Lymphatic filariasis in Papua New Guinea: distribution at district level and impact of mass drug administration, 1980 to 2011
Background Lymphatic filariasis (LF) caused by Wuchereria bancrofti is present at high prevalence in some parts of Papua New Guinea. However, there has been no rigorous data-based representative assessment of nationwide prevalence of LF. The LF programme has been daunted by the scope of the problem,...
Ausführliche Beschreibung
Autor*in: |
Graves, Patricia M [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Graves et al.; licensee BioMed Central Ltd. 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: Parasites & vectors - London : BioMed Central, 2008, 6(2013), 1 vom: 11. Jan. |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2013 ; number:1 ; day:11 ; month:01 |
Links: |
---|
DOI / URN: |
10.1186/1756-3305-6-7 |
---|
Katalog-ID: |
SPR030175739 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR030175739 | ||
003 | DE-627 | ||
005 | 20230519184022.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1756-3305-6-7 |2 doi | |
035 | |a (DE-627)SPR030175739 | ||
035 | |a (SPR)1756-3305-6-7-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Graves, Patricia M |e verfasserin |4 aut | |
245 | 1 | 0 | |a Lymphatic filariasis in Papua New Guinea: distribution at district level and impact of mass drug administration, 1980 to 2011 |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Graves et al.; licensee BioMed Central Ltd. 2013 | ||
520 | |a Background Lymphatic filariasis (LF) caused by Wuchereria bancrofti is present at high prevalence in some parts of Papua New Guinea. However, there has been no rigorous data-based representative assessment of nationwide prevalence of LF. The LF programme has been daunted by the scope of the problem, and progress on mass drug administration (MDA) has been slow and lacking in resources. Methods A systematic literature review identified LF surveys in Papua New Guinea between 1980 and 2011. Results were extracted by location, time period and test used (blood slide, immunochromatographic test (ICT) or Og4C3 ELISA) and combined by district. Three criteria schemes based on the Global Programme to Eliminate Lymphatic Filariasis guidelines, with modifications, were developed to classify and prioritize districts by prevalence level. Results of repeated surveys in the same sites were used to investigate the impact of MDA on LF prevalence over the time period. Results There were 312 distinct survey sites identified in 80 of the 89 districts over the 31-year period. The overall LF prevalence in the sites tested was estimated at 18.5 to 27.5% by blood slide for microfilariae (Mf), 10.1% to 12.9% by ICT and 45.4% to 48.8% by Og4C3. Biases in site selection towards areas with LF, and change in type of assay used, affected the prevalence estimates, but overall decline in prevalence over the time period was observed. Depending on the criteria used, 34 to 36 districts (population 2.7 to 2.9 million) were classed as high endemic (≥5% prevalence), 15 to 25 districts (1.7 to 1.9 million) as low endemic (<5%) and 20 to 31 (1.3 to 2.2 million) as non-endemic. Nine districts (0.7 million) had no information. The strong impact of MDA, especially on microfilaria (Mf) prevalence, was noted in sites with repeat surveys. Conclusions This analytical review of past surveys of LF in Papua New Guinea enables better estimation of the national burden, identifies gaps in knowledge, quantifies and locates the population at risk, and can be used to predict the likely impact of MDA and/or vector control. Better targeting of districts by level of prevalence will strengthen the control programme, facilitate monitoring of the disease trend and increase the likelihood of reaching the target of LF elimination by 2020. | ||
650 | 4 | |a Lymphatic filariasis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Papua New Guinea |7 (dpeaa)DE-He213 | |
650 | 4 | |a Mapping |7 (dpeaa)DE-He213 | |
650 | 4 | |a Mass drug administration |7 (dpeaa)DE-He213 | |
700 | 1 | |a Makita, Leo |4 aut | |
700 | 1 | |a Susapu, Melinda |4 aut | |
700 | 1 | |a Brady, Molly A |4 aut | |
700 | 1 | |a Melrose, Wayne |4 aut | |
700 | 1 | |a Capuano, Corinne |4 aut | |
700 | 1 | |a Zhang, Zaixing |4 aut | |
700 | 1 | |a Dapeng, Luo |4 aut | |
700 | 1 | |a Ozaki, Masayo |4 aut | |
700 | 1 | |a Reeve, David |4 aut | |
700 | 1 | |a Ichimori, Kazuyo |4 aut | |
700 | 1 | |a Kazadi, Walter M |4 aut | |
700 | 1 | |a Michna, Frederick |4 aut | |
700 | 1 | |a Bockarie, Moses J |4 aut | |
700 | 1 | |a Kelly-Hope, Louise A |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Parasites & vectors |d London : BioMed Central, 2008 |g 6(2013), 1 vom: 11. Jan. |w (DE-627)558690076 |w (DE-600)2409480-8 |x 1756-3305 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2013 |g number:1 |g day:11 |g month:01 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1756-3305-6-7 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2013 |e 1 |b 11 |c 01 |
author_variant |
p m g pm pmg l m lm m s ms m a b ma mab w m wm c c cc z z zz l d ld m o mo d r dr k i ki w m k wm wmk f m fm m j b mj mjb l a k h lak lakh |
---|---|
matchkey_str |
article:17563305:2013----::ypaiflraiippaegiedsrbtoadsrclvlnipcomsd |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1186/1756-3305-6-7 doi (DE-627)SPR030175739 (SPR)1756-3305-6-7-e DE-627 ger DE-627 rakwb eng Graves, Patricia M verfasserin aut Lymphatic filariasis in Papua New Guinea: distribution at district level and impact of mass drug administration, 1980 to 2011 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Graves et al.; licensee BioMed Central Ltd. 2013 Background Lymphatic filariasis (LF) caused by Wuchereria bancrofti is present at high prevalence in some parts of Papua New Guinea. However, there has been no rigorous data-based representative assessment of nationwide prevalence of LF. The LF programme has been daunted by the scope of the problem, and progress on mass drug administration (MDA) has been slow and lacking in resources. Methods A systematic literature review identified LF surveys in Papua New Guinea between 1980 and 2011. Results were extracted by location, time period and test used (blood slide, immunochromatographic test (ICT) or Og4C3 ELISA) and combined by district. Three criteria schemes based on the Global Programme to Eliminate Lymphatic Filariasis guidelines, with modifications, were developed to classify and prioritize districts by prevalence level. Results of repeated surveys in the same sites were used to investigate the impact of MDA on LF prevalence over the time period. Results There were 312 distinct survey sites identified in 80 of the 89 districts over the 31-year period. The overall LF prevalence in the sites tested was estimated at 18.5 to 27.5% by blood slide for microfilariae (Mf), 10.1% to 12.9% by ICT and 45.4% to 48.8% by Og4C3. Biases in site selection towards areas with LF, and change in type of assay used, affected the prevalence estimates, but overall decline in prevalence over the time period was observed. Depending on the criteria used, 34 to 36 districts (population 2.7 to 2.9 million) were classed as high endemic (≥5% prevalence), 15 to 25 districts (1.7 to 1.9 million) as low endemic (<5%) and 20 to 31 (1.3 to 2.2 million) as non-endemic. Nine districts (0.7 million) had no information. The strong impact of MDA, especially on microfilaria (Mf) prevalence, was noted in sites with repeat surveys. Conclusions This analytical review of past surveys of LF in Papua New Guinea enables better estimation of the national burden, identifies gaps in knowledge, quantifies and locates the population at risk, and can be used to predict the likely impact of MDA and/or vector control. Better targeting of districts by level of prevalence will strengthen the control programme, facilitate monitoring of the disease trend and increase the likelihood of reaching the target of LF elimination by 2020. Lymphatic filariasis (dpeaa)DE-He213 Papua New Guinea (dpeaa)DE-He213 Mapping (dpeaa)DE-He213 Mass drug administration (dpeaa)DE-He213 Makita, Leo aut Susapu, Melinda aut Brady, Molly A aut Melrose, Wayne aut Capuano, Corinne aut Zhang, Zaixing aut Dapeng, Luo aut Ozaki, Masayo aut Reeve, David aut Ichimori, Kazuyo aut Kazadi, Walter M aut Michna, Frederick aut Bockarie, Moses J aut Kelly-Hope, Louise A aut Enthalten in Parasites & vectors London : BioMed Central, 2008 6(2013), 1 vom: 11. Jan. (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:6 year:2013 number:1 day:11 month:01 https://dx.doi.org/10.1186/1756-3305-6-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2013 1 11 01 |
spelling |
10.1186/1756-3305-6-7 doi (DE-627)SPR030175739 (SPR)1756-3305-6-7-e DE-627 ger DE-627 rakwb eng Graves, Patricia M verfasserin aut Lymphatic filariasis in Papua New Guinea: distribution at district level and impact of mass drug administration, 1980 to 2011 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Graves et al.; licensee BioMed Central Ltd. 2013 Background Lymphatic filariasis (LF) caused by Wuchereria bancrofti is present at high prevalence in some parts of Papua New Guinea. However, there has been no rigorous data-based representative assessment of nationwide prevalence of LF. The LF programme has been daunted by the scope of the problem, and progress on mass drug administration (MDA) has been slow and lacking in resources. Methods A systematic literature review identified LF surveys in Papua New Guinea between 1980 and 2011. Results were extracted by location, time period and test used (blood slide, immunochromatographic test (ICT) or Og4C3 ELISA) and combined by district. Three criteria schemes based on the Global Programme to Eliminate Lymphatic Filariasis guidelines, with modifications, were developed to classify and prioritize districts by prevalence level. Results of repeated surveys in the same sites were used to investigate the impact of MDA on LF prevalence over the time period. Results There were 312 distinct survey sites identified in 80 of the 89 districts over the 31-year period. The overall LF prevalence in the sites tested was estimated at 18.5 to 27.5% by blood slide for microfilariae (Mf), 10.1% to 12.9% by ICT and 45.4% to 48.8% by Og4C3. Biases in site selection towards areas with LF, and change in type of assay used, affected the prevalence estimates, but overall decline in prevalence over the time period was observed. Depending on the criteria used, 34 to 36 districts (population 2.7 to 2.9 million) were classed as high endemic (≥5% prevalence), 15 to 25 districts (1.7 to 1.9 million) as low endemic (<5%) and 20 to 31 (1.3 to 2.2 million) as non-endemic. Nine districts (0.7 million) had no information. The strong impact of MDA, especially on microfilaria (Mf) prevalence, was noted in sites with repeat surveys. Conclusions This analytical review of past surveys of LF in Papua New Guinea enables better estimation of the national burden, identifies gaps in knowledge, quantifies and locates the population at risk, and can be used to predict the likely impact of MDA and/or vector control. Better targeting of districts by level of prevalence will strengthen the control programme, facilitate monitoring of the disease trend and increase the likelihood of reaching the target of LF elimination by 2020. Lymphatic filariasis (dpeaa)DE-He213 Papua New Guinea (dpeaa)DE-He213 Mapping (dpeaa)DE-He213 Mass drug administration (dpeaa)DE-He213 Makita, Leo aut Susapu, Melinda aut Brady, Molly A aut Melrose, Wayne aut Capuano, Corinne aut Zhang, Zaixing aut Dapeng, Luo aut Ozaki, Masayo aut Reeve, David aut Ichimori, Kazuyo aut Kazadi, Walter M aut Michna, Frederick aut Bockarie, Moses J aut Kelly-Hope, Louise A aut Enthalten in Parasites & vectors London : BioMed Central, 2008 6(2013), 1 vom: 11. Jan. (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:6 year:2013 number:1 day:11 month:01 https://dx.doi.org/10.1186/1756-3305-6-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2013 1 11 01 |
allfields_unstemmed |
10.1186/1756-3305-6-7 doi (DE-627)SPR030175739 (SPR)1756-3305-6-7-e DE-627 ger DE-627 rakwb eng Graves, Patricia M verfasserin aut Lymphatic filariasis in Papua New Guinea: distribution at district level and impact of mass drug administration, 1980 to 2011 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Graves et al.; licensee BioMed Central Ltd. 2013 Background Lymphatic filariasis (LF) caused by Wuchereria bancrofti is present at high prevalence in some parts of Papua New Guinea. However, there has been no rigorous data-based representative assessment of nationwide prevalence of LF. The LF programme has been daunted by the scope of the problem, and progress on mass drug administration (MDA) has been slow and lacking in resources. Methods A systematic literature review identified LF surveys in Papua New Guinea between 1980 and 2011. Results were extracted by location, time period and test used (blood slide, immunochromatographic test (ICT) or Og4C3 ELISA) and combined by district. Three criteria schemes based on the Global Programme to Eliminate Lymphatic Filariasis guidelines, with modifications, were developed to classify and prioritize districts by prevalence level. Results of repeated surveys in the same sites were used to investigate the impact of MDA on LF prevalence over the time period. Results There were 312 distinct survey sites identified in 80 of the 89 districts over the 31-year period. The overall LF prevalence in the sites tested was estimated at 18.5 to 27.5% by blood slide for microfilariae (Mf), 10.1% to 12.9% by ICT and 45.4% to 48.8% by Og4C3. Biases in site selection towards areas with LF, and change in type of assay used, affected the prevalence estimates, but overall decline in prevalence over the time period was observed. Depending on the criteria used, 34 to 36 districts (population 2.7 to 2.9 million) were classed as high endemic (≥5% prevalence), 15 to 25 districts (1.7 to 1.9 million) as low endemic (<5%) and 20 to 31 (1.3 to 2.2 million) as non-endemic. Nine districts (0.7 million) had no information. The strong impact of MDA, especially on microfilaria (Mf) prevalence, was noted in sites with repeat surveys. Conclusions This analytical review of past surveys of LF in Papua New Guinea enables better estimation of the national burden, identifies gaps in knowledge, quantifies and locates the population at risk, and can be used to predict the likely impact of MDA and/or vector control. Better targeting of districts by level of prevalence will strengthen the control programme, facilitate monitoring of the disease trend and increase the likelihood of reaching the target of LF elimination by 2020. Lymphatic filariasis (dpeaa)DE-He213 Papua New Guinea (dpeaa)DE-He213 Mapping (dpeaa)DE-He213 Mass drug administration (dpeaa)DE-He213 Makita, Leo aut Susapu, Melinda aut Brady, Molly A aut Melrose, Wayne aut Capuano, Corinne aut Zhang, Zaixing aut Dapeng, Luo aut Ozaki, Masayo aut Reeve, David aut Ichimori, Kazuyo aut Kazadi, Walter M aut Michna, Frederick aut Bockarie, Moses J aut Kelly-Hope, Louise A aut Enthalten in Parasites & vectors London : BioMed Central, 2008 6(2013), 1 vom: 11. Jan. (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:6 year:2013 number:1 day:11 month:01 https://dx.doi.org/10.1186/1756-3305-6-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2013 1 11 01 |
allfieldsGer |
10.1186/1756-3305-6-7 doi (DE-627)SPR030175739 (SPR)1756-3305-6-7-e DE-627 ger DE-627 rakwb eng Graves, Patricia M verfasserin aut Lymphatic filariasis in Papua New Guinea: distribution at district level and impact of mass drug administration, 1980 to 2011 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Graves et al.; licensee BioMed Central Ltd. 2013 Background Lymphatic filariasis (LF) caused by Wuchereria bancrofti is present at high prevalence in some parts of Papua New Guinea. However, there has been no rigorous data-based representative assessment of nationwide prevalence of LF. The LF programme has been daunted by the scope of the problem, and progress on mass drug administration (MDA) has been slow and lacking in resources. Methods A systematic literature review identified LF surveys in Papua New Guinea between 1980 and 2011. Results were extracted by location, time period and test used (blood slide, immunochromatographic test (ICT) or Og4C3 ELISA) and combined by district. Three criteria schemes based on the Global Programme to Eliminate Lymphatic Filariasis guidelines, with modifications, were developed to classify and prioritize districts by prevalence level. Results of repeated surveys in the same sites were used to investigate the impact of MDA on LF prevalence over the time period. Results There were 312 distinct survey sites identified in 80 of the 89 districts over the 31-year period. The overall LF prevalence in the sites tested was estimated at 18.5 to 27.5% by blood slide for microfilariae (Mf), 10.1% to 12.9% by ICT and 45.4% to 48.8% by Og4C3. Biases in site selection towards areas with LF, and change in type of assay used, affected the prevalence estimates, but overall decline in prevalence over the time period was observed. Depending on the criteria used, 34 to 36 districts (population 2.7 to 2.9 million) were classed as high endemic (≥5% prevalence), 15 to 25 districts (1.7 to 1.9 million) as low endemic (<5%) and 20 to 31 (1.3 to 2.2 million) as non-endemic. Nine districts (0.7 million) had no information. The strong impact of MDA, especially on microfilaria (Mf) prevalence, was noted in sites with repeat surveys. Conclusions This analytical review of past surveys of LF in Papua New Guinea enables better estimation of the national burden, identifies gaps in knowledge, quantifies and locates the population at risk, and can be used to predict the likely impact of MDA and/or vector control. Better targeting of districts by level of prevalence will strengthen the control programme, facilitate monitoring of the disease trend and increase the likelihood of reaching the target of LF elimination by 2020. Lymphatic filariasis (dpeaa)DE-He213 Papua New Guinea (dpeaa)DE-He213 Mapping (dpeaa)DE-He213 Mass drug administration (dpeaa)DE-He213 Makita, Leo aut Susapu, Melinda aut Brady, Molly A aut Melrose, Wayne aut Capuano, Corinne aut Zhang, Zaixing aut Dapeng, Luo aut Ozaki, Masayo aut Reeve, David aut Ichimori, Kazuyo aut Kazadi, Walter M aut Michna, Frederick aut Bockarie, Moses J aut Kelly-Hope, Louise A aut Enthalten in Parasites & vectors London : BioMed Central, 2008 6(2013), 1 vom: 11. Jan. (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:6 year:2013 number:1 day:11 month:01 https://dx.doi.org/10.1186/1756-3305-6-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2013 1 11 01 |
allfieldsSound |
10.1186/1756-3305-6-7 doi (DE-627)SPR030175739 (SPR)1756-3305-6-7-e DE-627 ger DE-627 rakwb eng Graves, Patricia M verfasserin aut Lymphatic filariasis in Papua New Guinea: distribution at district level and impact of mass drug administration, 1980 to 2011 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Graves et al.; licensee BioMed Central Ltd. 2013 Background Lymphatic filariasis (LF) caused by Wuchereria bancrofti is present at high prevalence in some parts of Papua New Guinea. However, there has been no rigorous data-based representative assessment of nationwide prevalence of LF. The LF programme has been daunted by the scope of the problem, and progress on mass drug administration (MDA) has been slow and lacking in resources. Methods A systematic literature review identified LF surveys in Papua New Guinea between 1980 and 2011. Results were extracted by location, time period and test used (blood slide, immunochromatographic test (ICT) or Og4C3 ELISA) and combined by district. Three criteria schemes based on the Global Programme to Eliminate Lymphatic Filariasis guidelines, with modifications, were developed to classify and prioritize districts by prevalence level. Results of repeated surveys in the same sites were used to investigate the impact of MDA on LF prevalence over the time period. Results There were 312 distinct survey sites identified in 80 of the 89 districts over the 31-year period. The overall LF prevalence in the sites tested was estimated at 18.5 to 27.5% by blood slide for microfilariae (Mf), 10.1% to 12.9% by ICT and 45.4% to 48.8% by Og4C3. Biases in site selection towards areas with LF, and change in type of assay used, affected the prevalence estimates, but overall decline in prevalence over the time period was observed. Depending on the criteria used, 34 to 36 districts (population 2.7 to 2.9 million) were classed as high endemic (≥5% prevalence), 15 to 25 districts (1.7 to 1.9 million) as low endemic (<5%) and 20 to 31 (1.3 to 2.2 million) as non-endemic. Nine districts (0.7 million) had no information. The strong impact of MDA, especially on microfilaria (Mf) prevalence, was noted in sites with repeat surveys. Conclusions This analytical review of past surveys of LF in Papua New Guinea enables better estimation of the national burden, identifies gaps in knowledge, quantifies and locates the population at risk, and can be used to predict the likely impact of MDA and/or vector control. Better targeting of districts by level of prevalence will strengthen the control programme, facilitate monitoring of the disease trend and increase the likelihood of reaching the target of LF elimination by 2020. Lymphatic filariasis (dpeaa)DE-He213 Papua New Guinea (dpeaa)DE-He213 Mapping (dpeaa)DE-He213 Mass drug administration (dpeaa)DE-He213 Makita, Leo aut Susapu, Melinda aut Brady, Molly A aut Melrose, Wayne aut Capuano, Corinne aut Zhang, Zaixing aut Dapeng, Luo aut Ozaki, Masayo aut Reeve, David aut Ichimori, Kazuyo aut Kazadi, Walter M aut Michna, Frederick aut Bockarie, Moses J aut Kelly-Hope, Louise A aut Enthalten in Parasites & vectors London : BioMed Central, 2008 6(2013), 1 vom: 11. Jan. (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:6 year:2013 number:1 day:11 month:01 https://dx.doi.org/10.1186/1756-3305-6-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2013 1 11 01 |
language |
English |
source |
Enthalten in Parasites & vectors 6(2013), 1 vom: 11. Jan. volume:6 year:2013 number:1 day:11 month:01 |
sourceStr |
Enthalten in Parasites & vectors 6(2013), 1 vom: 11. Jan. volume:6 year:2013 number:1 day:11 month:01 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Lymphatic filariasis Papua New Guinea Mapping Mass drug administration |
isfreeaccess_bool |
true |
container_title |
Parasites & vectors |
authorswithroles_txt_mv |
Graves, Patricia M @@aut@@ Makita, Leo @@aut@@ Susapu, Melinda @@aut@@ Brady, Molly A @@aut@@ Melrose, Wayne @@aut@@ Capuano, Corinne @@aut@@ Zhang, Zaixing @@aut@@ Dapeng, Luo @@aut@@ Ozaki, Masayo @@aut@@ Reeve, David @@aut@@ Ichimori, Kazuyo @@aut@@ Kazadi, Walter M @@aut@@ Michna, Frederick @@aut@@ Bockarie, Moses J @@aut@@ Kelly-Hope, Louise A @@aut@@ |
publishDateDaySort_date |
2013-01-11T00:00:00Z |
hierarchy_top_id |
558690076 |
id |
SPR030175739 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030175739</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519184022.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1756-3305-6-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030175739</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1756-3305-6-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Graves, Patricia M</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lymphatic filariasis in Papua New Guinea: distribution at district level and impact of mass drug administration, 1980 to 2011</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Graves et al.; licensee BioMed Central Ltd. 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Lymphatic filariasis (LF) caused by Wuchereria bancrofti is present at high prevalence in some parts of Papua New Guinea. However, there has been no rigorous data-based representative assessment of nationwide prevalence of LF. The LF programme has been daunted by the scope of the problem, and progress on mass drug administration (MDA) has been slow and lacking in resources. Methods A systematic literature review identified LF surveys in Papua New Guinea between 1980 and 2011. Results were extracted by location, time period and test used (blood slide, immunochromatographic test (ICT) or Og4C3 ELISA) and combined by district. Three criteria schemes based on the Global Programme to Eliminate Lymphatic Filariasis guidelines, with modifications, were developed to classify and prioritize districts by prevalence level. Results of repeated surveys in the same sites were used to investigate the impact of MDA on LF prevalence over the time period. Results There were 312 distinct survey sites identified in 80 of the 89 districts over the 31-year period. The overall LF prevalence in the sites tested was estimated at 18.5 to 27.5% by blood slide for microfilariae (Mf), 10.1% to 12.9% by ICT and 45.4% to 48.8% by Og4C3. Biases in site selection towards areas with LF, and change in type of assay used, affected the prevalence estimates, but overall decline in prevalence over the time period was observed. Depending on the criteria used, 34 to 36 districts (population 2.7 to 2.9 million) were classed as high endemic (≥5% prevalence), 15 to 25 districts (1.7 to 1.9 million) as low endemic (<5%) and 20 to 31 (1.3 to 2.2 million) as non-endemic. Nine districts (0.7 million) had no information. The strong impact of MDA, especially on microfilaria (Mf) prevalence, was noted in sites with repeat surveys. Conclusions This analytical review of past surveys of LF in Papua New Guinea enables better estimation of the national burden, identifies gaps in knowledge, quantifies and locates the population at risk, and can be used to predict the likely impact of MDA and/or vector control. Better targeting of districts by level of prevalence will strengthen the control programme, facilitate monitoring of the disease trend and increase the likelihood of reaching the target of LF elimination by 2020.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lymphatic filariasis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Papua New Guinea</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mapping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mass drug administration</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Makita, Leo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Susapu, Melinda</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brady, Molly A</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Melrose, Wayne</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Capuano, Corinne</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zaixing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dapeng, Luo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ozaki, Masayo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reeve, David</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ichimori, Kazuyo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kazadi, Walter M</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Michna, Frederick</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bockarie, Moses J</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kelly-Hope, Louise A</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Parasites & vectors</subfield><subfield code="d">London : BioMed Central, 2008</subfield><subfield code="g">6(2013), 1 vom: 11. Jan.</subfield><subfield code="w">(DE-627)558690076</subfield><subfield code="w">(DE-600)2409480-8</subfield><subfield code="x">1756-3305</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:11</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1756-3305-6-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">11</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
author |
Graves, Patricia M |
spellingShingle |
Graves, Patricia M misc Lymphatic filariasis misc Papua New Guinea misc Mapping misc Mass drug administration Lymphatic filariasis in Papua New Guinea: distribution at district level and impact of mass drug administration, 1980 to 2011 |
authorStr |
Graves, Patricia M |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)558690076 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1756-3305 |
topic_title |
Lymphatic filariasis in Papua New Guinea: distribution at district level and impact of mass drug administration, 1980 to 2011 Lymphatic filariasis (dpeaa)DE-He213 Papua New Guinea (dpeaa)DE-He213 Mapping (dpeaa)DE-He213 Mass drug administration (dpeaa)DE-He213 |
topic |
misc Lymphatic filariasis misc Papua New Guinea misc Mapping misc Mass drug administration |
topic_unstemmed |
misc Lymphatic filariasis misc Papua New Guinea misc Mapping misc Mass drug administration |
topic_browse |
misc Lymphatic filariasis misc Papua New Guinea misc Mapping misc Mass drug administration |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Parasites & vectors |
hierarchy_parent_id |
558690076 |
hierarchy_top_title |
Parasites & vectors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)558690076 (DE-600)2409480-8 |
title |
Lymphatic filariasis in Papua New Guinea: distribution at district level and impact of mass drug administration, 1980 to 2011 |
ctrlnum |
(DE-627)SPR030175739 (SPR)1756-3305-6-7-e |
title_full |
Lymphatic filariasis in Papua New Guinea: distribution at district level and impact of mass drug administration, 1980 to 2011 |
author_sort |
Graves, Patricia M |
journal |
Parasites & vectors |
journalStr |
Parasites & vectors |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
author_browse |
Graves, Patricia M Makita, Leo Susapu, Melinda Brady, Molly A Melrose, Wayne Capuano, Corinne Zhang, Zaixing Dapeng, Luo Ozaki, Masayo Reeve, David Ichimori, Kazuyo Kazadi, Walter M Michna, Frederick Bockarie, Moses J Kelly-Hope, Louise A |
container_volume |
6 |
format_se |
Elektronische Aufsätze |
author-letter |
Graves, Patricia M |
doi_str_mv |
10.1186/1756-3305-6-7 |
title_sort |
lymphatic filariasis in papua new guinea: distribution at district level and impact of mass drug administration, 1980 to 2011 |
title_auth |
Lymphatic filariasis in Papua New Guinea: distribution at district level and impact of mass drug administration, 1980 to 2011 |
abstract |
Background Lymphatic filariasis (LF) caused by Wuchereria bancrofti is present at high prevalence in some parts of Papua New Guinea. However, there has been no rigorous data-based representative assessment of nationwide prevalence of LF. The LF programme has been daunted by the scope of the problem, and progress on mass drug administration (MDA) has been slow and lacking in resources. Methods A systematic literature review identified LF surveys in Papua New Guinea between 1980 and 2011. Results were extracted by location, time period and test used (blood slide, immunochromatographic test (ICT) or Og4C3 ELISA) and combined by district. Three criteria schemes based on the Global Programme to Eliminate Lymphatic Filariasis guidelines, with modifications, were developed to classify and prioritize districts by prevalence level. Results of repeated surveys in the same sites were used to investigate the impact of MDA on LF prevalence over the time period. Results There were 312 distinct survey sites identified in 80 of the 89 districts over the 31-year period. The overall LF prevalence in the sites tested was estimated at 18.5 to 27.5% by blood slide for microfilariae (Mf), 10.1% to 12.9% by ICT and 45.4% to 48.8% by Og4C3. Biases in site selection towards areas with LF, and change in type of assay used, affected the prevalence estimates, but overall decline in prevalence over the time period was observed. Depending on the criteria used, 34 to 36 districts (population 2.7 to 2.9 million) were classed as high endemic (≥5% prevalence), 15 to 25 districts (1.7 to 1.9 million) as low endemic (<5%) and 20 to 31 (1.3 to 2.2 million) as non-endemic. Nine districts (0.7 million) had no information. The strong impact of MDA, especially on microfilaria (Mf) prevalence, was noted in sites with repeat surveys. Conclusions This analytical review of past surveys of LF in Papua New Guinea enables better estimation of the national burden, identifies gaps in knowledge, quantifies and locates the population at risk, and can be used to predict the likely impact of MDA and/or vector control. Better targeting of districts by level of prevalence will strengthen the control programme, facilitate monitoring of the disease trend and increase the likelihood of reaching the target of LF elimination by 2020. © Graves et al.; licensee BioMed Central Ltd. 2013 |
abstractGer |
Background Lymphatic filariasis (LF) caused by Wuchereria bancrofti is present at high prevalence in some parts of Papua New Guinea. However, there has been no rigorous data-based representative assessment of nationwide prevalence of LF. The LF programme has been daunted by the scope of the problem, and progress on mass drug administration (MDA) has been slow and lacking in resources. Methods A systematic literature review identified LF surveys in Papua New Guinea between 1980 and 2011. Results were extracted by location, time period and test used (blood slide, immunochromatographic test (ICT) or Og4C3 ELISA) and combined by district. Three criteria schemes based on the Global Programme to Eliminate Lymphatic Filariasis guidelines, with modifications, were developed to classify and prioritize districts by prevalence level. Results of repeated surveys in the same sites were used to investigate the impact of MDA on LF prevalence over the time period. Results There were 312 distinct survey sites identified in 80 of the 89 districts over the 31-year period. The overall LF prevalence in the sites tested was estimated at 18.5 to 27.5% by blood slide for microfilariae (Mf), 10.1% to 12.9% by ICT and 45.4% to 48.8% by Og4C3. Biases in site selection towards areas with LF, and change in type of assay used, affected the prevalence estimates, but overall decline in prevalence over the time period was observed. Depending on the criteria used, 34 to 36 districts (population 2.7 to 2.9 million) were classed as high endemic (≥5% prevalence), 15 to 25 districts (1.7 to 1.9 million) as low endemic (<5%) and 20 to 31 (1.3 to 2.2 million) as non-endemic. Nine districts (0.7 million) had no information. The strong impact of MDA, especially on microfilaria (Mf) prevalence, was noted in sites with repeat surveys. Conclusions This analytical review of past surveys of LF in Papua New Guinea enables better estimation of the national burden, identifies gaps in knowledge, quantifies and locates the population at risk, and can be used to predict the likely impact of MDA and/or vector control. Better targeting of districts by level of prevalence will strengthen the control programme, facilitate monitoring of the disease trend and increase the likelihood of reaching the target of LF elimination by 2020. © Graves et al.; licensee BioMed Central Ltd. 2013 |
abstract_unstemmed |
Background Lymphatic filariasis (LF) caused by Wuchereria bancrofti is present at high prevalence in some parts of Papua New Guinea. However, there has been no rigorous data-based representative assessment of nationwide prevalence of LF. The LF programme has been daunted by the scope of the problem, and progress on mass drug administration (MDA) has been slow and lacking in resources. Methods A systematic literature review identified LF surveys in Papua New Guinea between 1980 and 2011. Results were extracted by location, time period and test used (blood slide, immunochromatographic test (ICT) or Og4C3 ELISA) and combined by district. Three criteria schemes based on the Global Programme to Eliminate Lymphatic Filariasis guidelines, with modifications, were developed to classify and prioritize districts by prevalence level. Results of repeated surveys in the same sites were used to investigate the impact of MDA on LF prevalence over the time period. Results There were 312 distinct survey sites identified in 80 of the 89 districts over the 31-year period. The overall LF prevalence in the sites tested was estimated at 18.5 to 27.5% by blood slide for microfilariae (Mf), 10.1% to 12.9% by ICT and 45.4% to 48.8% by Og4C3. Biases in site selection towards areas with LF, and change in type of assay used, affected the prevalence estimates, but overall decline in prevalence over the time period was observed. Depending on the criteria used, 34 to 36 districts (population 2.7 to 2.9 million) were classed as high endemic (≥5% prevalence), 15 to 25 districts (1.7 to 1.9 million) as low endemic (<5%) and 20 to 31 (1.3 to 2.2 million) as non-endemic. Nine districts (0.7 million) had no information. The strong impact of MDA, especially on microfilaria (Mf) prevalence, was noted in sites with repeat surveys. Conclusions This analytical review of past surveys of LF in Papua New Guinea enables better estimation of the national burden, identifies gaps in knowledge, quantifies and locates the population at risk, and can be used to predict the likely impact of MDA and/or vector control. Better targeting of districts by level of prevalence will strengthen the control programme, facilitate monitoring of the disease trend and increase the likelihood of reaching the target of LF elimination by 2020. © Graves et al.; licensee BioMed Central Ltd. 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Lymphatic filariasis in Papua New Guinea: distribution at district level and impact of mass drug administration, 1980 to 2011 |
url |
https://dx.doi.org/10.1186/1756-3305-6-7 |
remote_bool |
true |
author2 |
Makita, Leo Susapu, Melinda Brady, Molly A Melrose, Wayne Capuano, Corinne Zhang, Zaixing Dapeng, Luo Ozaki, Masayo Reeve, David Ichimori, Kazuyo Kazadi, Walter M Michna, Frederick Bockarie, Moses J Kelly-Hope, Louise A |
author2Str |
Makita, Leo Susapu, Melinda Brady, Molly A Melrose, Wayne Capuano, Corinne Zhang, Zaixing Dapeng, Luo Ozaki, Masayo Reeve, David Ichimori, Kazuyo Kazadi, Walter M Michna, Frederick Bockarie, Moses J Kelly-Hope, Louise A |
ppnlink |
558690076 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1756-3305-6-7 |
up_date |
2024-07-03T14:28:03.107Z |
_version_ |
1803568423222902784 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030175739</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519184022.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1756-3305-6-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030175739</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1756-3305-6-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Graves, Patricia M</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lymphatic filariasis in Papua New Guinea: distribution at district level and impact of mass drug administration, 1980 to 2011</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Graves et al.; licensee BioMed Central Ltd. 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Lymphatic filariasis (LF) caused by Wuchereria bancrofti is present at high prevalence in some parts of Papua New Guinea. However, there has been no rigorous data-based representative assessment of nationwide prevalence of LF. The LF programme has been daunted by the scope of the problem, and progress on mass drug administration (MDA) has been slow and lacking in resources. Methods A systematic literature review identified LF surveys in Papua New Guinea between 1980 and 2011. Results were extracted by location, time period and test used (blood slide, immunochromatographic test (ICT) or Og4C3 ELISA) and combined by district. Three criteria schemes based on the Global Programme to Eliminate Lymphatic Filariasis guidelines, with modifications, were developed to classify and prioritize districts by prevalence level. Results of repeated surveys in the same sites were used to investigate the impact of MDA on LF prevalence over the time period. Results There were 312 distinct survey sites identified in 80 of the 89 districts over the 31-year period. The overall LF prevalence in the sites tested was estimated at 18.5 to 27.5% by blood slide for microfilariae (Mf), 10.1% to 12.9% by ICT and 45.4% to 48.8% by Og4C3. Biases in site selection towards areas with LF, and change in type of assay used, affected the prevalence estimates, but overall decline in prevalence over the time period was observed. Depending on the criteria used, 34 to 36 districts (population 2.7 to 2.9 million) were classed as high endemic (≥5% prevalence), 15 to 25 districts (1.7 to 1.9 million) as low endemic (<5%) and 20 to 31 (1.3 to 2.2 million) as non-endemic. Nine districts (0.7 million) had no information. The strong impact of MDA, especially on microfilaria (Mf) prevalence, was noted in sites with repeat surveys. Conclusions This analytical review of past surveys of LF in Papua New Guinea enables better estimation of the national burden, identifies gaps in knowledge, quantifies and locates the population at risk, and can be used to predict the likely impact of MDA and/or vector control. Better targeting of districts by level of prevalence will strengthen the control programme, facilitate monitoring of the disease trend and increase the likelihood of reaching the target of LF elimination by 2020.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lymphatic filariasis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Papua New Guinea</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mapping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mass drug administration</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Makita, Leo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Susapu, Melinda</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brady, Molly A</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Melrose, Wayne</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Capuano, Corinne</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zaixing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dapeng, Luo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ozaki, Masayo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reeve, David</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ichimori, Kazuyo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kazadi, Walter M</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Michna, Frederick</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bockarie, Moses J</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kelly-Hope, Louise A</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Parasites & vectors</subfield><subfield code="d">London : BioMed Central, 2008</subfield><subfield code="g">6(2013), 1 vom: 11. Jan.</subfield><subfield code="w">(DE-627)558690076</subfield><subfield code="w">(DE-600)2409480-8</subfield><subfield code="x">1756-3305</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:11</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1756-3305-6-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">11</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
score |
7.400319 |