Where to deliver baits for deworming urban red foxes for Echinococcus multilocularis control: new protocol for micro-habitat modeling of fox denning requirements
Background Deworming wild foxes by baiting with the anthelmintic praziquantel is being established as a preventive technique against environmental contamination with Echinococcus multilocularis eggs. Improvement of the cost-benefit performance of baiting treatment is required urgently to raise and m...
Ausführliche Beschreibung
Autor*in: |
Ikeda, Takako [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Ikeda et al.; licensee BioMed Central Ltd. 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Parasites & vectors - London : BioMed Central, 2008, 7(2014), 1 vom: 06. Aug. |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2014 ; number:1 ; day:06 ; month:08 |
Links: |
---|
DOI / URN: |
10.1186/1756-3305-7-357 |
---|
Katalog-ID: |
SPR030182174 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR030182174 | ||
003 | DE-627 | ||
005 | 20230520002212.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1756-3305-7-357 |2 doi | |
035 | |a (DE-627)SPR030182174 | ||
035 | |a (SPR)1756-3305-7-357-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Ikeda, Takako |e verfasserin |4 aut | |
245 | 1 | 0 | |a Where to deliver baits for deworming urban red foxes for Echinococcus multilocularis control: new protocol for micro-habitat modeling of fox denning requirements |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Ikeda et al.; licensee BioMed Central Ltd. 2014 | ||
520 | |a Background Deworming wild foxes by baiting with the anthelmintic praziquantel is being established as a preventive technique against environmental contamination with Echinococcus multilocularis eggs. Improvement of the cost-benefit performance of baiting treatment is required urgently to raise and maintain the efficacy of deworming. We established a spatial model of den site selection by urban red foxes, the definitive host, to specify the optimal micro-habitats for delivering baits in a new modeling approach modified for urban fox populations. Methods The model was established for two cities (Obihiro and Sapporo) in Hokkaido, Japan, in which a sylvatic cycle of E. multilocularis is maintained. The two cities have different degrees of urbanization. The modeling process was designed to detect the best combination of key environmental factors and spatial scale that foxes pay attention to most (here named ‘heeding range’) when they select den sites. All possible models were generated using logistic regression analysis, with “presence” or “absence” of fox den as the objective variable, and nine landscape categories customized for urban environments as predictor variables to detect the best subset of predictors. This procedure was conducted for each of ten sizes of concentric circles from dens and control points to detect the best circle size. Out of all models generated, the most parsimonious model was selected using Akaike’s Information Criterion (AIC) inspection. Results Our models suggest that fox dens in Obihiro are located at the center of a circle with 500 m radius including low percentages of wide roads, narrow roads, and occupied buildings, but high percentages of green covered areas; the dens in Sapporo within 300 m radius with low percentages of wide roads, occupied buildings, but high percentages of riverbeds and green covered areas. The variation of the models suggests the necessity of accumulating models for various types of cities in order to reveal the patterns of the model. Conclusions Our denning models indicating suitable sites for delivering baits will improve the cost-benefit performance of the campaign. Our modeling protocol is suitable for the urban landscapes, and for extracting the heeding range when they select the den sites. | ||
650 | 4 | |a Baiting strategy |7 (dpeaa)DE-He213 | |
650 | 4 | |a Cost-benefit performance |7 (dpeaa)DE-He213 | |
650 | 4 | |a Urban red fox |7 (dpeaa)DE-He213 | |
650 | 4 | |a Den site selection |7 (dpeaa)DE-He213 | |
650 | 4 | |a Key environmental factors |7 (dpeaa)DE-He213 | |
650 | 4 | |a Key spatial scale |7 (dpeaa)DE-He213 | |
650 | 4 | |a Requisite spatial scale |7 (dpeaa)DE-He213 | |
650 | 4 | |a Heeding range |7 (dpeaa)DE-He213 | |
700 | 1 | |a Yoshimura, Masashi |4 aut | |
700 | 1 | |a Onoyama, Keiichi |4 aut | |
700 | 1 | |a Oku, Yuzaburo |4 aut | |
700 | 1 | |a Nonaka, Nariaki |4 aut | |
700 | 1 | |a Katakura, Ken |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Parasites & vectors |d London : BioMed Central, 2008 |g 7(2014), 1 vom: 06. Aug. |w (DE-627)558690076 |w (DE-600)2409480-8 |x 1756-3305 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2014 |g number:1 |g day:06 |g month:08 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1756-3305-7-357 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2014 |e 1 |b 06 |c 08 |
author_variant |
t i ti m y my k o ko y o yo n n nn k k kk |
---|---|
matchkey_str |
article:17563305:2014----::hrtdlvratfreomnubnefxsoehnccumliouaicnrlepooofrirhb |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1186/1756-3305-7-357 doi (DE-627)SPR030182174 (SPR)1756-3305-7-357-e DE-627 ger DE-627 rakwb eng Ikeda, Takako verfasserin aut Where to deliver baits for deworming urban red foxes for Echinococcus multilocularis control: new protocol for micro-habitat modeling of fox denning requirements 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Ikeda et al.; licensee BioMed Central Ltd. 2014 Background Deworming wild foxes by baiting with the anthelmintic praziquantel is being established as a preventive technique against environmental contamination with Echinococcus multilocularis eggs. Improvement of the cost-benefit performance of baiting treatment is required urgently to raise and maintain the efficacy of deworming. We established a spatial model of den site selection by urban red foxes, the definitive host, to specify the optimal micro-habitats for delivering baits in a new modeling approach modified for urban fox populations. Methods The model was established for two cities (Obihiro and Sapporo) in Hokkaido, Japan, in which a sylvatic cycle of E. multilocularis is maintained. The two cities have different degrees of urbanization. The modeling process was designed to detect the best combination of key environmental factors and spatial scale that foxes pay attention to most (here named ‘heeding range’) when they select den sites. All possible models were generated using logistic regression analysis, with “presence” or “absence” of fox den as the objective variable, and nine landscape categories customized for urban environments as predictor variables to detect the best subset of predictors. This procedure was conducted for each of ten sizes of concentric circles from dens and control points to detect the best circle size. Out of all models generated, the most parsimonious model was selected using Akaike’s Information Criterion (AIC) inspection. Results Our models suggest that fox dens in Obihiro are located at the center of a circle with 500 m radius including low percentages of wide roads, narrow roads, and occupied buildings, but high percentages of green covered areas; the dens in Sapporo within 300 m radius with low percentages of wide roads, occupied buildings, but high percentages of riverbeds and green covered areas. The variation of the models suggests the necessity of accumulating models for various types of cities in order to reveal the patterns of the model. Conclusions Our denning models indicating suitable sites for delivering baits will improve the cost-benefit performance of the campaign. Our modeling protocol is suitable for the urban landscapes, and for extracting the heeding range when they select the den sites. Baiting strategy (dpeaa)DE-He213 Cost-benefit performance (dpeaa)DE-He213 Urban red fox (dpeaa)DE-He213 Den site selection (dpeaa)DE-He213 Key environmental factors (dpeaa)DE-He213 Key spatial scale (dpeaa)DE-He213 Requisite spatial scale (dpeaa)DE-He213 Heeding range (dpeaa)DE-He213 Yoshimura, Masashi aut Onoyama, Keiichi aut Oku, Yuzaburo aut Nonaka, Nariaki aut Katakura, Ken aut Enthalten in Parasites & vectors London : BioMed Central, 2008 7(2014), 1 vom: 06. Aug. (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:7 year:2014 number:1 day:06 month:08 https://dx.doi.org/10.1186/1756-3305-7-357 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2014 1 06 08 |
spelling |
10.1186/1756-3305-7-357 doi (DE-627)SPR030182174 (SPR)1756-3305-7-357-e DE-627 ger DE-627 rakwb eng Ikeda, Takako verfasserin aut Where to deliver baits for deworming urban red foxes for Echinococcus multilocularis control: new protocol for micro-habitat modeling of fox denning requirements 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Ikeda et al.; licensee BioMed Central Ltd. 2014 Background Deworming wild foxes by baiting with the anthelmintic praziquantel is being established as a preventive technique against environmental contamination with Echinococcus multilocularis eggs. Improvement of the cost-benefit performance of baiting treatment is required urgently to raise and maintain the efficacy of deworming. We established a spatial model of den site selection by urban red foxes, the definitive host, to specify the optimal micro-habitats for delivering baits in a new modeling approach modified for urban fox populations. Methods The model was established for two cities (Obihiro and Sapporo) in Hokkaido, Japan, in which a sylvatic cycle of E. multilocularis is maintained. The two cities have different degrees of urbanization. The modeling process was designed to detect the best combination of key environmental factors and spatial scale that foxes pay attention to most (here named ‘heeding range’) when they select den sites. All possible models were generated using logistic regression analysis, with “presence” or “absence” of fox den as the objective variable, and nine landscape categories customized for urban environments as predictor variables to detect the best subset of predictors. This procedure was conducted for each of ten sizes of concentric circles from dens and control points to detect the best circle size. Out of all models generated, the most parsimonious model was selected using Akaike’s Information Criterion (AIC) inspection. Results Our models suggest that fox dens in Obihiro are located at the center of a circle with 500 m radius including low percentages of wide roads, narrow roads, and occupied buildings, but high percentages of green covered areas; the dens in Sapporo within 300 m radius with low percentages of wide roads, occupied buildings, but high percentages of riverbeds and green covered areas. The variation of the models suggests the necessity of accumulating models for various types of cities in order to reveal the patterns of the model. Conclusions Our denning models indicating suitable sites for delivering baits will improve the cost-benefit performance of the campaign. Our modeling protocol is suitable for the urban landscapes, and for extracting the heeding range when they select the den sites. Baiting strategy (dpeaa)DE-He213 Cost-benefit performance (dpeaa)DE-He213 Urban red fox (dpeaa)DE-He213 Den site selection (dpeaa)DE-He213 Key environmental factors (dpeaa)DE-He213 Key spatial scale (dpeaa)DE-He213 Requisite spatial scale (dpeaa)DE-He213 Heeding range (dpeaa)DE-He213 Yoshimura, Masashi aut Onoyama, Keiichi aut Oku, Yuzaburo aut Nonaka, Nariaki aut Katakura, Ken aut Enthalten in Parasites & vectors London : BioMed Central, 2008 7(2014), 1 vom: 06. Aug. (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:7 year:2014 number:1 day:06 month:08 https://dx.doi.org/10.1186/1756-3305-7-357 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2014 1 06 08 |
allfields_unstemmed |
10.1186/1756-3305-7-357 doi (DE-627)SPR030182174 (SPR)1756-3305-7-357-e DE-627 ger DE-627 rakwb eng Ikeda, Takako verfasserin aut Where to deliver baits for deworming urban red foxes for Echinococcus multilocularis control: new protocol for micro-habitat modeling of fox denning requirements 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Ikeda et al.; licensee BioMed Central Ltd. 2014 Background Deworming wild foxes by baiting with the anthelmintic praziquantel is being established as a preventive technique against environmental contamination with Echinococcus multilocularis eggs. Improvement of the cost-benefit performance of baiting treatment is required urgently to raise and maintain the efficacy of deworming. We established a spatial model of den site selection by urban red foxes, the definitive host, to specify the optimal micro-habitats for delivering baits in a new modeling approach modified for urban fox populations. Methods The model was established for two cities (Obihiro and Sapporo) in Hokkaido, Japan, in which a sylvatic cycle of E. multilocularis is maintained. The two cities have different degrees of urbanization. The modeling process was designed to detect the best combination of key environmental factors and spatial scale that foxes pay attention to most (here named ‘heeding range’) when they select den sites. All possible models were generated using logistic regression analysis, with “presence” or “absence” of fox den as the objective variable, and nine landscape categories customized for urban environments as predictor variables to detect the best subset of predictors. This procedure was conducted for each of ten sizes of concentric circles from dens and control points to detect the best circle size. Out of all models generated, the most parsimonious model was selected using Akaike’s Information Criterion (AIC) inspection. Results Our models suggest that fox dens in Obihiro are located at the center of a circle with 500 m radius including low percentages of wide roads, narrow roads, and occupied buildings, but high percentages of green covered areas; the dens in Sapporo within 300 m radius with low percentages of wide roads, occupied buildings, but high percentages of riverbeds and green covered areas. The variation of the models suggests the necessity of accumulating models for various types of cities in order to reveal the patterns of the model. Conclusions Our denning models indicating suitable sites for delivering baits will improve the cost-benefit performance of the campaign. Our modeling protocol is suitable for the urban landscapes, and for extracting the heeding range when they select the den sites. Baiting strategy (dpeaa)DE-He213 Cost-benefit performance (dpeaa)DE-He213 Urban red fox (dpeaa)DE-He213 Den site selection (dpeaa)DE-He213 Key environmental factors (dpeaa)DE-He213 Key spatial scale (dpeaa)DE-He213 Requisite spatial scale (dpeaa)DE-He213 Heeding range (dpeaa)DE-He213 Yoshimura, Masashi aut Onoyama, Keiichi aut Oku, Yuzaburo aut Nonaka, Nariaki aut Katakura, Ken aut Enthalten in Parasites & vectors London : BioMed Central, 2008 7(2014), 1 vom: 06. Aug. (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:7 year:2014 number:1 day:06 month:08 https://dx.doi.org/10.1186/1756-3305-7-357 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2014 1 06 08 |
allfieldsGer |
10.1186/1756-3305-7-357 doi (DE-627)SPR030182174 (SPR)1756-3305-7-357-e DE-627 ger DE-627 rakwb eng Ikeda, Takako verfasserin aut Where to deliver baits for deworming urban red foxes for Echinococcus multilocularis control: new protocol for micro-habitat modeling of fox denning requirements 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Ikeda et al.; licensee BioMed Central Ltd. 2014 Background Deworming wild foxes by baiting with the anthelmintic praziquantel is being established as a preventive technique against environmental contamination with Echinococcus multilocularis eggs. Improvement of the cost-benefit performance of baiting treatment is required urgently to raise and maintain the efficacy of deworming. We established a spatial model of den site selection by urban red foxes, the definitive host, to specify the optimal micro-habitats for delivering baits in a new modeling approach modified for urban fox populations. Methods The model was established for two cities (Obihiro and Sapporo) in Hokkaido, Japan, in which a sylvatic cycle of E. multilocularis is maintained. The two cities have different degrees of urbanization. The modeling process was designed to detect the best combination of key environmental factors and spatial scale that foxes pay attention to most (here named ‘heeding range’) when they select den sites. All possible models were generated using logistic regression analysis, with “presence” or “absence” of fox den as the objective variable, and nine landscape categories customized for urban environments as predictor variables to detect the best subset of predictors. This procedure was conducted for each of ten sizes of concentric circles from dens and control points to detect the best circle size. Out of all models generated, the most parsimonious model was selected using Akaike’s Information Criterion (AIC) inspection. Results Our models suggest that fox dens in Obihiro are located at the center of a circle with 500 m radius including low percentages of wide roads, narrow roads, and occupied buildings, but high percentages of green covered areas; the dens in Sapporo within 300 m radius with low percentages of wide roads, occupied buildings, but high percentages of riverbeds and green covered areas. The variation of the models suggests the necessity of accumulating models for various types of cities in order to reveal the patterns of the model. Conclusions Our denning models indicating suitable sites for delivering baits will improve the cost-benefit performance of the campaign. Our modeling protocol is suitable for the urban landscapes, and for extracting the heeding range when they select the den sites. Baiting strategy (dpeaa)DE-He213 Cost-benefit performance (dpeaa)DE-He213 Urban red fox (dpeaa)DE-He213 Den site selection (dpeaa)DE-He213 Key environmental factors (dpeaa)DE-He213 Key spatial scale (dpeaa)DE-He213 Requisite spatial scale (dpeaa)DE-He213 Heeding range (dpeaa)DE-He213 Yoshimura, Masashi aut Onoyama, Keiichi aut Oku, Yuzaburo aut Nonaka, Nariaki aut Katakura, Ken aut Enthalten in Parasites & vectors London : BioMed Central, 2008 7(2014), 1 vom: 06. Aug. (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:7 year:2014 number:1 day:06 month:08 https://dx.doi.org/10.1186/1756-3305-7-357 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2014 1 06 08 |
allfieldsSound |
10.1186/1756-3305-7-357 doi (DE-627)SPR030182174 (SPR)1756-3305-7-357-e DE-627 ger DE-627 rakwb eng Ikeda, Takako verfasserin aut Where to deliver baits for deworming urban red foxes for Echinococcus multilocularis control: new protocol for micro-habitat modeling of fox denning requirements 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Ikeda et al.; licensee BioMed Central Ltd. 2014 Background Deworming wild foxes by baiting with the anthelmintic praziquantel is being established as a preventive technique against environmental contamination with Echinococcus multilocularis eggs. Improvement of the cost-benefit performance of baiting treatment is required urgently to raise and maintain the efficacy of deworming. We established a spatial model of den site selection by urban red foxes, the definitive host, to specify the optimal micro-habitats for delivering baits in a new modeling approach modified for urban fox populations. Methods The model was established for two cities (Obihiro and Sapporo) in Hokkaido, Japan, in which a sylvatic cycle of E. multilocularis is maintained. The two cities have different degrees of urbanization. The modeling process was designed to detect the best combination of key environmental factors and spatial scale that foxes pay attention to most (here named ‘heeding range’) when they select den sites. All possible models were generated using logistic regression analysis, with “presence” or “absence” of fox den as the objective variable, and nine landscape categories customized for urban environments as predictor variables to detect the best subset of predictors. This procedure was conducted for each of ten sizes of concentric circles from dens and control points to detect the best circle size. Out of all models generated, the most parsimonious model was selected using Akaike’s Information Criterion (AIC) inspection. Results Our models suggest that fox dens in Obihiro are located at the center of a circle with 500 m radius including low percentages of wide roads, narrow roads, and occupied buildings, but high percentages of green covered areas; the dens in Sapporo within 300 m radius with low percentages of wide roads, occupied buildings, but high percentages of riverbeds and green covered areas. The variation of the models suggests the necessity of accumulating models for various types of cities in order to reveal the patterns of the model. Conclusions Our denning models indicating suitable sites for delivering baits will improve the cost-benefit performance of the campaign. Our modeling protocol is suitable for the urban landscapes, and for extracting the heeding range when they select the den sites. Baiting strategy (dpeaa)DE-He213 Cost-benefit performance (dpeaa)DE-He213 Urban red fox (dpeaa)DE-He213 Den site selection (dpeaa)DE-He213 Key environmental factors (dpeaa)DE-He213 Key spatial scale (dpeaa)DE-He213 Requisite spatial scale (dpeaa)DE-He213 Heeding range (dpeaa)DE-He213 Yoshimura, Masashi aut Onoyama, Keiichi aut Oku, Yuzaburo aut Nonaka, Nariaki aut Katakura, Ken aut Enthalten in Parasites & vectors London : BioMed Central, 2008 7(2014), 1 vom: 06. Aug. (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:7 year:2014 number:1 day:06 month:08 https://dx.doi.org/10.1186/1756-3305-7-357 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2014 1 06 08 |
language |
English |
source |
Enthalten in Parasites & vectors 7(2014), 1 vom: 06. Aug. volume:7 year:2014 number:1 day:06 month:08 |
sourceStr |
Enthalten in Parasites & vectors 7(2014), 1 vom: 06. Aug. volume:7 year:2014 number:1 day:06 month:08 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Baiting strategy Cost-benefit performance Urban red fox Den site selection Key environmental factors Key spatial scale Requisite spatial scale Heeding range |
isfreeaccess_bool |
true |
container_title |
Parasites & vectors |
authorswithroles_txt_mv |
Ikeda, Takako @@aut@@ Yoshimura, Masashi @@aut@@ Onoyama, Keiichi @@aut@@ Oku, Yuzaburo @@aut@@ Nonaka, Nariaki @@aut@@ Katakura, Ken @@aut@@ |
publishDateDaySort_date |
2014-08-06T00:00:00Z |
hierarchy_top_id |
558690076 |
id |
SPR030182174 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030182174</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520002212.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1756-3305-7-357</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030182174</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1756-3305-7-357-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ikeda, Takako</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Where to deliver baits for deworming urban red foxes for Echinococcus multilocularis control: new protocol for micro-habitat modeling of fox denning requirements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Ikeda et al.; licensee BioMed Central Ltd. 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Deworming wild foxes by baiting with the anthelmintic praziquantel is being established as a preventive technique against environmental contamination with Echinococcus multilocularis eggs. Improvement of the cost-benefit performance of baiting treatment is required urgently to raise and maintain the efficacy of deworming. We established a spatial model of den site selection by urban red foxes, the definitive host, to specify the optimal micro-habitats for delivering baits in a new modeling approach modified for urban fox populations. Methods The model was established for two cities (Obihiro and Sapporo) in Hokkaido, Japan, in which a sylvatic cycle of E. multilocularis is maintained. The two cities have different degrees of urbanization. The modeling process was designed to detect the best combination of key environmental factors and spatial scale that foxes pay attention to most (here named ‘heeding range’) when they select den sites. All possible models were generated using logistic regression analysis, with “presence” or “absence” of fox den as the objective variable, and nine landscape categories customized for urban environments as predictor variables to detect the best subset of predictors. This procedure was conducted for each of ten sizes of concentric circles from dens and control points to detect the best circle size. Out of all models generated, the most parsimonious model was selected using Akaike’s Information Criterion (AIC) inspection. Results Our models suggest that fox dens in Obihiro are located at the center of a circle with 500 m radius including low percentages of wide roads, narrow roads, and occupied buildings, but high percentages of green covered areas; the dens in Sapporo within 300 m radius with low percentages of wide roads, occupied buildings, but high percentages of riverbeds and green covered areas. The variation of the models suggests the necessity of accumulating models for various types of cities in order to reveal the patterns of the model. Conclusions Our denning models indicating suitable sites for delivering baits will improve the cost-benefit performance of the campaign. Our modeling protocol is suitable for the urban landscapes, and for extracting the heeding range when they select the den sites.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Baiting strategy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cost-benefit performance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Urban red fox</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Den site selection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Key environmental factors</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Key spatial scale</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Requisite spatial scale</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heeding range</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yoshimura, Masashi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Onoyama, Keiichi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oku, Yuzaburo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nonaka, Nariaki</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Katakura, Ken</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Parasites & vectors</subfield><subfield code="d">London : BioMed Central, 2008</subfield><subfield code="g">7(2014), 1 vom: 06. Aug.</subfield><subfield code="w">(DE-627)558690076</subfield><subfield code="w">(DE-600)2409480-8</subfield><subfield code="x">1756-3305</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">day:06</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1756-3305-7-357</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="b">06</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
author |
Ikeda, Takako |
spellingShingle |
Ikeda, Takako misc Baiting strategy misc Cost-benefit performance misc Urban red fox misc Den site selection misc Key environmental factors misc Key spatial scale misc Requisite spatial scale misc Heeding range Where to deliver baits for deworming urban red foxes for Echinococcus multilocularis control: new protocol for micro-habitat modeling of fox denning requirements |
authorStr |
Ikeda, Takako |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)558690076 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1756-3305 |
topic_title |
Where to deliver baits for deworming urban red foxes for Echinococcus multilocularis control: new protocol for micro-habitat modeling of fox denning requirements Baiting strategy (dpeaa)DE-He213 Cost-benefit performance (dpeaa)DE-He213 Urban red fox (dpeaa)DE-He213 Den site selection (dpeaa)DE-He213 Key environmental factors (dpeaa)DE-He213 Key spatial scale (dpeaa)DE-He213 Requisite spatial scale (dpeaa)DE-He213 Heeding range (dpeaa)DE-He213 |
topic |
misc Baiting strategy misc Cost-benefit performance misc Urban red fox misc Den site selection misc Key environmental factors misc Key spatial scale misc Requisite spatial scale misc Heeding range |
topic_unstemmed |
misc Baiting strategy misc Cost-benefit performance misc Urban red fox misc Den site selection misc Key environmental factors misc Key spatial scale misc Requisite spatial scale misc Heeding range |
topic_browse |
misc Baiting strategy misc Cost-benefit performance misc Urban red fox misc Den site selection misc Key environmental factors misc Key spatial scale misc Requisite spatial scale misc Heeding range |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Parasites & vectors |
hierarchy_parent_id |
558690076 |
hierarchy_top_title |
Parasites & vectors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)558690076 (DE-600)2409480-8 |
title |
Where to deliver baits for deworming urban red foxes for Echinococcus multilocularis control: new protocol for micro-habitat modeling of fox denning requirements |
ctrlnum |
(DE-627)SPR030182174 (SPR)1756-3305-7-357-e |
title_full |
Where to deliver baits for deworming urban red foxes for Echinococcus multilocularis control: new protocol for micro-habitat modeling of fox denning requirements |
author_sort |
Ikeda, Takako |
journal |
Parasites & vectors |
journalStr |
Parasites & vectors |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
author_browse |
Ikeda, Takako Yoshimura, Masashi Onoyama, Keiichi Oku, Yuzaburo Nonaka, Nariaki Katakura, Ken |
container_volume |
7 |
format_se |
Elektronische Aufsätze |
author-letter |
Ikeda, Takako |
doi_str_mv |
10.1186/1756-3305-7-357 |
title_sort |
where to deliver baits for deworming urban red foxes for echinococcus multilocularis control: new protocol for micro-habitat modeling of fox denning requirements |
title_auth |
Where to deliver baits for deworming urban red foxes for Echinococcus multilocularis control: new protocol for micro-habitat modeling of fox denning requirements |
abstract |
Background Deworming wild foxes by baiting with the anthelmintic praziquantel is being established as a preventive technique against environmental contamination with Echinococcus multilocularis eggs. Improvement of the cost-benefit performance of baiting treatment is required urgently to raise and maintain the efficacy of deworming. We established a spatial model of den site selection by urban red foxes, the definitive host, to specify the optimal micro-habitats for delivering baits in a new modeling approach modified for urban fox populations. Methods The model was established for two cities (Obihiro and Sapporo) in Hokkaido, Japan, in which a sylvatic cycle of E. multilocularis is maintained. The two cities have different degrees of urbanization. The modeling process was designed to detect the best combination of key environmental factors and spatial scale that foxes pay attention to most (here named ‘heeding range’) when they select den sites. All possible models were generated using logistic regression analysis, with “presence” or “absence” of fox den as the objective variable, and nine landscape categories customized for urban environments as predictor variables to detect the best subset of predictors. This procedure was conducted for each of ten sizes of concentric circles from dens and control points to detect the best circle size. Out of all models generated, the most parsimonious model was selected using Akaike’s Information Criterion (AIC) inspection. Results Our models suggest that fox dens in Obihiro are located at the center of a circle with 500 m radius including low percentages of wide roads, narrow roads, and occupied buildings, but high percentages of green covered areas; the dens in Sapporo within 300 m radius with low percentages of wide roads, occupied buildings, but high percentages of riverbeds and green covered areas. The variation of the models suggests the necessity of accumulating models for various types of cities in order to reveal the patterns of the model. Conclusions Our denning models indicating suitable sites for delivering baits will improve the cost-benefit performance of the campaign. Our modeling protocol is suitable for the urban landscapes, and for extracting the heeding range when they select the den sites. © Ikeda et al.; licensee BioMed Central Ltd. 2014 |
abstractGer |
Background Deworming wild foxes by baiting with the anthelmintic praziquantel is being established as a preventive technique against environmental contamination with Echinococcus multilocularis eggs. Improvement of the cost-benefit performance of baiting treatment is required urgently to raise and maintain the efficacy of deworming. We established a spatial model of den site selection by urban red foxes, the definitive host, to specify the optimal micro-habitats for delivering baits in a new modeling approach modified for urban fox populations. Methods The model was established for two cities (Obihiro and Sapporo) in Hokkaido, Japan, in which a sylvatic cycle of E. multilocularis is maintained. The two cities have different degrees of urbanization. The modeling process was designed to detect the best combination of key environmental factors and spatial scale that foxes pay attention to most (here named ‘heeding range’) when they select den sites. All possible models were generated using logistic regression analysis, with “presence” or “absence” of fox den as the objective variable, and nine landscape categories customized for urban environments as predictor variables to detect the best subset of predictors. This procedure was conducted for each of ten sizes of concentric circles from dens and control points to detect the best circle size. Out of all models generated, the most parsimonious model was selected using Akaike’s Information Criterion (AIC) inspection. Results Our models suggest that fox dens in Obihiro are located at the center of a circle with 500 m radius including low percentages of wide roads, narrow roads, and occupied buildings, but high percentages of green covered areas; the dens in Sapporo within 300 m radius with low percentages of wide roads, occupied buildings, but high percentages of riverbeds and green covered areas. The variation of the models suggests the necessity of accumulating models for various types of cities in order to reveal the patterns of the model. Conclusions Our denning models indicating suitable sites for delivering baits will improve the cost-benefit performance of the campaign. Our modeling protocol is suitable for the urban landscapes, and for extracting the heeding range when they select the den sites. © Ikeda et al.; licensee BioMed Central Ltd. 2014 |
abstract_unstemmed |
Background Deworming wild foxes by baiting with the anthelmintic praziquantel is being established as a preventive technique against environmental contamination with Echinococcus multilocularis eggs. Improvement of the cost-benefit performance of baiting treatment is required urgently to raise and maintain the efficacy of deworming. We established a spatial model of den site selection by urban red foxes, the definitive host, to specify the optimal micro-habitats for delivering baits in a new modeling approach modified for urban fox populations. Methods The model was established for two cities (Obihiro and Sapporo) in Hokkaido, Japan, in which a sylvatic cycle of E. multilocularis is maintained. The two cities have different degrees of urbanization. The modeling process was designed to detect the best combination of key environmental factors and spatial scale that foxes pay attention to most (here named ‘heeding range’) when they select den sites. All possible models were generated using logistic regression analysis, with “presence” or “absence” of fox den as the objective variable, and nine landscape categories customized for urban environments as predictor variables to detect the best subset of predictors. This procedure was conducted for each of ten sizes of concentric circles from dens and control points to detect the best circle size. Out of all models generated, the most parsimonious model was selected using Akaike’s Information Criterion (AIC) inspection. Results Our models suggest that fox dens in Obihiro are located at the center of a circle with 500 m radius including low percentages of wide roads, narrow roads, and occupied buildings, but high percentages of green covered areas; the dens in Sapporo within 300 m radius with low percentages of wide roads, occupied buildings, but high percentages of riverbeds and green covered areas. The variation of the models suggests the necessity of accumulating models for various types of cities in order to reveal the patterns of the model. Conclusions Our denning models indicating suitable sites for delivering baits will improve the cost-benefit performance of the campaign. Our modeling protocol is suitable for the urban landscapes, and for extracting the heeding range when they select the den sites. © Ikeda et al.; licensee BioMed Central Ltd. 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Where to deliver baits for deworming urban red foxes for Echinococcus multilocularis control: new protocol for micro-habitat modeling of fox denning requirements |
url |
https://dx.doi.org/10.1186/1756-3305-7-357 |
remote_bool |
true |
author2 |
Yoshimura, Masashi Onoyama, Keiichi Oku, Yuzaburo Nonaka, Nariaki Katakura, Ken |
author2Str |
Yoshimura, Masashi Onoyama, Keiichi Oku, Yuzaburo Nonaka, Nariaki Katakura, Ken |
ppnlink |
558690076 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1756-3305-7-357 |
up_date |
2024-07-03T14:30:50.831Z |
_version_ |
1803568599107895296 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030182174</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520002212.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1756-3305-7-357</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030182174</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1756-3305-7-357-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ikeda, Takako</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Where to deliver baits for deworming urban red foxes for Echinococcus multilocularis control: new protocol for micro-habitat modeling of fox denning requirements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Ikeda et al.; licensee BioMed Central Ltd. 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Deworming wild foxes by baiting with the anthelmintic praziquantel is being established as a preventive technique against environmental contamination with Echinococcus multilocularis eggs. Improvement of the cost-benefit performance of baiting treatment is required urgently to raise and maintain the efficacy of deworming. We established a spatial model of den site selection by urban red foxes, the definitive host, to specify the optimal micro-habitats for delivering baits in a new modeling approach modified for urban fox populations. Methods The model was established for two cities (Obihiro and Sapporo) in Hokkaido, Japan, in which a sylvatic cycle of E. multilocularis is maintained. The two cities have different degrees of urbanization. The modeling process was designed to detect the best combination of key environmental factors and spatial scale that foxes pay attention to most (here named ‘heeding range’) when they select den sites. All possible models were generated using logistic regression analysis, with “presence” or “absence” of fox den as the objective variable, and nine landscape categories customized for urban environments as predictor variables to detect the best subset of predictors. This procedure was conducted for each of ten sizes of concentric circles from dens and control points to detect the best circle size. Out of all models generated, the most parsimonious model was selected using Akaike’s Information Criterion (AIC) inspection. Results Our models suggest that fox dens in Obihiro are located at the center of a circle with 500 m radius including low percentages of wide roads, narrow roads, and occupied buildings, but high percentages of green covered areas; the dens in Sapporo within 300 m radius with low percentages of wide roads, occupied buildings, but high percentages of riverbeds and green covered areas. The variation of the models suggests the necessity of accumulating models for various types of cities in order to reveal the patterns of the model. Conclusions Our denning models indicating suitable sites for delivering baits will improve the cost-benefit performance of the campaign. Our modeling protocol is suitable for the urban landscapes, and for extracting the heeding range when they select the den sites.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Baiting strategy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cost-benefit performance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Urban red fox</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Den site selection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Key environmental factors</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Key spatial scale</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Requisite spatial scale</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heeding range</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yoshimura, Masashi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Onoyama, Keiichi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oku, Yuzaburo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nonaka, Nariaki</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Katakura, Ken</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Parasites & vectors</subfield><subfield code="d">London : BioMed Central, 2008</subfield><subfield code="g">7(2014), 1 vom: 06. Aug.</subfield><subfield code="w">(DE-627)558690076</subfield><subfield code="w">(DE-600)2409480-8</subfield><subfield code="x">1756-3305</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">day:06</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1756-3305-7-357</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="b">06</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
score |
7.4019375 |