol
Abstract Most chemical reactions produce unwanted by-products. In an effort to reduce environmental problems these by-products could be used to produce valuable organic chemicals. In biodiesel industry a huge amount of glycerol is generated, approximately 10% of the final product. The research group...
Ausführliche Beschreibung
Autor*in: |
Dulf, Eva-H. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Chemistry central journal - London : BioMed Central, 2007, 12(2018), 1 vom: 29. Nov. |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2018 ; number:1 ; day:29 ; month:11 |
Links: |
---|
DOI / URN: |
10.1186/s13065-018-0491-5 |
---|
Katalog-ID: |
SPR030136822 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR030136822 | ||
003 | DE-627 | ||
005 | 20230519090013.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13065-018-0491-5 |2 doi | |
035 | |a (DE-627)SPR030136822 | ||
035 | |a (SPR)s13065-018-0491-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Dulf, Eva-H. |e verfasserin |0 (orcid)0000-0002-6540-6525 |4 aut | |
245 | 1 | 0 | |a Modeling tool using neural networks for l(+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2018 | ||
520 | |a Abstract Most chemical reactions produce unwanted by-products. In an effort to reduce environmental problems these by-products could be used to produce valuable organic chemicals. In biodiesel industry a huge amount of glycerol is generated, approximately 10% of the final product. The research group from University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca developed opportunities to produce l(+) lactic acid from the glycerol. The team is using the Rhizopus oryzae NRRL 395 bacteria for the fermentation of the glycerol. The purpose of the research is to improve the production of l(+) lactic acid in order to optimize the process. A predictive model obtained by neural networks is useful in this case. The main objective of the present work is to present the developed user-friendly application useful in modeling this fermentation process, in order to be used by people who are inexperienced with neural networks or specific software. Besides the interface for training of a new neural network in order to develop the model in some characteristic condition, the software also provides an interface for visualization of the results, useful in interpretation and as a tool for prediction. | ||
650 | 4 | |a Software application |7 (dpeaa)DE-He213 | |
650 | 4 | |a Neural network |7 (dpeaa)DE-He213 | |
650 | 4 | |a Biodiesel |7 (dpeaa)DE-He213 | |
650 | 4 | |a Predictive model |7 (dpeaa)DE-He213 | |
700 | 1 | |a Vodnar, Dan Cristian |4 aut | |
700 | 1 | |a Dulf, Francisc-V. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Chemistry central journal |d London : BioMed Central, 2007 |g 12(2018), 1 vom: 29. Nov. |w (DE-627)525475176 |w (DE-600)2272440-0 |x 1752-153X |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2018 |g number:1 |g day:29 |g month:11 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13065-018-0491-5 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2018 |e 1 |b 29 |c 11 |
author_variant |
e h d ehd d c v dc dcv f v d fvd |
---|---|
matchkey_str |
article:1752153X:2018----::oeigolsnnuantokfrlciaipoutobplefrriouoyanr |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1186/s13065-018-0491-5 doi (DE-627)SPR030136822 (SPR)s13065-018-0491-5-e DE-627 ger DE-627 rakwb eng Dulf, Eva-H. verfasserin (orcid)0000-0002-6540-6525 aut Modeling tool using neural networks for l(+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Abstract Most chemical reactions produce unwanted by-products. In an effort to reduce environmental problems these by-products could be used to produce valuable organic chemicals. In biodiesel industry a huge amount of glycerol is generated, approximately 10% of the final product. The research group from University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca developed opportunities to produce l(+) lactic acid from the glycerol. The team is using the Rhizopus oryzae NRRL 395 bacteria for the fermentation of the glycerol. The purpose of the research is to improve the production of l(+) lactic acid in order to optimize the process. A predictive model obtained by neural networks is useful in this case. The main objective of the present work is to present the developed user-friendly application useful in modeling this fermentation process, in order to be used by people who are inexperienced with neural networks or specific software. Besides the interface for training of a new neural network in order to develop the model in some characteristic condition, the software also provides an interface for visualization of the results, useful in interpretation and as a tool for prediction. Software application (dpeaa)DE-He213 Neural network (dpeaa)DE-He213 Biodiesel (dpeaa)DE-He213 Predictive model (dpeaa)DE-He213 Vodnar, Dan Cristian aut Dulf, Francisc-V. aut Enthalten in Chemistry central journal London : BioMed Central, 2007 12(2018), 1 vom: 29. Nov. (DE-627)525475176 (DE-600)2272440-0 1752-153X nnns volume:12 year:2018 number:1 day:29 month:11 https://dx.doi.org/10.1186/s13065-018-0491-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2018 1 29 11 |
spelling |
10.1186/s13065-018-0491-5 doi (DE-627)SPR030136822 (SPR)s13065-018-0491-5-e DE-627 ger DE-627 rakwb eng Dulf, Eva-H. verfasserin (orcid)0000-0002-6540-6525 aut Modeling tool using neural networks for l(+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Abstract Most chemical reactions produce unwanted by-products. In an effort to reduce environmental problems these by-products could be used to produce valuable organic chemicals. In biodiesel industry a huge amount of glycerol is generated, approximately 10% of the final product. The research group from University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca developed opportunities to produce l(+) lactic acid from the glycerol. The team is using the Rhizopus oryzae NRRL 395 bacteria for the fermentation of the glycerol. The purpose of the research is to improve the production of l(+) lactic acid in order to optimize the process. A predictive model obtained by neural networks is useful in this case. The main objective of the present work is to present the developed user-friendly application useful in modeling this fermentation process, in order to be used by people who are inexperienced with neural networks or specific software. Besides the interface for training of a new neural network in order to develop the model in some characteristic condition, the software also provides an interface for visualization of the results, useful in interpretation and as a tool for prediction. Software application (dpeaa)DE-He213 Neural network (dpeaa)DE-He213 Biodiesel (dpeaa)DE-He213 Predictive model (dpeaa)DE-He213 Vodnar, Dan Cristian aut Dulf, Francisc-V. aut Enthalten in Chemistry central journal London : BioMed Central, 2007 12(2018), 1 vom: 29. Nov. (DE-627)525475176 (DE-600)2272440-0 1752-153X nnns volume:12 year:2018 number:1 day:29 month:11 https://dx.doi.org/10.1186/s13065-018-0491-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2018 1 29 11 |
allfields_unstemmed |
10.1186/s13065-018-0491-5 doi (DE-627)SPR030136822 (SPR)s13065-018-0491-5-e DE-627 ger DE-627 rakwb eng Dulf, Eva-H. verfasserin (orcid)0000-0002-6540-6525 aut Modeling tool using neural networks for l(+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Abstract Most chemical reactions produce unwanted by-products. In an effort to reduce environmental problems these by-products could be used to produce valuable organic chemicals. In biodiesel industry a huge amount of glycerol is generated, approximately 10% of the final product. The research group from University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca developed opportunities to produce l(+) lactic acid from the glycerol. The team is using the Rhizopus oryzae NRRL 395 bacteria for the fermentation of the glycerol. The purpose of the research is to improve the production of l(+) lactic acid in order to optimize the process. A predictive model obtained by neural networks is useful in this case. The main objective of the present work is to present the developed user-friendly application useful in modeling this fermentation process, in order to be used by people who are inexperienced with neural networks or specific software. Besides the interface for training of a new neural network in order to develop the model in some characteristic condition, the software also provides an interface for visualization of the results, useful in interpretation and as a tool for prediction. Software application (dpeaa)DE-He213 Neural network (dpeaa)DE-He213 Biodiesel (dpeaa)DE-He213 Predictive model (dpeaa)DE-He213 Vodnar, Dan Cristian aut Dulf, Francisc-V. aut Enthalten in Chemistry central journal London : BioMed Central, 2007 12(2018), 1 vom: 29. Nov. (DE-627)525475176 (DE-600)2272440-0 1752-153X nnns volume:12 year:2018 number:1 day:29 month:11 https://dx.doi.org/10.1186/s13065-018-0491-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2018 1 29 11 |
allfieldsGer |
10.1186/s13065-018-0491-5 doi (DE-627)SPR030136822 (SPR)s13065-018-0491-5-e DE-627 ger DE-627 rakwb eng Dulf, Eva-H. verfasserin (orcid)0000-0002-6540-6525 aut Modeling tool using neural networks for l(+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Abstract Most chemical reactions produce unwanted by-products. In an effort to reduce environmental problems these by-products could be used to produce valuable organic chemicals. In biodiesel industry a huge amount of glycerol is generated, approximately 10% of the final product. The research group from University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca developed opportunities to produce l(+) lactic acid from the glycerol. The team is using the Rhizopus oryzae NRRL 395 bacteria for the fermentation of the glycerol. The purpose of the research is to improve the production of l(+) lactic acid in order to optimize the process. A predictive model obtained by neural networks is useful in this case. The main objective of the present work is to present the developed user-friendly application useful in modeling this fermentation process, in order to be used by people who are inexperienced with neural networks or specific software. Besides the interface for training of a new neural network in order to develop the model in some characteristic condition, the software also provides an interface for visualization of the results, useful in interpretation and as a tool for prediction. Software application (dpeaa)DE-He213 Neural network (dpeaa)DE-He213 Biodiesel (dpeaa)DE-He213 Predictive model (dpeaa)DE-He213 Vodnar, Dan Cristian aut Dulf, Francisc-V. aut Enthalten in Chemistry central journal London : BioMed Central, 2007 12(2018), 1 vom: 29. Nov. (DE-627)525475176 (DE-600)2272440-0 1752-153X nnns volume:12 year:2018 number:1 day:29 month:11 https://dx.doi.org/10.1186/s13065-018-0491-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2018 1 29 11 |
allfieldsSound |
10.1186/s13065-018-0491-5 doi (DE-627)SPR030136822 (SPR)s13065-018-0491-5-e DE-627 ger DE-627 rakwb eng Dulf, Eva-H. verfasserin (orcid)0000-0002-6540-6525 aut Modeling tool using neural networks for l(+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Abstract Most chemical reactions produce unwanted by-products. In an effort to reduce environmental problems these by-products could be used to produce valuable organic chemicals. In biodiesel industry a huge amount of glycerol is generated, approximately 10% of the final product. The research group from University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca developed opportunities to produce l(+) lactic acid from the glycerol. The team is using the Rhizopus oryzae NRRL 395 bacteria for the fermentation of the glycerol. The purpose of the research is to improve the production of l(+) lactic acid in order to optimize the process. A predictive model obtained by neural networks is useful in this case. The main objective of the present work is to present the developed user-friendly application useful in modeling this fermentation process, in order to be used by people who are inexperienced with neural networks or specific software. Besides the interface for training of a new neural network in order to develop the model in some characteristic condition, the software also provides an interface for visualization of the results, useful in interpretation and as a tool for prediction. Software application (dpeaa)DE-He213 Neural network (dpeaa)DE-He213 Biodiesel (dpeaa)DE-He213 Predictive model (dpeaa)DE-He213 Vodnar, Dan Cristian aut Dulf, Francisc-V. aut Enthalten in Chemistry central journal London : BioMed Central, 2007 12(2018), 1 vom: 29. Nov. (DE-627)525475176 (DE-600)2272440-0 1752-153X nnns volume:12 year:2018 number:1 day:29 month:11 https://dx.doi.org/10.1186/s13065-018-0491-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2018 1 29 11 |
language |
English |
source |
Enthalten in Chemistry central journal 12(2018), 1 vom: 29. Nov. volume:12 year:2018 number:1 day:29 month:11 |
sourceStr |
Enthalten in Chemistry central journal 12(2018), 1 vom: 29. Nov. volume:12 year:2018 number:1 day:29 month:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Software application Neural network Biodiesel Predictive model |
isfreeaccess_bool |
true |
container_title |
Chemistry central journal |
authorswithroles_txt_mv |
Dulf, Eva-H. @@aut@@ Vodnar, Dan Cristian @@aut@@ Dulf, Francisc-V. @@aut@@ |
publishDateDaySort_date |
2018-11-29T00:00:00Z |
hierarchy_top_id |
525475176 |
id |
SPR030136822 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030136822</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519090013.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13065-018-0491-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030136822</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13065-018-0491-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dulf, Eva-H.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6540-6525</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling tool using neural networks for l(+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Most chemical reactions produce unwanted by-products. In an effort to reduce environmental problems these by-products could be used to produce valuable organic chemicals. In biodiesel industry a huge amount of glycerol is generated, approximately 10% of the final product. The research group from University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca developed opportunities to produce l(+) lactic acid from the glycerol. The team is using the Rhizopus oryzae NRRL 395 bacteria for the fermentation of the glycerol. The purpose of the research is to improve the production of l(+) lactic acid in order to optimize the process. A predictive model obtained by neural networks is useful in this case. The main objective of the present work is to present the developed user-friendly application useful in modeling this fermentation process, in order to be used by people who are inexperienced with neural networks or specific software. Besides the interface for training of a new neural network in order to develop the model in some characteristic condition, the software also provides an interface for visualization of the results, useful in interpretation and as a tool for prediction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Software application</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural network</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biodiesel</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Predictive model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vodnar, Dan Cristian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dulf, Francisc-V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemistry central journal</subfield><subfield code="d">London : BioMed Central, 2007</subfield><subfield code="g">12(2018), 1 vom: 29. Nov.</subfield><subfield code="w">(DE-627)525475176</subfield><subfield code="w">(DE-600)2272440-0</subfield><subfield code="x">1752-153X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:29</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13065-018-0491-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">29</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
author |
Dulf, Eva-H. |
spellingShingle |
Dulf, Eva-H. misc Software application misc Neural network misc Biodiesel misc Predictive model Modeling tool using neural networks for l(+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol |
authorStr |
Dulf, Eva-H. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)525475176 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1752-153X |
topic_title |
Modeling tool using neural networks for l(+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol Software application (dpeaa)DE-He213 Neural network (dpeaa)DE-He213 Biodiesel (dpeaa)DE-He213 Predictive model (dpeaa)DE-He213 |
topic |
misc Software application misc Neural network misc Biodiesel misc Predictive model |
topic_unstemmed |
misc Software application misc Neural network misc Biodiesel misc Predictive model |
topic_browse |
misc Software application misc Neural network misc Biodiesel misc Predictive model |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Chemistry central journal |
hierarchy_parent_id |
525475176 |
hierarchy_top_title |
Chemistry central journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)525475176 (DE-600)2272440-0 |
title |
Modeling tool using neural networks for l(+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol |
ctrlnum |
(DE-627)SPR030136822 (SPR)s13065-018-0491-5-e |
title_full |
Modeling tool using neural networks for l(+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol |
author_sort |
Dulf, Eva-H. |
journal |
Chemistry central journal |
journalStr |
Chemistry central journal |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Dulf, Eva-H. Vodnar, Dan Cristian Dulf, Francisc-V. |
container_volume |
12 |
format_se |
Elektronische Aufsätze |
author-letter |
Dulf, Eva-H. |
doi_str_mv |
10.1186/s13065-018-0491-5 |
normlink |
(ORCID)0000-0002-6540-6525 |
normlink_prefix_str_mv |
(orcid)0000-0002-6540-6525 |
title_sort |
modeling tool using neural networks for l(+)-lactic acid production by pellet-form rhizopus oryzae nrrl 395 on biodiesel crude glycerol |
title_auth |
Modeling tool using neural networks for l(+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol |
abstract |
Abstract Most chemical reactions produce unwanted by-products. In an effort to reduce environmental problems these by-products could be used to produce valuable organic chemicals. In biodiesel industry a huge amount of glycerol is generated, approximately 10% of the final product. The research group from University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca developed opportunities to produce l(+) lactic acid from the glycerol. The team is using the Rhizopus oryzae NRRL 395 bacteria for the fermentation of the glycerol. The purpose of the research is to improve the production of l(+) lactic acid in order to optimize the process. A predictive model obtained by neural networks is useful in this case. The main objective of the present work is to present the developed user-friendly application useful in modeling this fermentation process, in order to be used by people who are inexperienced with neural networks or specific software. Besides the interface for training of a new neural network in order to develop the model in some characteristic condition, the software also provides an interface for visualization of the results, useful in interpretation and as a tool for prediction. © The Author(s) 2018 |
abstractGer |
Abstract Most chemical reactions produce unwanted by-products. In an effort to reduce environmental problems these by-products could be used to produce valuable organic chemicals. In biodiesel industry a huge amount of glycerol is generated, approximately 10% of the final product. The research group from University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca developed opportunities to produce l(+) lactic acid from the glycerol. The team is using the Rhizopus oryzae NRRL 395 bacteria for the fermentation of the glycerol. The purpose of the research is to improve the production of l(+) lactic acid in order to optimize the process. A predictive model obtained by neural networks is useful in this case. The main objective of the present work is to present the developed user-friendly application useful in modeling this fermentation process, in order to be used by people who are inexperienced with neural networks or specific software. Besides the interface for training of a new neural network in order to develop the model in some characteristic condition, the software also provides an interface for visualization of the results, useful in interpretation and as a tool for prediction. © The Author(s) 2018 |
abstract_unstemmed |
Abstract Most chemical reactions produce unwanted by-products. In an effort to reduce environmental problems these by-products could be used to produce valuable organic chemicals. In biodiesel industry a huge amount of glycerol is generated, approximately 10% of the final product. The research group from University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca developed opportunities to produce l(+) lactic acid from the glycerol. The team is using the Rhizopus oryzae NRRL 395 bacteria for the fermentation of the glycerol. The purpose of the research is to improve the production of l(+) lactic acid in order to optimize the process. A predictive model obtained by neural networks is useful in this case. The main objective of the present work is to present the developed user-friendly application useful in modeling this fermentation process, in order to be used by people who are inexperienced with neural networks or specific software. Besides the interface for training of a new neural network in order to develop the model in some characteristic condition, the software also provides an interface for visualization of the results, useful in interpretation and as a tool for prediction. © The Author(s) 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Modeling tool using neural networks for l(+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol |
url |
https://dx.doi.org/10.1186/s13065-018-0491-5 |
remote_bool |
true |
author2 |
Vodnar, Dan Cristian Dulf, Francisc-V. |
author2Str |
Vodnar, Dan Cristian Dulf, Francisc-V. |
ppnlink |
525475176 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13065-018-0491-5 |
up_date |
2024-07-03T14:11:29.107Z |
_version_ |
1803567380940455936 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030136822</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519090013.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13065-018-0491-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030136822</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13065-018-0491-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dulf, Eva-H.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6540-6525</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling tool using neural networks for l(+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Most chemical reactions produce unwanted by-products. In an effort to reduce environmental problems these by-products could be used to produce valuable organic chemicals. In biodiesel industry a huge amount of glycerol is generated, approximately 10% of the final product. The research group from University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca developed opportunities to produce l(+) lactic acid from the glycerol. The team is using the Rhizopus oryzae NRRL 395 bacteria for the fermentation of the glycerol. The purpose of the research is to improve the production of l(+) lactic acid in order to optimize the process. A predictive model obtained by neural networks is useful in this case. The main objective of the present work is to present the developed user-friendly application useful in modeling this fermentation process, in order to be used by people who are inexperienced with neural networks or specific software. Besides the interface for training of a new neural network in order to develop the model in some characteristic condition, the software also provides an interface for visualization of the results, useful in interpretation and as a tool for prediction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Software application</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural network</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biodiesel</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Predictive model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vodnar, Dan Cristian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dulf, Francisc-V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemistry central journal</subfield><subfield code="d">London : BioMed Central, 2007</subfield><subfield code="g">12(2018), 1 vom: 29. Nov.</subfield><subfield code="w">(DE-627)525475176</subfield><subfield code="w">(DE-600)2272440-0</subfield><subfield code="x">1752-153X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:29</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13065-018-0491-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">29</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
score |
7.39989 |