Microsatellite analysis supports clonal propagation and reduced divergence of Trypanosoma vivax from asymptomatic to fatally infected livestock in South America compared to West Africa
Background Mechanical transmission of the major livestock pathogen Trypanosoma vivax by other biting flies than tsetse allows its spread from Africa to the New World. Genetic studies are restricted to a small number of isolates and based on molecular markers that evolve too slowly to resolve the rel...
Ausführliche Beschreibung
Autor*in: |
Garcia, Herakles A [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Garcia et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
---|
Übergeordnetes Werk: |
Enthalten in: Parasites & vectors - London : BioMed Central, 2008, 7(2014), 1 vom: 03. Mai |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2014 ; number:1 ; day:03 ; month:05 |
Links: |
---|
DOI / URN: |
10.1186/1756-3305-7-210 |
---|
Katalog-ID: |
SPR030179645 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR030179645 | ||
003 | DE-627 | ||
005 | 20230520002207.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1756-3305-7-210 |2 doi | |
035 | |a (DE-627)SPR030179645 | ||
035 | |a (SPR)1756-3305-7-210-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Garcia, Herakles A |e verfasserin |4 aut | |
245 | 1 | 0 | |a Microsatellite analysis supports clonal propagation and reduced divergence of Trypanosoma vivax from asymptomatic to fatally infected livestock in South America compared to West Africa |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Garcia et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( | ||
520 | |a Background Mechanical transmission of the major livestock pathogen Trypanosoma vivax by other biting flies than tsetse allows its spread from Africa to the New World. Genetic studies are restricted to a small number of isolates and based on molecular markers that evolve too slowly to resolve the relationships between American and West African populations and, thus, unable us to uncover the recent history of T. vivax in the New World. Methods T. vivax genetic diversity, population structure and the source of outbreaks was investigated through the microsatellite multiloci (7 loci) genotype (MLGs) analysis in South America (47isolates from Brazil, Venezuela and French Guiana) and West Africa (12 isolates from The Gambia, Burkina Faso, Ghana, Benin and Nigeria). Relationships among MLGs were explored using phylogenetic, principal component and STRUCTURE analyses. Results Although closely phylogenetically related, for the first time, genetic differences were detected between T. vivax isolates from South America (11 genotypes/47 isolates) and West Africa (12 genotypes/12 isolates) with no MLGs in common. Diversity was far greater across West Africa than in South America, where genotypes from Brazil (MLG1-6), Venezuela (MLG7-10) and French Guiana (MLG11) shared similar but not identical allele composition. No MLG was exclusive to asymptomatic (endemic areas) or sick (outbreaks in non-endemic areas) animals, but only MLGs1, 2 and 3 were responsible for severe haematological and neurological disorders. Conclusions Our results revealed closely related genotypes of T. vivax in Brazil and Venezuela, regardless of endemicity and clinical conditions of the infected livestock. The MLGs analysis from T. vivax across SA and WA support clonal propagation, and is consistent with the hypothesis that the SA populations examined here derived from common ancestors recently introduced from West Africa. The molecular markers defined here are valuable to assess the genetic diversity, to track the source and dispersion of outbreaks, and to explore the epidemiological and pathological significance of T. vivax genotypes. | ||
650 | 4 | |a Nagana |7 (dpeaa)DE-He213 | |
650 | 4 | |a Microsatellite genotyping |7 (dpeaa)DE-He213 | |
650 | 4 | |a Clonal structure |7 (dpeaa)DE-He213 | |
650 | 4 | |a Outbreak |7 (dpeaa)DE-He213 | |
650 | 4 | |a Pathology |7 (dpeaa)DE-He213 | |
650 | 4 | |a Epidemiology |7 (dpeaa)DE-He213 | |
650 | 4 | |a South America |7 (dpeaa)DE-He213 | |
650 | 4 | |a Africa |7 (dpeaa)DE-He213 | |
650 | 4 | |a Animal trypanosomosis |7 (dpeaa)DE-He213 | |
700 | 1 | |a Rodrigues, Adriana C |4 aut | |
700 | 1 | |a Rodrigues, Carla MF |4 aut | |
700 | 1 | |a Bengaly, Zakaria |4 aut | |
700 | 1 | |a Minervino, Antonio HH |4 aut | |
700 | 1 | |a Riet-Correa, Franklin |4 aut | |
700 | 1 | |a Machado, Rosangela Z |4 aut | |
700 | 1 | |a Paiva, Fernando |4 aut | |
700 | 1 | |a Batista, Jael S |4 aut | |
700 | 1 | |a Neves, Luis |4 aut | |
700 | 1 | |a Hamilton, Patrick B |4 aut | |
700 | 1 | |a Teixeira, Marta MG |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Parasites & vectors |d London : BioMed Central, 2008 |g 7(2014), 1 vom: 03. Mai |w (DE-627)558690076 |w (DE-600)2409480-8 |x 1756-3305 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2014 |g number:1 |g day:03 |g month:05 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1756-3305-7-210 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2014 |e 1 |b 03 |c 05 |
author_variant |
h a g ha hag a c r ac acr c m r cm cmr z b zb a h m ah ahm f r c frc r z m rz rzm f p fp j s b js jsb l n ln p b h pb pbh m m t mm mmt |
---|---|
matchkey_str |
article:17563305:2014----::irstlienlssuprslnlrpgtoadeuedvrecotyaooaiafoaypoaitftlynetdi |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1186/1756-3305-7-210 doi (DE-627)SPR030179645 (SPR)1756-3305-7-210-e DE-627 ger DE-627 rakwb eng Garcia, Herakles A verfasserin aut Microsatellite analysis supports clonal propagation and reduced divergence of Trypanosoma vivax from asymptomatic to fatally infected livestock in South America compared to West Africa 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Garcia et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Mechanical transmission of the major livestock pathogen Trypanosoma vivax by other biting flies than tsetse allows its spread from Africa to the New World. Genetic studies are restricted to a small number of isolates and based on molecular markers that evolve too slowly to resolve the relationships between American and West African populations and, thus, unable us to uncover the recent history of T. vivax in the New World. Methods T. vivax genetic diversity, population structure and the source of outbreaks was investigated through the microsatellite multiloci (7 loci) genotype (MLGs) analysis in South America (47isolates from Brazil, Venezuela and French Guiana) and West Africa (12 isolates from The Gambia, Burkina Faso, Ghana, Benin and Nigeria). Relationships among MLGs were explored using phylogenetic, principal component and STRUCTURE analyses. Results Although closely phylogenetically related, for the first time, genetic differences were detected between T. vivax isolates from South America (11 genotypes/47 isolates) and West Africa (12 genotypes/12 isolates) with no MLGs in common. Diversity was far greater across West Africa than in South America, where genotypes from Brazil (MLG1-6), Venezuela (MLG7-10) and French Guiana (MLG11) shared similar but not identical allele composition. No MLG was exclusive to asymptomatic (endemic areas) or sick (outbreaks in non-endemic areas) animals, but only MLGs1, 2 and 3 were responsible for severe haematological and neurological disorders. Conclusions Our results revealed closely related genotypes of T. vivax in Brazil and Venezuela, regardless of endemicity and clinical conditions of the infected livestock. The MLGs analysis from T. vivax across SA and WA support clonal propagation, and is consistent with the hypothesis that the SA populations examined here derived from common ancestors recently introduced from West Africa. The molecular markers defined here are valuable to assess the genetic diversity, to track the source and dispersion of outbreaks, and to explore the epidemiological and pathological significance of T. vivax genotypes. Nagana (dpeaa)DE-He213 Microsatellite genotyping (dpeaa)DE-He213 Clonal structure (dpeaa)DE-He213 Outbreak (dpeaa)DE-He213 Pathology (dpeaa)DE-He213 Epidemiology (dpeaa)DE-He213 South America (dpeaa)DE-He213 Africa (dpeaa)DE-He213 Animal trypanosomosis (dpeaa)DE-He213 Rodrigues, Adriana C aut Rodrigues, Carla MF aut Bengaly, Zakaria aut Minervino, Antonio HH aut Riet-Correa, Franklin aut Machado, Rosangela Z aut Paiva, Fernando aut Batista, Jael S aut Neves, Luis aut Hamilton, Patrick B aut Teixeira, Marta MG aut Enthalten in Parasites & vectors London : BioMed Central, 2008 7(2014), 1 vom: 03. Mai (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:7 year:2014 number:1 day:03 month:05 https://dx.doi.org/10.1186/1756-3305-7-210 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2014 1 03 05 |
spelling |
10.1186/1756-3305-7-210 doi (DE-627)SPR030179645 (SPR)1756-3305-7-210-e DE-627 ger DE-627 rakwb eng Garcia, Herakles A verfasserin aut Microsatellite analysis supports clonal propagation and reduced divergence of Trypanosoma vivax from asymptomatic to fatally infected livestock in South America compared to West Africa 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Garcia et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Mechanical transmission of the major livestock pathogen Trypanosoma vivax by other biting flies than tsetse allows its spread from Africa to the New World. Genetic studies are restricted to a small number of isolates and based on molecular markers that evolve too slowly to resolve the relationships between American and West African populations and, thus, unable us to uncover the recent history of T. vivax in the New World. Methods T. vivax genetic diversity, population structure and the source of outbreaks was investigated through the microsatellite multiloci (7 loci) genotype (MLGs) analysis in South America (47isolates from Brazil, Venezuela and French Guiana) and West Africa (12 isolates from The Gambia, Burkina Faso, Ghana, Benin and Nigeria). Relationships among MLGs were explored using phylogenetic, principal component and STRUCTURE analyses. Results Although closely phylogenetically related, for the first time, genetic differences were detected between T. vivax isolates from South America (11 genotypes/47 isolates) and West Africa (12 genotypes/12 isolates) with no MLGs in common. Diversity was far greater across West Africa than in South America, where genotypes from Brazil (MLG1-6), Venezuela (MLG7-10) and French Guiana (MLG11) shared similar but not identical allele composition. No MLG was exclusive to asymptomatic (endemic areas) or sick (outbreaks in non-endemic areas) animals, but only MLGs1, 2 and 3 were responsible for severe haematological and neurological disorders. Conclusions Our results revealed closely related genotypes of T. vivax in Brazil and Venezuela, regardless of endemicity and clinical conditions of the infected livestock. The MLGs analysis from T. vivax across SA and WA support clonal propagation, and is consistent with the hypothesis that the SA populations examined here derived from common ancestors recently introduced from West Africa. The molecular markers defined here are valuable to assess the genetic diversity, to track the source and dispersion of outbreaks, and to explore the epidemiological and pathological significance of T. vivax genotypes. Nagana (dpeaa)DE-He213 Microsatellite genotyping (dpeaa)DE-He213 Clonal structure (dpeaa)DE-He213 Outbreak (dpeaa)DE-He213 Pathology (dpeaa)DE-He213 Epidemiology (dpeaa)DE-He213 South America (dpeaa)DE-He213 Africa (dpeaa)DE-He213 Animal trypanosomosis (dpeaa)DE-He213 Rodrigues, Adriana C aut Rodrigues, Carla MF aut Bengaly, Zakaria aut Minervino, Antonio HH aut Riet-Correa, Franklin aut Machado, Rosangela Z aut Paiva, Fernando aut Batista, Jael S aut Neves, Luis aut Hamilton, Patrick B aut Teixeira, Marta MG aut Enthalten in Parasites & vectors London : BioMed Central, 2008 7(2014), 1 vom: 03. Mai (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:7 year:2014 number:1 day:03 month:05 https://dx.doi.org/10.1186/1756-3305-7-210 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2014 1 03 05 |
allfields_unstemmed |
10.1186/1756-3305-7-210 doi (DE-627)SPR030179645 (SPR)1756-3305-7-210-e DE-627 ger DE-627 rakwb eng Garcia, Herakles A verfasserin aut Microsatellite analysis supports clonal propagation and reduced divergence of Trypanosoma vivax from asymptomatic to fatally infected livestock in South America compared to West Africa 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Garcia et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Mechanical transmission of the major livestock pathogen Trypanosoma vivax by other biting flies than tsetse allows its spread from Africa to the New World. Genetic studies are restricted to a small number of isolates and based on molecular markers that evolve too slowly to resolve the relationships between American and West African populations and, thus, unable us to uncover the recent history of T. vivax in the New World. Methods T. vivax genetic diversity, population structure and the source of outbreaks was investigated through the microsatellite multiloci (7 loci) genotype (MLGs) analysis in South America (47isolates from Brazil, Venezuela and French Guiana) and West Africa (12 isolates from The Gambia, Burkina Faso, Ghana, Benin and Nigeria). Relationships among MLGs were explored using phylogenetic, principal component and STRUCTURE analyses. Results Although closely phylogenetically related, for the first time, genetic differences were detected between T. vivax isolates from South America (11 genotypes/47 isolates) and West Africa (12 genotypes/12 isolates) with no MLGs in common. Diversity was far greater across West Africa than in South America, where genotypes from Brazil (MLG1-6), Venezuela (MLG7-10) and French Guiana (MLG11) shared similar but not identical allele composition. No MLG was exclusive to asymptomatic (endemic areas) or sick (outbreaks in non-endemic areas) animals, but only MLGs1, 2 and 3 were responsible for severe haematological and neurological disorders. Conclusions Our results revealed closely related genotypes of T. vivax in Brazil and Venezuela, regardless of endemicity and clinical conditions of the infected livestock. The MLGs analysis from T. vivax across SA and WA support clonal propagation, and is consistent with the hypothesis that the SA populations examined here derived from common ancestors recently introduced from West Africa. The molecular markers defined here are valuable to assess the genetic diversity, to track the source and dispersion of outbreaks, and to explore the epidemiological and pathological significance of T. vivax genotypes. Nagana (dpeaa)DE-He213 Microsatellite genotyping (dpeaa)DE-He213 Clonal structure (dpeaa)DE-He213 Outbreak (dpeaa)DE-He213 Pathology (dpeaa)DE-He213 Epidemiology (dpeaa)DE-He213 South America (dpeaa)DE-He213 Africa (dpeaa)DE-He213 Animal trypanosomosis (dpeaa)DE-He213 Rodrigues, Adriana C aut Rodrigues, Carla MF aut Bengaly, Zakaria aut Minervino, Antonio HH aut Riet-Correa, Franklin aut Machado, Rosangela Z aut Paiva, Fernando aut Batista, Jael S aut Neves, Luis aut Hamilton, Patrick B aut Teixeira, Marta MG aut Enthalten in Parasites & vectors London : BioMed Central, 2008 7(2014), 1 vom: 03. Mai (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:7 year:2014 number:1 day:03 month:05 https://dx.doi.org/10.1186/1756-3305-7-210 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2014 1 03 05 |
allfieldsGer |
10.1186/1756-3305-7-210 doi (DE-627)SPR030179645 (SPR)1756-3305-7-210-e DE-627 ger DE-627 rakwb eng Garcia, Herakles A verfasserin aut Microsatellite analysis supports clonal propagation and reduced divergence of Trypanosoma vivax from asymptomatic to fatally infected livestock in South America compared to West Africa 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Garcia et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Mechanical transmission of the major livestock pathogen Trypanosoma vivax by other biting flies than tsetse allows its spread from Africa to the New World. Genetic studies are restricted to a small number of isolates and based on molecular markers that evolve too slowly to resolve the relationships between American and West African populations and, thus, unable us to uncover the recent history of T. vivax in the New World. Methods T. vivax genetic diversity, population structure and the source of outbreaks was investigated through the microsatellite multiloci (7 loci) genotype (MLGs) analysis in South America (47isolates from Brazil, Venezuela and French Guiana) and West Africa (12 isolates from The Gambia, Burkina Faso, Ghana, Benin and Nigeria). Relationships among MLGs were explored using phylogenetic, principal component and STRUCTURE analyses. Results Although closely phylogenetically related, for the first time, genetic differences were detected between T. vivax isolates from South America (11 genotypes/47 isolates) and West Africa (12 genotypes/12 isolates) with no MLGs in common. Diversity was far greater across West Africa than in South America, where genotypes from Brazil (MLG1-6), Venezuela (MLG7-10) and French Guiana (MLG11) shared similar but not identical allele composition. No MLG was exclusive to asymptomatic (endemic areas) or sick (outbreaks in non-endemic areas) animals, but only MLGs1, 2 and 3 were responsible for severe haematological and neurological disorders. Conclusions Our results revealed closely related genotypes of T. vivax in Brazil and Venezuela, regardless of endemicity and clinical conditions of the infected livestock. The MLGs analysis from T. vivax across SA and WA support clonal propagation, and is consistent with the hypothesis that the SA populations examined here derived from common ancestors recently introduced from West Africa. The molecular markers defined here are valuable to assess the genetic diversity, to track the source and dispersion of outbreaks, and to explore the epidemiological and pathological significance of T. vivax genotypes. Nagana (dpeaa)DE-He213 Microsatellite genotyping (dpeaa)DE-He213 Clonal structure (dpeaa)DE-He213 Outbreak (dpeaa)DE-He213 Pathology (dpeaa)DE-He213 Epidemiology (dpeaa)DE-He213 South America (dpeaa)DE-He213 Africa (dpeaa)DE-He213 Animal trypanosomosis (dpeaa)DE-He213 Rodrigues, Adriana C aut Rodrigues, Carla MF aut Bengaly, Zakaria aut Minervino, Antonio HH aut Riet-Correa, Franklin aut Machado, Rosangela Z aut Paiva, Fernando aut Batista, Jael S aut Neves, Luis aut Hamilton, Patrick B aut Teixeira, Marta MG aut Enthalten in Parasites & vectors London : BioMed Central, 2008 7(2014), 1 vom: 03. Mai (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:7 year:2014 number:1 day:03 month:05 https://dx.doi.org/10.1186/1756-3305-7-210 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2014 1 03 05 |
allfieldsSound |
10.1186/1756-3305-7-210 doi (DE-627)SPR030179645 (SPR)1756-3305-7-210-e DE-627 ger DE-627 rakwb eng Garcia, Herakles A verfasserin aut Microsatellite analysis supports clonal propagation and reduced divergence of Trypanosoma vivax from asymptomatic to fatally infected livestock in South America compared to West Africa 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Garcia et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Mechanical transmission of the major livestock pathogen Trypanosoma vivax by other biting flies than tsetse allows its spread from Africa to the New World. Genetic studies are restricted to a small number of isolates and based on molecular markers that evolve too slowly to resolve the relationships between American and West African populations and, thus, unable us to uncover the recent history of T. vivax in the New World. Methods T. vivax genetic diversity, population structure and the source of outbreaks was investigated through the microsatellite multiloci (7 loci) genotype (MLGs) analysis in South America (47isolates from Brazil, Venezuela and French Guiana) and West Africa (12 isolates from The Gambia, Burkina Faso, Ghana, Benin and Nigeria). Relationships among MLGs were explored using phylogenetic, principal component and STRUCTURE analyses. Results Although closely phylogenetically related, for the first time, genetic differences were detected between T. vivax isolates from South America (11 genotypes/47 isolates) and West Africa (12 genotypes/12 isolates) with no MLGs in common. Diversity was far greater across West Africa than in South America, where genotypes from Brazil (MLG1-6), Venezuela (MLG7-10) and French Guiana (MLG11) shared similar but not identical allele composition. No MLG was exclusive to asymptomatic (endemic areas) or sick (outbreaks in non-endemic areas) animals, but only MLGs1, 2 and 3 were responsible for severe haematological and neurological disorders. Conclusions Our results revealed closely related genotypes of T. vivax in Brazil and Venezuela, regardless of endemicity and clinical conditions of the infected livestock. The MLGs analysis from T. vivax across SA and WA support clonal propagation, and is consistent with the hypothesis that the SA populations examined here derived from common ancestors recently introduced from West Africa. The molecular markers defined here are valuable to assess the genetic diversity, to track the source and dispersion of outbreaks, and to explore the epidemiological and pathological significance of T. vivax genotypes. Nagana (dpeaa)DE-He213 Microsatellite genotyping (dpeaa)DE-He213 Clonal structure (dpeaa)DE-He213 Outbreak (dpeaa)DE-He213 Pathology (dpeaa)DE-He213 Epidemiology (dpeaa)DE-He213 South America (dpeaa)DE-He213 Africa (dpeaa)DE-He213 Animal trypanosomosis (dpeaa)DE-He213 Rodrigues, Adriana C aut Rodrigues, Carla MF aut Bengaly, Zakaria aut Minervino, Antonio HH aut Riet-Correa, Franklin aut Machado, Rosangela Z aut Paiva, Fernando aut Batista, Jael S aut Neves, Luis aut Hamilton, Patrick B aut Teixeira, Marta MG aut Enthalten in Parasites & vectors London : BioMed Central, 2008 7(2014), 1 vom: 03. Mai (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:7 year:2014 number:1 day:03 month:05 https://dx.doi.org/10.1186/1756-3305-7-210 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2014 1 03 05 |
language |
English |
source |
Enthalten in Parasites & vectors 7(2014), 1 vom: 03. Mai volume:7 year:2014 number:1 day:03 month:05 |
sourceStr |
Enthalten in Parasites & vectors 7(2014), 1 vom: 03. Mai volume:7 year:2014 number:1 day:03 month:05 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Nagana Microsatellite genotyping Clonal structure Outbreak Pathology Epidemiology South America Africa Animal trypanosomosis |
isfreeaccess_bool |
true |
container_title |
Parasites & vectors |
authorswithroles_txt_mv |
Garcia, Herakles A @@aut@@ Rodrigues, Adriana C @@aut@@ Rodrigues, Carla MF @@aut@@ Bengaly, Zakaria @@aut@@ Minervino, Antonio HH @@aut@@ Riet-Correa, Franklin @@aut@@ Machado, Rosangela Z @@aut@@ Paiva, Fernando @@aut@@ Batista, Jael S @@aut@@ Neves, Luis @@aut@@ Hamilton, Patrick B @@aut@@ Teixeira, Marta MG @@aut@@ |
publishDateDaySort_date |
2014-05-03T00:00:00Z |
hierarchy_top_id |
558690076 |
id |
SPR030179645 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030179645</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520002207.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1756-3305-7-210</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030179645</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1756-3305-7-210-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Garcia, Herakles A</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microsatellite analysis supports clonal propagation and reduced divergence of Trypanosoma vivax from asymptomatic to fatally infected livestock in South America compared to West Africa</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Garcia et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Mechanical transmission of the major livestock pathogen Trypanosoma vivax by other biting flies than tsetse allows its spread from Africa to the New World. Genetic studies are restricted to a small number of isolates and based on molecular markers that evolve too slowly to resolve the relationships between American and West African populations and, thus, unable us to uncover the recent history of T. vivax in the New World. Methods T. vivax genetic diversity, population structure and the source of outbreaks was investigated through the microsatellite multiloci (7 loci) genotype (MLGs) analysis in South America (47isolates from Brazil, Venezuela and French Guiana) and West Africa (12 isolates from The Gambia, Burkina Faso, Ghana, Benin and Nigeria). Relationships among MLGs were explored using phylogenetic, principal component and STRUCTURE analyses. Results Although closely phylogenetically related, for the first time, genetic differences were detected between T. vivax isolates from South America (11 genotypes/47 isolates) and West Africa (12 genotypes/12 isolates) with no MLGs in common. Diversity was far greater across West Africa than in South America, where genotypes from Brazil (MLG1-6), Venezuela (MLG7-10) and French Guiana (MLG11) shared similar but not identical allele composition. No MLG was exclusive to asymptomatic (endemic areas) or sick (outbreaks in non-endemic areas) animals, but only MLGs1, 2 and 3 were responsible for severe haematological and neurological disorders. Conclusions Our results revealed closely related genotypes of T. vivax in Brazil and Venezuela, regardless of endemicity and clinical conditions of the infected livestock. The MLGs analysis from T. vivax across SA and WA support clonal propagation, and is consistent with the hypothesis that the SA populations examined here derived from common ancestors recently introduced from West Africa. The molecular markers defined here are valuable to assess the genetic diversity, to track the source and dispersion of outbreaks, and to explore the epidemiological and pathological significance of T. vivax genotypes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nagana</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microsatellite genotyping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clonal structure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Outbreak</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pathology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epidemiology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">South America</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Africa</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Animal trypanosomosis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rodrigues, Adriana C</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rodrigues, Carla MF</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bengaly, Zakaria</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Minervino, Antonio HH</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Riet-Correa, Franklin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Machado, Rosangela Z</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Paiva, Fernando</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Batista, Jael S</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Neves, Luis</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hamilton, Patrick B</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Teixeira, Marta MG</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Parasites & vectors</subfield><subfield code="d">London : BioMed Central, 2008</subfield><subfield code="g">7(2014), 1 vom: 03. Mai</subfield><subfield code="w">(DE-627)558690076</subfield><subfield code="w">(DE-600)2409480-8</subfield><subfield code="x">1756-3305</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">day:03</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1756-3305-7-210</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="b">03</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
author |
Garcia, Herakles A |
spellingShingle |
Garcia, Herakles A misc Nagana misc Microsatellite genotyping misc Clonal structure misc Outbreak misc Pathology misc Epidemiology misc South America misc Africa misc Animal trypanosomosis Microsatellite analysis supports clonal propagation and reduced divergence of Trypanosoma vivax from asymptomatic to fatally infected livestock in South America compared to West Africa |
authorStr |
Garcia, Herakles A |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)558690076 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1756-3305 |
topic_title |
Microsatellite analysis supports clonal propagation and reduced divergence of Trypanosoma vivax from asymptomatic to fatally infected livestock in South America compared to West Africa Nagana (dpeaa)DE-He213 Microsatellite genotyping (dpeaa)DE-He213 Clonal structure (dpeaa)DE-He213 Outbreak (dpeaa)DE-He213 Pathology (dpeaa)DE-He213 Epidemiology (dpeaa)DE-He213 South America (dpeaa)DE-He213 Africa (dpeaa)DE-He213 Animal trypanosomosis (dpeaa)DE-He213 |
topic |
misc Nagana misc Microsatellite genotyping misc Clonal structure misc Outbreak misc Pathology misc Epidemiology misc South America misc Africa misc Animal trypanosomosis |
topic_unstemmed |
misc Nagana misc Microsatellite genotyping misc Clonal structure misc Outbreak misc Pathology misc Epidemiology misc South America misc Africa misc Animal trypanosomosis |
topic_browse |
misc Nagana misc Microsatellite genotyping misc Clonal structure misc Outbreak misc Pathology misc Epidemiology misc South America misc Africa misc Animal trypanosomosis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Parasites & vectors |
hierarchy_parent_id |
558690076 |
hierarchy_top_title |
Parasites & vectors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)558690076 (DE-600)2409480-8 |
title |
Microsatellite analysis supports clonal propagation and reduced divergence of Trypanosoma vivax from asymptomatic to fatally infected livestock in South America compared to West Africa |
ctrlnum |
(DE-627)SPR030179645 (SPR)1756-3305-7-210-e |
title_full |
Microsatellite analysis supports clonal propagation and reduced divergence of Trypanosoma vivax from asymptomatic to fatally infected livestock in South America compared to West Africa |
author_sort |
Garcia, Herakles A |
journal |
Parasites & vectors |
journalStr |
Parasites & vectors |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
author_browse |
Garcia, Herakles A Rodrigues, Adriana C Rodrigues, Carla MF Bengaly, Zakaria Minervino, Antonio HH Riet-Correa, Franklin Machado, Rosangela Z Paiva, Fernando Batista, Jael S Neves, Luis Hamilton, Patrick B Teixeira, Marta MG |
container_volume |
7 |
format_se |
Elektronische Aufsätze |
author-letter |
Garcia, Herakles A |
doi_str_mv |
10.1186/1756-3305-7-210 |
title_sort |
microsatellite analysis supports clonal propagation and reduced divergence of trypanosoma vivax from asymptomatic to fatally infected livestock in south america compared to west africa |
title_auth |
Microsatellite analysis supports clonal propagation and reduced divergence of Trypanosoma vivax from asymptomatic to fatally infected livestock in South America compared to West Africa |
abstract |
Background Mechanical transmission of the major livestock pathogen Trypanosoma vivax by other biting flies than tsetse allows its spread from Africa to the New World. Genetic studies are restricted to a small number of isolates and based on molecular markers that evolve too slowly to resolve the relationships between American and West African populations and, thus, unable us to uncover the recent history of T. vivax in the New World. Methods T. vivax genetic diversity, population structure and the source of outbreaks was investigated through the microsatellite multiloci (7 loci) genotype (MLGs) analysis in South America (47isolates from Brazil, Venezuela and French Guiana) and West Africa (12 isolates from The Gambia, Burkina Faso, Ghana, Benin and Nigeria). Relationships among MLGs were explored using phylogenetic, principal component and STRUCTURE analyses. Results Although closely phylogenetically related, for the first time, genetic differences were detected between T. vivax isolates from South America (11 genotypes/47 isolates) and West Africa (12 genotypes/12 isolates) with no MLGs in common. Diversity was far greater across West Africa than in South America, where genotypes from Brazil (MLG1-6), Venezuela (MLG7-10) and French Guiana (MLG11) shared similar but not identical allele composition. No MLG was exclusive to asymptomatic (endemic areas) or sick (outbreaks in non-endemic areas) animals, but only MLGs1, 2 and 3 were responsible for severe haematological and neurological disorders. Conclusions Our results revealed closely related genotypes of T. vivax in Brazil and Venezuela, regardless of endemicity and clinical conditions of the infected livestock. The MLGs analysis from T. vivax across SA and WA support clonal propagation, and is consistent with the hypothesis that the SA populations examined here derived from common ancestors recently introduced from West Africa. The molecular markers defined here are valuable to assess the genetic diversity, to track the source and dispersion of outbreaks, and to explore the epidemiological and pathological significance of T. vivax genotypes. © Garcia et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
abstractGer |
Background Mechanical transmission of the major livestock pathogen Trypanosoma vivax by other biting flies than tsetse allows its spread from Africa to the New World. Genetic studies are restricted to a small number of isolates and based on molecular markers that evolve too slowly to resolve the relationships between American and West African populations and, thus, unable us to uncover the recent history of T. vivax in the New World. Methods T. vivax genetic diversity, population structure and the source of outbreaks was investigated through the microsatellite multiloci (7 loci) genotype (MLGs) analysis in South America (47isolates from Brazil, Venezuela and French Guiana) and West Africa (12 isolates from The Gambia, Burkina Faso, Ghana, Benin and Nigeria). Relationships among MLGs were explored using phylogenetic, principal component and STRUCTURE analyses. Results Although closely phylogenetically related, for the first time, genetic differences were detected between T. vivax isolates from South America (11 genotypes/47 isolates) and West Africa (12 genotypes/12 isolates) with no MLGs in common. Diversity was far greater across West Africa than in South America, where genotypes from Brazil (MLG1-6), Venezuela (MLG7-10) and French Guiana (MLG11) shared similar but not identical allele composition. No MLG was exclusive to asymptomatic (endemic areas) or sick (outbreaks in non-endemic areas) animals, but only MLGs1, 2 and 3 were responsible for severe haematological and neurological disorders. Conclusions Our results revealed closely related genotypes of T. vivax in Brazil and Venezuela, regardless of endemicity and clinical conditions of the infected livestock. The MLGs analysis from T. vivax across SA and WA support clonal propagation, and is consistent with the hypothesis that the SA populations examined here derived from common ancestors recently introduced from West Africa. The molecular markers defined here are valuable to assess the genetic diversity, to track the source and dispersion of outbreaks, and to explore the epidemiological and pathological significance of T. vivax genotypes. © Garcia et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
abstract_unstemmed |
Background Mechanical transmission of the major livestock pathogen Trypanosoma vivax by other biting flies than tsetse allows its spread from Africa to the New World. Genetic studies are restricted to a small number of isolates and based on molecular markers that evolve too slowly to resolve the relationships between American and West African populations and, thus, unable us to uncover the recent history of T. vivax in the New World. Methods T. vivax genetic diversity, population structure and the source of outbreaks was investigated through the microsatellite multiloci (7 loci) genotype (MLGs) analysis in South America (47isolates from Brazil, Venezuela and French Guiana) and West Africa (12 isolates from The Gambia, Burkina Faso, Ghana, Benin and Nigeria). Relationships among MLGs were explored using phylogenetic, principal component and STRUCTURE analyses. Results Although closely phylogenetically related, for the first time, genetic differences were detected between T. vivax isolates from South America (11 genotypes/47 isolates) and West Africa (12 genotypes/12 isolates) with no MLGs in common. Diversity was far greater across West Africa than in South America, where genotypes from Brazil (MLG1-6), Venezuela (MLG7-10) and French Guiana (MLG11) shared similar but not identical allele composition. No MLG was exclusive to asymptomatic (endemic areas) or sick (outbreaks in non-endemic areas) animals, but only MLGs1, 2 and 3 were responsible for severe haematological and neurological disorders. Conclusions Our results revealed closely related genotypes of T. vivax in Brazil and Venezuela, regardless of endemicity and clinical conditions of the infected livestock. The MLGs analysis from T. vivax across SA and WA support clonal propagation, and is consistent with the hypothesis that the SA populations examined here derived from common ancestors recently introduced from West Africa. The molecular markers defined here are valuable to assess the genetic diversity, to track the source and dispersion of outbreaks, and to explore the epidemiological and pathological significance of T. vivax genotypes. © Garcia et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Microsatellite analysis supports clonal propagation and reduced divergence of Trypanosoma vivax from asymptomatic to fatally infected livestock in South America compared to West Africa |
url |
https://dx.doi.org/10.1186/1756-3305-7-210 |
remote_bool |
true |
author2 |
Rodrigues, Adriana C Rodrigues, Carla MF Bengaly, Zakaria Minervino, Antonio HH Riet-Correa, Franklin Machado, Rosangela Z Paiva, Fernando Batista, Jael S Neves, Luis Hamilton, Patrick B Teixeira, Marta MG |
author2Str |
Rodrigues, Adriana C Rodrigues, Carla MF Bengaly, Zakaria Minervino, Antonio HH Riet-Correa, Franklin Machado, Rosangela Z Paiva, Fernando Batista, Jael S Neves, Luis Hamilton, Patrick B Teixeira, Marta MG |
ppnlink |
558690076 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1756-3305-7-210 |
up_date |
2024-07-03T14:29:46.822Z |
_version_ |
1803568531978059777 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030179645</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520002207.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1756-3305-7-210</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030179645</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1756-3305-7-210-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Garcia, Herakles A</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microsatellite analysis supports clonal propagation and reduced divergence of Trypanosoma vivax from asymptomatic to fatally infected livestock in South America compared to West Africa</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Garcia et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Mechanical transmission of the major livestock pathogen Trypanosoma vivax by other biting flies than tsetse allows its spread from Africa to the New World. Genetic studies are restricted to a small number of isolates and based on molecular markers that evolve too slowly to resolve the relationships between American and West African populations and, thus, unable us to uncover the recent history of T. vivax in the New World. Methods T. vivax genetic diversity, population structure and the source of outbreaks was investigated through the microsatellite multiloci (7 loci) genotype (MLGs) analysis in South America (47isolates from Brazil, Venezuela and French Guiana) and West Africa (12 isolates from The Gambia, Burkina Faso, Ghana, Benin and Nigeria). Relationships among MLGs were explored using phylogenetic, principal component and STRUCTURE analyses. Results Although closely phylogenetically related, for the first time, genetic differences were detected between T. vivax isolates from South America (11 genotypes/47 isolates) and West Africa (12 genotypes/12 isolates) with no MLGs in common. Diversity was far greater across West Africa than in South America, where genotypes from Brazil (MLG1-6), Venezuela (MLG7-10) and French Guiana (MLG11) shared similar but not identical allele composition. No MLG was exclusive to asymptomatic (endemic areas) or sick (outbreaks in non-endemic areas) animals, but only MLGs1, 2 and 3 were responsible for severe haematological and neurological disorders. Conclusions Our results revealed closely related genotypes of T. vivax in Brazil and Venezuela, regardless of endemicity and clinical conditions of the infected livestock. The MLGs analysis from T. vivax across SA and WA support clonal propagation, and is consistent with the hypothesis that the SA populations examined here derived from common ancestors recently introduced from West Africa. The molecular markers defined here are valuable to assess the genetic diversity, to track the source and dispersion of outbreaks, and to explore the epidemiological and pathological significance of T. vivax genotypes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nagana</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microsatellite genotyping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clonal structure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Outbreak</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pathology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epidemiology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">South America</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Africa</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Animal trypanosomosis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rodrigues, Adriana C</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rodrigues, Carla MF</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bengaly, Zakaria</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Minervino, Antonio HH</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Riet-Correa, Franklin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Machado, Rosangela Z</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Paiva, Fernando</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Batista, Jael S</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Neves, Luis</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hamilton, Patrick B</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Teixeira, Marta MG</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Parasites & vectors</subfield><subfield code="d">London : BioMed Central, 2008</subfield><subfield code="g">7(2014), 1 vom: 03. Mai</subfield><subfield code="w">(DE-627)558690076</subfield><subfield code="w">(DE-600)2409480-8</subfield><subfield code="x">1756-3305</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">day:03</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1756-3305-7-210</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="b">03</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
score |
7.4000053 |