The impact of test loads on the accuracy of 1RM prediction using the load-velocity relationship
Background Numerous methods have been proposed that use submaximal loads to predict one repetition maximum (1RM). One common method applies standard linear regression equations to load and average vertical lifting velocity ($ V_{mean} $) data developed during squat jumps or three bench press throw (...
Ausführliche Beschreibung
Autor*in: |
Sayers, Mark G. L. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s). 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC sports science, medicine & rehabilitation - London : BioMed Central, 2013, 10(2018), 1 vom: 29. Mai |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2018 ; number:1 ; day:29 ; month:05 |
Links: |
---|
DOI / URN: |
10.1186/s13102-018-0099-z |
---|
Katalog-ID: |
SPR030264316 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR030264316 | ||
003 | DE-627 | ||
005 | 20230519213622.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13102-018-0099-z |2 doi | |
035 | |a (DE-627)SPR030264316 | ||
035 | |a (SPR)s13102-018-0099-z-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Sayers, Mark G. L. |e verfasserin |0 (orcid)0000-0001-6275-8982 |4 aut | |
245 | 1 | 4 | |a The impact of test loads on the accuracy of 1RM prediction using the load-velocity relationship |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s). 2018 | ||
520 | |a Background Numerous methods have been proposed that use submaximal loads to predict one repetition maximum (1RM). One common method applies standard linear regression equations to load and average vertical lifting velocity ($ V_{mean} $) data developed during squat jumps or three bench press throw (BP-T). The main aim of this project was to determine which combination of three submaximal loads during BP-T result in the most accurate prediction of 1RM Smith Machine bench press strength in healthy individuals. Methods In this study combinations of three BP-T loads were used to predict 1RM Smith Machine bench press strength. Additionally, we examined whether regression models developed using peak vertical bar velocity ($ V_{peak} $), rather than $ V_{mean} $, provide the most accurate prediction of Smith Machine bench press 1RM. 1RM Smith Machine bench press strength was measured directly in 12 healthy regular weight trainers (body mass = 80.8 ± 5.7 kg). Two to three days later a linear position transducer attached to the collars on a Smith Machine was used to record $ V_{mean} $ and $ V_{peak} $ during BP-T between 30 and 70% of 1RM (10% increments). Results Repeated measures analysis of variance testing showed that the mean values for slope and ordinate intercept for the regression models at each of the load ranges differed significantly depending on whether $ V_{mean} $ or $ V_{peak} $ were used in the prediction models (P < 0.001). Conversely, the abscissa intercept did not differ significantly between either measure of vertical bar velocity at each load range. The key finding in this study was that 1RM Smith Machine bench press strength can be determined with high relative accuracy by examining $ V_{mean} $ and $ V_{peak} $ during BP-T over three loads, with the most precise models using $ V_{peak} $ during loads representing 30, 40 and 50% of 1RM (R2 = 0.96, SSE = 4.2 kg). Conclusions These preliminary findings indicate that exercise programmers working with normal healthy populations can accurately predict Smith Machine 1RM bench press strength using relatively light load Smith Machine BP-T testing, avoiding the need to expose their clients to potentially injurious loads. | ||
650 | 4 | |a Strength assessment |7 (dpeaa)DE-He213 | |
650 | 4 | |a Dynamic strength |7 (dpeaa)DE-He213 | |
650 | 4 | |a Predictive models |7 (dpeaa)DE-He213 | |
650 | 4 | |a Bench press throws |7 (dpeaa)DE-He213 | |
700 | 1 | |a Schlaeppi, Michel |4 aut | |
700 | 1 | |a Hitz, Marina |4 aut | |
700 | 1 | |a Lorenzetti, Silvio |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC sports science, medicine & rehabilitation |d London : BioMed Central, 2013 |g 10(2018), 1 vom: 29. Mai |w (DE-627)749504323 |w (DE-600)2719537-5 |x 2052-1847 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2018 |g number:1 |g day:29 |g month:05 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13102-018-0099-z |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2018 |e 1 |b 29 |c 05 |
author_variant |
m g l s mgl mgls m s ms m h mh s l sl |
---|---|
matchkey_str |
article:20521847:2018----::hipcotslasnhacrco1mrdcinsnteod |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1186/s13102-018-0099-z doi (DE-627)SPR030264316 (SPR)s13102-018-0099-z-e DE-627 ger DE-627 rakwb eng Sayers, Mark G. L. verfasserin (orcid)0000-0001-6275-8982 aut The impact of test loads on the accuracy of 1RM prediction using the load-velocity relationship 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2018 Background Numerous methods have been proposed that use submaximal loads to predict one repetition maximum (1RM). One common method applies standard linear regression equations to load and average vertical lifting velocity ($ V_{mean} $) data developed during squat jumps or three bench press throw (BP-T). The main aim of this project was to determine which combination of three submaximal loads during BP-T result in the most accurate prediction of 1RM Smith Machine bench press strength in healthy individuals. Methods In this study combinations of three BP-T loads were used to predict 1RM Smith Machine bench press strength. Additionally, we examined whether regression models developed using peak vertical bar velocity ($ V_{peak} $), rather than $ V_{mean} $, provide the most accurate prediction of Smith Machine bench press 1RM. 1RM Smith Machine bench press strength was measured directly in 12 healthy regular weight trainers (body mass = 80.8 ± 5.7 kg). Two to three days later a linear position transducer attached to the collars on a Smith Machine was used to record $ V_{mean} $ and $ V_{peak} $ during BP-T between 30 and 70% of 1RM (10% increments). Results Repeated measures analysis of variance testing showed that the mean values for slope and ordinate intercept for the regression models at each of the load ranges differed significantly depending on whether $ V_{mean} $ or $ V_{peak} $ were used in the prediction models (P < 0.001). Conversely, the abscissa intercept did not differ significantly between either measure of vertical bar velocity at each load range. The key finding in this study was that 1RM Smith Machine bench press strength can be determined with high relative accuracy by examining $ V_{mean} $ and $ V_{peak} $ during BP-T over three loads, with the most precise models using $ V_{peak} $ during loads representing 30, 40 and 50% of 1RM (R2 = 0.96, SSE = 4.2 kg). Conclusions These preliminary findings indicate that exercise programmers working with normal healthy populations can accurately predict Smith Machine 1RM bench press strength using relatively light load Smith Machine BP-T testing, avoiding the need to expose their clients to potentially injurious loads. Strength assessment (dpeaa)DE-He213 Dynamic strength (dpeaa)DE-He213 Predictive models (dpeaa)DE-He213 Bench press throws (dpeaa)DE-He213 Schlaeppi, Michel aut Hitz, Marina aut Lorenzetti, Silvio aut Enthalten in BMC sports science, medicine & rehabilitation London : BioMed Central, 2013 10(2018), 1 vom: 29. Mai (DE-627)749504323 (DE-600)2719537-5 2052-1847 nnns volume:10 year:2018 number:1 day:29 month:05 https://dx.doi.org/10.1186/s13102-018-0099-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2018 1 29 05 |
spelling |
10.1186/s13102-018-0099-z doi (DE-627)SPR030264316 (SPR)s13102-018-0099-z-e DE-627 ger DE-627 rakwb eng Sayers, Mark G. L. verfasserin (orcid)0000-0001-6275-8982 aut The impact of test loads on the accuracy of 1RM prediction using the load-velocity relationship 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2018 Background Numerous methods have been proposed that use submaximal loads to predict one repetition maximum (1RM). One common method applies standard linear regression equations to load and average vertical lifting velocity ($ V_{mean} $) data developed during squat jumps or three bench press throw (BP-T). The main aim of this project was to determine which combination of three submaximal loads during BP-T result in the most accurate prediction of 1RM Smith Machine bench press strength in healthy individuals. Methods In this study combinations of three BP-T loads were used to predict 1RM Smith Machine bench press strength. Additionally, we examined whether regression models developed using peak vertical bar velocity ($ V_{peak} $), rather than $ V_{mean} $, provide the most accurate prediction of Smith Machine bench press 1RM. 1RM Smith Machine bench press strength was measured directly in 12 healthy regular weight trainers (body mass = 80.8 ± 5.7 kg). Two to three days later a linear position transducer attached to the collars on a Smith Machine was used to record $ V_{mean} $ and $ V_{peak} $ during BP-T between 30 and 70% of 1RM (10% increments). Results Repeated measures analysis of variance testing showed that the mean values for slope and ordinate intercept for the regression models at each of the load ranges differed significantly depending on whether $ V_{mean} $ or $ V_{peak} $ were used in the prediction models (P < 0.001). Conversely, the abscissa intercept did not differ significantly between either measure of vertical bar velocity at each load range. The key finding in this study was that 1RM Smith Machine bench press strength can be determined with high relative accuracy by examining $ V_{mean} $ and $ V_{peak} $ during BP-T over three loads, with the most precise models using $ V_{peak} $ during loads representing 30, 40 and 50% of 1RM (R2 = 0.96, SSE = 4.2 kg). Conclusions These preliminary findings indicate that exercise programmers working with normal healthy populations can accurately predict Smith Machine 1RM bench press strength using relatively light load Smith Machine BP-T testing, avoiding the need to expose their clients to potentially injurious loads. Strength assessment (dpeaa)DE-He213 Dynamic strength (dpeaa)DE-He213 Predictive models (dpeaa)DE-He213 Bench press throws (dpeaa)DE-He213 Schlaeppi, Michel aut Hitz, Marina aut Lorenzetti, Silvio aut Enthalten in BMC sports science, medicine & rehabilitation London : BioMed Central, 2013 10(2018), 1 vom: 29. Mai (DE-627)749504323 (DE-600)2719537-5 2052-1847 nnns volume:10 year:2018 number:1 day:29 month:05 https://dx.doi.org/10.1186/s13102-018-0099-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2018 1 29 05 |
allfields_unstemmed |
10.1186/s13102-018-0099-z doi (DE-627)SPR030264316 (SPR)s13102-018-0099-z-e DE-627 ger DE-627 rakwb eng Sayers, Mark G. L. verfasserin (orcid)0000-0001-6275-8982 aut The impact of test loads on the accuracy of 1RM prediction using the load-velocity relationship 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2018 Background Numerous methods have been proposed that use submaximal loads to predict one repetition maximum (1RM). One common method applies standard linear regression equations to load and average vertical lifting velocity ($ V_{mean} $) data developed during squat jumps or three bench press throw (BP-T). The main aim of this project was to determine which combination of three submaximal loads during BP-T result in the most accurate prediction of 1RM Smith Machine bench press strength in healthy individuals. Methods In this study combinations of three BP-T loads were used to predict 1RM Smith Machine bench press strength. Additionally, we examined whether regression models developed using peak vertical bar velocity ($ V_{peak} $), rather than $ V_{mean} $, provide the most accurate prediction of Smith Machine bench press 1RM. 1RM Smith Machine bench press strength was measured directly in 12 healthy regular weight trainers (body mass = 80.8 ± 5.7 kg). Two to three days later a linear position transducer attached to the collars on a Smith Machine was used to record $ V_{mean} $ and $ V_{peak} $ during BP-T between 30 and 70% of 1RM (10% increments). Results Repeated measures analysis of variance testing showed that the mean values for slope and ordinate intercept for the regression models at each of the load ranges differed significantly depending on whether $ V_{mean} $ or $ V_{peak} $ were used in the prediction models (P < 0.001). Conversely, the abscissa intercept did not differ significantly between either measure of vertical bar velocity at each load range. The key finding in this study was that 1RM Smith Machine bench press strength can be determined with high relative accuracy by examining $ V_{mean} $ and $ V_{peak} $ during BP-T over three loads, with the most precise models using $ V_{peak} $ during loads representing 30, 40 and 50% of 1RM (R2 = 0.96, SSE = 4.2 kg). Conclusions These preliminary findings indicate that exercise programmers working with normal healthy populations can accurately predict Smith Machine 1RM bench press strength using relatively light load Smith Machine BP-T testing, avoiding the need to expose their clients to potentially injurious loads. Strength assessment (dpeaa)DE-He213 Dynamic strength (dpeaa)DE-He213 Predictive models (dpeaa)DE-He213 Bench press throws (dpeaa)DE-He213 Schlaeppi, Michel aut Hitz, Marina aut Lorenzetti, Silvio aut Enthalten in BMC sports science, medicine & rehabilitation London : BioMed Central, 2013 10(2018), 1 vom: 29. Mai (DE-627)749504323 (DE-600)2719537-5 2052-1847 nnns volume:10 year:2018 number:1 day:29 month:05 https://dx.doi.org/10.1186/s13102-018-0099-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2018 1 29 05 |
allfieldsGer |
10.1186/s13102-018-0099-z doi (DE-627)SPR030264316 (SPR)s13102-018-0099-z-e DE-627 ger DE-627 rakwb eng Sayers, Mark G. L. verfasserin (orcid)0000-0001-6275-8982 aut The impact of test loads on the accuracy of 1RM prediction using the load-velocity relationship 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2018 Background Numerous methods have been proposed that use submaximal loads to predict one repetition maximum (1RM). One common method applies standard linear regression equations to load and average vertical lifting velocity ($ V_{mean} $) data developed during squat jumps or three bench press throw (BP-T). The main aim of this project was to determine which combination of three submaximal loads during BP-T result in the most accurate prediction of 1RM Smith Machine bench press strength in healthy individuals. Methods In this study combinations of three BP-T loads were used to predict 1RM Smith Machine bench press strength. Additionally, we examined whether regression models developed using peak vertical bar velocity ($ V_{peak} $), rather than $ V_{mean} $, provide the most accurate prediction of Smith Machine bench press 1RM. 1RM Smith Machine bench press strength was measured directly in 12 healthy regular weight trainers (body mass = 80.8 ± 5.7 kg). Two to three days later a linear position transducer attached to the collars on a Smith Machine was used to record $ V_{mean} $ and $ V_{peak} $ during BP-T between 30 and 70% of 1RM (10% increments). Results Repeated measures analysis of variance testing showed that the mean values for slope and ordinate intercept for the regression models at each of the load ranges differed significantly depending on whether $ V_{mean} $ or $ V_{peak} $ were used in the prediction models (P < 0.001). Conversely, the abscissa intercept did not differ significantly between either measure of vertical bar velocity at each load range. The key finding in this study was that 1RM Smith Machine bench press strength can be determined with high relative accuracy by examining $ V_{mean} $ and $ V_{peak} $ during BP-T over three loads, with the most precise models using $ V_{peak} $ during loads representing 30, 40 and 50% of 1RM (R2 = 0.96, SSE = 4.2 kg). Conclusions These preliminary findings indicate that exercise programmers working with normal healthy populations can accurately predict Smith Machine 1RM bench press strength using relatively light load Smith Machine BP-T testing, avoiding the need to expose their clients to potentially injurious loads. Strength assessment (dpeaa)DE-He213 Dynamic strength (dpeaa)DE-He213 Predictive models (dpeaa)DE-He213 Bench press throws (dpeaa)DE-He213 Schlaeppi, Michel aut Hitz, Marina aut Lorenzetti, Silvio aut Enthalten in BMC sports science, medicine & rehabilitation London : BioMed Central, 2013 10(2018), 1 vom: 29. Mai (DE-627)749504323 (DE-600)2719537-5 2052-1847 nnns volume:10 year:2018 number:1 day:29 month:05 https://dx.doi.org/10.1186/s13102-018-0099-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2018 1 29 05 |
allfieldsSound |
10.1186/s13102-018-0099-z doi (DE-627)SPR030264316 (SPR)s13102-018-0099-z-e DE-627 ger DE-627 rakwb eng Sayers, Mark G. L. verfasserin (orcid)0000-0001-6275-8982 aut The impact of test loads on the accuracy of 1RM prediction using the load-velocity relationship 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2018 Background Numerous methods have been proposed that use submaximal loads to predict one repetition maximum (1RM). One common method applies standard linear regression equations to load and average vertical lifting velocity ($ V_{mean} $) data developed during squat jumps or three bench press throw (BP-T). The main aim of this project was to determine which combination of three submaximal loads during BP-T result in the most accurate prediction of 1RM Smith Machine bench press strength in healthy individuals. Methods In this study combinations of three BP-T loads were used to predict 1RM Smith Machine bench press strength. Additionally, we examined whether regression models developed using peak vertical bar velocity ($ V_{peak} $), rather than $ V_{mean} $, provide the most accurate prediction of Smith Machine bench press 1RM. 1RM Smith Machine bench press strength was measured directly in 12 healthy regular weight trainers (body mass = 80.8 ± 5.7 kg). Two to three days later a linear position transducer attached to the collars on a Smith Machine was used to record $ V_{mean} $ and $ V_{peak} $ during BP-T between 30 and 70% of 1RM (10% increments). Results Repeated measures analysis of variance testing showed that the mean values for slope and ordinate intercept for the regression models at each of the load ranges differed significantly depending on whether $ V_{mean} $ or $ V_{peak} $ were used in the prediction models (P < 0.001). Conversely, the abscissa intercept did not differ significantly between either measure of vertical bar velocity at each load range. The key finding in this study was that 1RM Smith Machine bench press strength can be determined with high relative accuracy by examining $ V_{mean} $ and $ V_{peak} $ during BP-T over three loads, with the most precise models using $ V_{peak} $ during loads representing 30, 40 and 50% of 1RM (R2 = 0.96, SSE = 4.2 kg). Conclusions These preliminary findings indicate that exercise programmers working with normal healthy populations can accurately predict Smith Machine 1RM bench press strength using relatively light load Smith Machine BP-T testing, avoiding the need to expose their clients to potentially injurious loads. Strength assessment (dpeaa)DE-He213 Dynamic strength (dpeaa)DE-He213 Predictive models (dpeaa)DE-He213 Bench press throws (dpeaa)DE-He213 Schlaeppi, Michel aut Hitz, Marina aut Lorenzetti, Silvio aut Enthalten in BMC sports science, medicine & rehabilitation London : BioMed Central, 2013 10(2018), 1 vom: 29. Mai (DE-627)749504323 (DE-600)2719537-5 2052-1847 nnns volume:10 year:2018 number:1 day:29 month:05 https://dx.doi.org/10.1186/s13102-018-0099-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2018 1 29 05 |
language |
English |
source |
Enthalten in BMC sports science, medicine & rehabilitation 10(2018), 1 vom: 29. Mai volume:10 year:2018 number:1 day:29 month:05 |
sourceStr |
Enthalten in BMC sports science, medicine & rehabilitation 10(2018), 1 vom: 29. Mai volume:10 year:2018 number:1 day:29 month:05 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Strength assessment Dynamic strength Predictive models Bench press throws |
isfreeaccess_bool |
true |
container_title |
BMC sports science, medicine & rehabilitation |
authorswithroles_txt_mv |
Sayers, Mark G. L. @@aut@@ Schlaeppi, Michel @@aut@@ Hitz, Marina @@aut@@ Lorenzetti, Silvio @@aut@@ |
publishDateDaySort_date |
2018-05-29T00:00:00Z |
hierarchy_top_id |
749504323 |
id |
SPR030264316 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030264316</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519213622.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13102-018-0099-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030264316</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13102-018-0099-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sayers, Mark G. L.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6275-8982</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The impact of test loads on the accuracy of 1RM prediction using the load-velocity relationship</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Numerous methods have been proposed that use submaximal loads to predict one repetition maximum (1RM). One common method applies standard linear regression equations to load and average vertical lifting velocity ($ V_{mean} $) data developed during squat jumps or three bench press throw (BP-T). The main aim of this project was to determine which combination of three submaximal loads during BP-T result in the most accurate prediction of 1RM Smith Machine bench press strength in healthy individuals. Methods In this study combinations of three BP-T loads were used to predict 1RM Smith Machine bench press strength. Additionally, we examined whether regression models developed using peak vertical bar velocity ($ V_{peak} $), rather than $ V_{mean} $, provide the most accurate prediction of Smith Machine bench press 1RM. 1RM Smith Machine bench press strength was measured directly in 12 healthy regular weight trainers (body mass = 80.8 ± 5.7 kg). Two to three days later a linear position transducer attached to the collars on a Smith Machine was used to record $ V_{mean} $ and $ V_{peak} $ during BP-T between 30 and 70% of 1RM (10% increments). Results Repeated measures analysis of variance testing showed that the mean values for slope and ordinate intercept for the regression models at each of the load ranges differed significantly depending on whether $ V_{mean} $ or $ V_{peak} $ were used in the prediction models (P < 0.001). Conversely, the abscissa intercept did not differ significantly between either measure of vertical bar velocity at each load range. The key finding in this study was that 1RM Smith Machine bench press strength can be determined with high relative accuracy by examining $ V_{mean} $ and $ V_{peak} $ during BP-T over three loads, with the most precise models using $ V_{peak} $ during loads representing 30, 40 and 50% of 1RM (R2 = 0.96, SSE = 4.2 kg). Conclusions These preliminary findings indicate that exercise programmers working with normal healthy populations can accurately predict Smith Machine 1RM bench press strength using relatively light load Smith Machine BP-T testing, avoiding the need to expose their clients to potentially injurious loads.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strength assessment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic strength</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Predictive models</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bench press throws</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schlaeppi, Michel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hitz, Marina</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lorenzetti, Silvio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC sports science, medicine & rehabilitation</subfield><subfield code="d">London : BioMed Central, 2013</subfield><subfield code="g">10(2018), 1 vom: 29. Mai</subfield><subfield code="w">(DE-627)749504323</subfield><subfield code="w">(DE-600)2719537-5</subfield><subfield code="x">2052-1847</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:29</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13102-018-0099-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">29</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
author |
Sayers, Mark G. L. |
spellingShingle |
Sayers, Mark G. L. misc Strength assessment misc Dynamic strength misc Predictive models misc Bench press throws The impact of test loads on the accuracy of 1RM prediction using the load-velocity relationship |
authorStr |
Sayers, Mark G. L. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)749504323 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2052-1847 |
topic_title |
The impact of test loads on the accuracy of 1RM prediction using the load-velocity relationship Strength assessment (dpeaa)DE-He213 Dynamic strength (dpeaa)DE-He213 Predictive models (dpeaa)DE-He213 Bench press throws (dpeaa)DE-He213 |
topic |
misc Strength assessment misc Dynamic strength misc Predictive models misc Bench press throws |
topic_unstemmed |
misc Strength assessment misc Dynamic strength misc Predictive models misc Bench press throws |
topic_browse |
misc Strength assessment misc Dynamic strength misc Predictive models misc Bench press throws |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC sports science, medicine & rehabilitation |
hierarchy_parent_id |
749504323 |
hierarchy_top_title |
BMC sports science, medicine & rehabilitation |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)749504323 (DE-600)2719537-5 |
title |
The impact of test loads on the accuracy of 1RM prediction using the load-velocity relationship |
ctrlnum |
(DE-627)SPR030264316 (SPR)s13102-018-0099-z-e |
title_full |
The impact of test loads on the accuracy of 1RM prediction using the load-velocity relationship |
author_sort |
Sayers, Mark G. L. |
journal |
BMC sports science, medicine & rehabilitation |
journalStr |
BMC sports science, medicine & rehabilitation |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Sayers, Mark G. L. Schlaeppi, Michel Hitz, Marina Lorenzetti, Silvio |
container_volume |
10 |
format_se |
Elektronische Aufsätze |
author-letter |
Sayers, Mark G. L. |
doi_str_mv |
10.1186/s13102-018-0099-z |
normlink |
(ORCID)0000-0001-6275-8982 |
normlink_prefix_str_mv |
(orcid)0000-0001-6275-8982 |
title_sort |
impact of test loads on the accuracy of 1rm prediction using the load-velocity relationship |
title_auth |
The impact of test loads on the accuracy of 1RM prediction using the load-velocity relationship |
abstract |
Background Numerous methods have been proposed that use submaximal loads to predict one repetition maximum (1RM). One common method applies standard linear regression equations to load and average vertical lifting velocity ($ V_{mean} $) data developed during squat jumps or three bench press throw (BP-T). The main aim of this project was to determine which combination of three submaximal loads during BP-T result in the most accurate prediction of 1RM Smith Machine bench press strength in healthy individuals. Methods In this study combinations of three BP-T loads were used to predict 1RM Smith Machine bench press strength. Additionally, we examined whether regression models developed using peak vertical bar velocity ($ V_{peak} $), rather than $ V_{mean} $, provide the most accurate prediction of Smith Machine bench press 1RM. 1RM Smith Machine bench press strength was measured directly in 12 healthy regular weight trainers (body mass = 80.8 ± 5.7 kg). Two to three days later a linear position transducer attached to the collars on a Smith Machine was used to record $ V_{mean} $ and $ V_{peak} $ during BP-T between 30 and 70% of 1RM (10% increments). Results Repeated measures analysis of variance testing showed that the mean values for slope and ordinate intercept for the regression models at each of the load ranges differed significantly depending on whether $ V_{mean} $ or $ V_{peak} $ were used in the prediction models (P < 0.001). Conversely, the abscissa intercept did not differ significantly between either measure of vertical bar velocity at each load range. The key finding in this study was that 1RM Smith Machine bench press strength can be determined with high relative accuracy by examining $ V_{mean} $ and $ V_{peak} $ during BP-T over three loads, with the most precise models using $ V_{peak} $ during loads representing 30, 40 and 50% of 1RM (R2 = 0.96, SSE = 4.2 kg). Conclusions These preliminary findings indicate that exercise programmers working with normal healthy populations can accurately predict Smith Machine 1RM bench press strength using relatively light load Smith Machine BP-T testing, avoiding the need to expose their clients to potentially injurious loads. © The Author(s). 2018 |
abstractGer |
Background Numerous methods have been proposed that use submaximal loads to predict one repetition maximum (1RM). One common method applies standard linear regression equations to load and average vertical lifting velocity ($ V_{mean} $) data developed during squat jumps or three bench press throw (BP-T). The main aim of this project was to determine which combination of three submaximal loads during BP-T result in the most accurate prediction of 1RM Smith Machine bench press strength in healthy individuals. Methods In this study combinations of three BP-T loads were used to predict 1RM Smith Machine bench press strength. Additionally, we examined whether regression models developed using peak vertical bar velocity ($ V_{peak} $), rather than $ V_{mean} $, provide the most accurate prediction of Smith Machine bench press 1RM. 1RM Smith Machine bench press strength was measured directly in 12 healthy regular weight trainers (body mass = 80.8 ± 5.7 kg). Two to three days later a linear position transducer attached to the collars on a Smith Machine was used to record $ V_{mean} $ and $ V_{peak} $ during BP-T between 30 and 70% of 1RM (10% increments). Results Repeated measures analysis of variance testing showed that the mean values for slope and ordinate intercept for the regression models at each of the load ranges differed significantly depending on whether $ V_{mean} $ or $ V_{peak} $ were used in the prediction models (P < 0.001). Conversely, the abscissa intercept did not differ significantly between either measure of vertical bar velocity at each load range. The key finding in this study was that 1RM Smith Machine bench press strength can be determined with high relative accuracy by examining $ V_{mean} $ and $ V_{peak} $ during BP-T over three loads, with the most precise models using $ V_{peak} $ during loads representing 30, 40 and 50% of 1RM (R2 = 0.96, SSE = 4.2 kg). Conclusions These preliminary findings indicate that exercise programmers working with normal healthy populations can accurately predict Smith Machine 1RM bench press strength using relatively light load Smith Machine BP-T testing, avoiding the need to expose their clients to potentially injurious loads. © The Author(s). 2018 |
abstract_unstemmed |
Background Numerous methods have been proposed that use submaximal loads to predict one repetition maximum (1RM). One common method applies standard linear regression equations to load and average vertical lifting velocity ($ V_{mean} $) data developed during squat jumps or three bench press throw (BP-T). The main aim of this project was to determine which combination of three submaximal loads during BP-T result in the most accurate prediction of 1RM Smith Machine bench press strength in healthy individuals. Methods In this study combinations of three BP-T loads were used to predict 1RM Smith Machine bench press strength. Additionally, we examined whether regression models developed using peak vertical bar velocity ($ V_{peak} $), rather than $ V_{mean} $, provide the most accurate prediction of Smith Machine bench press 1RM. 1RM Smith Machine bench press strength was measured directly in 12 healthy regular weight trainers (body mass = 80.8 ± 5.7 kg). Two to three days later a linear position transducer attached to the collars on a Smith Machine was used to record $ V_{mean} $ and $ V_{peak} $ during BP-T between 30 and 70% of 1RM (10% increments). Results Repeated measures analysis of variance testing showed that the mean values for slope and ordinate intercept for the regression models at each of the load ranges differed significantly depending on whether $ V_{mean} $ or $ V_{peak} $ were used in the prediction models (P < 0.001). Conversely, the abscissa intercept did not differ significantly between either measure of vertical bar velocity at each load range. The key finding in this study was that 1RM Smith Machine bench press strength can be determined with high relative accuracy by examining $ V_{mean} $ and $ V_{peak} $ during BP-T over three loads, with the most precise models using $ V_{peak} $ during loads representing 30, 40 and 50% of 1RM (R2 = 0.96, SSE = 4.2 kg). Conclusions These preliminary findings indicate that exercise programmers working with normal healthy populations can accurately predict Smith Machine 1RM bench press strength using relatively light load Smith Machine BP-T testing, avoiding the need to expose their clients to potentially injurious loads. © The Author(s). 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
The impact of test loads on the accuracy of 1RM prediction using the load-velocity relationship |
url |
https://dx.doi.org/10.1186/s13102-018-0099-z |
remote_bool |
true |
author2 |
Schlaeppi, Michel Hitz, Marina Lorenzetti, Silvio |
author2Str |
Schlaeppi, Michel Hitz, Marina Lorenzetti, Silvio |
ppnlink |
749504323 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13102-018-0099-z |
up_date |
2024-07-03T15:02:41.432Z |
_version_ |
1803570602504617984 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030264316</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519213622.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13102-018-0099-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030264316</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13102-018-0099-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sayers, Mark G. L.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6275-8982</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The impact of test loads on the accuracy of 1RM prediction using the load-velocity relationship</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Numerous methods have been proposed that use submaximal loads to predict one repetition maximum (1RM). One common method applies standard linear regression equations to load and average vertical lifting velocity ($ V_{mean} $) data developed during squat jumps or three bench press throw (BP-T). The main aim of this project was to determine which combination of three submaximal loads during BP-T result in the most accurate prediction of 1RM Smith Machine bench press strength in healthy individuals. Methods In this study combinations of three BP-T loads were used to predict 1RM Smith Machine bench press strength. Additionally, we examined whether regression models developed using peak vertical bar velocity ($ V_{peak} $), rather than $ V_{mean} $, provide the most accurate prediction of Smith Machine bench press 1RM. 1RM Smith Machine bench press strength was measured directly in 12 healthy regular weight trainers (body mass = 80.8 ± 5.7 kg). Two to three days later a linear position transducer attached to the collars on a Smith Machine was used to record $ V_{mean} $ and $ V_{peak} $ during BP-T between 30 and 70% of 1RM (10% increments). Results Repeated measures analysis of variance testing showed that the mean values for slope and ordinate intercept for the regression models at each of the load ranges differed significantly depending on whether $ V_{mean} $ or $ V_{peak} $ were used in the prediction models (P < 0.001). Conversely, the abscissa intercept did not differ significantly between either measure of vertical bar velocity at each load range. The key finding in this study was that 1RM Smith Machine bench press strength can be determined with high relative accuracy by examining $ V_{mean} $ and $ V_{peak} $ during BP-T over three loads, with the most precise models using $ V_{peak} $ during loads representing 30, 40 and 50% of 1RM (R2 = 0.96, SSE = 4.2 kg). Conclusions These preliminary findings indicate that exercise programmers working with normal healthy populations can accurately predict Smith Machine 1RM bench press strength using relatively light load Smith Machine BP-T testing, avoiding the need to expose their clients to potentially injurious loads.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strength assessment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic strength</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Predictive models</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bench press throws</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schlaeppi, Michel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hitz, Marina</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lorenzetti, Silvio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC sports science, medicine & rehabilitation</subfield><subfield code="d">London : BioMed Central, 2013</subfield><subfield code="g">10(2018), 1 vom: 29. Mai</subfield><subfield code="w">(DE-627)749504323</subfield><subfield code="w">(DE-600)2719537-5</subfield><subfield code="x">2052-1847</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:29</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13102-018-0099-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">29</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
score |
7.400937 |