Musical beauty and information compression: Complex to the ear but simple to the mind?
Background The biological origin of music, its universal appeal across human cultures and the cause of its beauty remain mysteries. For example, why is Ludwig Van Beethoven considered a musical genius but Kylie Minogue is not? Possible answers to these questions will be framed in the context of Info...
Ausführliche Beschreibung
Autor*in: |
Hudson, Nicholas J [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Hudson et al; licensee BioMed Central Ltd. 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC Research Notes - London, 2008, 4(2011), 1 vom: 20. Jan. |
---|---|
Übergeordnetes Werk: |
volume:4 ; year:2011 ; number:1 ; day:20 ; month:01 |
Links: |
---|
DOI / URN: |
10.1186/1756-0500-4-9 |
---|
Katalog-ID: |
SPR030276942 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR030276942 | ||
003 | DE-627 | ||
005 | 20230519171257.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2011 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1756-0500-4-9 |2 doi | |
035 | |a (DE-627)SPR030276942 | ||
035 | |a (SPR)1756-0500-4-9-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Hudson, Nicholas J |e verfasserin |4 aut | |
245 | 1 | 0 | |a Musical beauty and information compression: Complex to the ear but simple to the mind? |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Hudson et al; licensee BioMed Central Ltd. 2011 | ||
520 | |a Background The biological origin of music, its universal appeal across human cultures and the cause of its beauty remain mysteries. For example, why is Ludwig Van Beethoven considered a musical genius but Kylie Minogue is not? Possible answers to these questions will be framed in the context of Information Theory. Presentation of the Hypothesis The entire life-long sensory data stream of a human is enormous. The adaptive solution to this problem of scale is information compression, thought to have evolved to better handle, interpret and store sensory data. In modern humans highly sophisticated information compression is clearly manifest in philosophical, mathematical and scientific insights. For example, the Laws of Physics explain apparently complex observations with simple rules. Deep cognitive insights are reported as intrinsically satisfying, implying that at some point in evolution, the practice of successful information compression became linked to the physiological reward system. I hypothesise that the establishment of this "compression and pleasure" connection paved the way for musical appreciation, which subsequently became free (perhaps even inevitable) to emerge once audio compression had become intrinsically pleasurable in its own right. Testing the Hypothesis For a range of compositions, empirically determine the relationship between the listener's pleasure and "lossless" audio compression. I hypothesise that enduring musical masterpieces will possess an interesting objective property: despite apparent complexity, they will also exhibit high compressibility. Implications of the Hypothesis Artistic masterpieces and deep Scientific insights share the common process of data compression. Musical appreciation is a parasite on a much deeper information processing capacity. The coalescence of mathematical and musical talent in exceptional individuals has a parsimonious explanation. Musical geniuses are skilled in composing music that appears highly complex to the ear yet transpires to be highly simple to the mind. The listener's pleasure is influenced by the extent to which the auditory data can be resolved in the simplest terms possible. | ||
650 | 4 | |a Data Compression |7 (dpeaa)DE-He213 | |
650 | 4 | |a Recurrent Neural Network |7 (dpeaa)DE-He213 | |
650 | 4 | |a Compression Algorithm |7 (dpeaa)DE-He213 | |
650 | 4 | |a Lossy Compression |7 (dpeaa)DE-He213 | |
650 | 4 | |a Scientific Insight |7 (dpeaa)DE-He213 | |
773 | 0 | 8 | |i Enthalten in |t BMC Research Notes |d London, 2008 |g 4(2011), 1 vom: 20. Jan. |w (DE-627)559431805 |w (DE-600)2413336-X |x 1756-0500 |7 nnns |
773 | 1 | 8 | |g volume:4 |g year:2011 |g number:1 |g day:20 |g month:01 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1756-0500-4-9 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 4 |j 2011 |e 1 |b 20 |c 01 |
author_variant |
n j h nj njh |
---|---|
matchkey_str |
article:17560500:2011----::uiabatadnomtocmrsinopette |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1186/1756-0500-4-9 doi (DE-627)SPR030276942 (SPR)1756-0500-4-9-e DE-627 ger DE-627 rakwb eng Hudson, Nicholas J verfasserin aut Musical beauty and information compression: Complex to the ear but simple to the mind? 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Hudson et al; licensee BioMed Central Ltd. 2011 Background The biological origin of music, its universal appeal across human cultures and the cause of its beauty remain mysteries. For example, why is Ludwig Van Beethoven considered a musical genius but Kylie Minogue is not? Possible answers to these questions will be framed in the context of Information Theory. Presentation of the Hypothesis The entire life-long sensory data stream of a human is enormous. The adaptive solution to this problem of scale is information compression, thought to have evolved to better handle, interpret and store sensory data. In modern humans highly sophisticated information compression is clearly manifest in philosophical, mathematical and scientific insights. For example, the Laws of Physics explain apparently complex observations with simple rules. Deep cognitive insights are reported as intrinsically satisfying, implying that at some point in evolution, the practice of successful information compression became linked to the physiological reward system. I hypothesise that the establishment of this "compression and pleasure" connection paved the way for musical appreciation, which subsequently became free (perhaps even inevitable) to emerge once audio compression had become intrinsically pleasurable in its own right. Testing the Hypothesis For a range of compositions, empirically determine the relationship between the listener's pleasure and "lossless" audio compression. I hypothesise that enduring musical masterpieces will possess an interesting objective property: despite apparent complexity, they will also exhibit high compressibility. Implications of the Hypothesis Artistic masterpieces and deep Scientific insights share the common process of data compression. Musical appreciation is a parasite on a much deeper information processing capacity. The coalescence of mathematical and musical talent in exceptional individuals has a parsimonious explanation. Musical geniuses are skilled in composing music that appears highly complex to the ear yet transpires to be highly simple to the mind. The listener's pleasure is influenced by the extent to which the auditory data can be resolved in the simplest terms possible. Data Compression (dpeaa)DE-He213 Recurrent Neural Network (dpeaa)DE-He213 Compression Algorithm (dpeaa)DE-He213 Lossy Compression (dpeaa)DE-He213 Scientific Insight (dpeaa)DE-He213 Enthalten in BMC Research Notes London, 2008 4(2011), 1 vom: 20. Jan. (DE-627)559431805 (DE-600)2413336-X 1756-0500 nnns volume:4 year:2011 number:1 day:20 month:01 https://dx.doi.org/10.1186/1756-0500-4-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2011 1 20 01 |
spelling |
10.1186/1756-0500-4-9 doi (DE-627)SPR030276942 (SPR)1756-0500-4-9-e DE-627 ger DE-627 rakwb eng Hudson, Nicholas J verfasserin aut Musical beauty and information compression: Complex to the ear but simple to the mind? 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Hudson et al; licensee BioMed Central Ltd. 2011 Background The biological origin of music, its universal appeal across human cultures and the cause of its beauty remain mysteries. For example, why is Ludwig Van Beethoven considered a musical genius but Kylie Minogue is not? Possible answers to these questions will be framed in the context of Information Theory. Presentation of the Hypothesis The entire life-long sensory data stream of a human is enormous. The adaptive solution to this problem of scale is information compression, thought to have evolved to better handle, interpret and store sensory data. In modern humans highly sophisticated information compression is clearly manifest in philosophical, mathematical and scientific insights. For example, the Laws of Physics explain apparently complex observations with simple rules. Deep cognitive insights are reported as intrinsically satisfying, implying that at some point in evolution, the practice of successful information compression became linked to the physiological reward system. I hypothesise that the establishment of this "compression and pleasure" connection paved the way for musical appreciation, which subsequently became free (perhaps even inevitable) to emerge once audio compression had become intrinsically pleasurable in its own right. Testing the Hypothesis For a range of compositions, empirically determine the relationship between the listener's pleasure and "lossless" audio compression. I hypothesise that enduring musical masterpieces will possess an interesting objective property: despite apparent complexity, they will also exhibit high compressibility. Implications of the Hypothesis Artistic masterpieces and deep Scientific insights share the common process of data compression. Musical appreciation is a parasite on a much deeper information processing capacity. The coalescence of mathematical and musical talent in exceptional individuals has a parsimonious explanation. Musical geniuses are skilled in composing music that appears highly complex to the ear yet transpires to be highly simple to the mind. The listener's pleasure is influenced by the extent to which the auditory data can be resolved in the simplest terms possible. Data Compression (dpeaa)DE-He213 Recurrent Neural Network (dpeaa)DE-He213 Compression Algorithm (dpeaa)DE-He213 Lossy Compression (dpeaa)DE-He213 Scientific Insight (dpeaa)DE-He213 Enthalten in BMC Research Notes London, 2008 4(2011), 1 vom: 20. Jan. (DE-627)559431805 (DE-600)2413336-X 1756-0500 nnns volume:4 year:2011 number:1 day:20 month:01 https://dx.doi.org/10.1186/1756-0500-4-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2011 1 20 01 |
allfields_unstemmed |
10.1186/1756-0500-4-9 doi (DE-627)SPR030276942 (SPR)1756-0500-4-9-e DE-627 ger DE-627 rakwb eng Hudson, Nicholas J verfasserin aut Musical beauty and information compression: Complex to the ear but simple to the mind? 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Hudson et al; licensee BioMed Central Ltd. 2011 Background The biological origin of music, its universal appeal across human cultures and the cause of its beauty remain mysteries. For example, why is Ludwig Van Beethoven considered a musical genius but Kylie Minogue is not? Possible answers to these questions will be framed in the context of Information Theory. Presentation of the Hypothesis The entire life-long sensory data stream of a human is enormous. The adaptive solution to this problem of scale is information compression, thought to have evolved to better handle, interpret and store sensory data. In modern humans highly sophisticated information compression is clearly manifest in philosophical, mathematical and scientific insights. For example, the Laws of Physics explain apparently complex observations with simple rules. Deep cognitive insights are reported as intrinsically satisfying, implying that at some point in evolution, the practice of successful information compression became linked to the physiological reward system. I hypothesise that the establishment of this "compression and pleasure" connection paved the way for musical appreciation, which subsequently became free (perhaps even inevitable) to emerge once audio compression had become intrinsically pleasurable in its own right. Testing the Hypothesis For a range of compositions, empirically determine the relationship between the listener's pleasure and "lossless" audio compression. I hypothesise that enduring musical masterpieces will possess an interesting objective property: despite apparent complexity, they will also exhibit high compressibility. Implications of the Hypothesis Artistic masterpieces and deep Scientific insights share the common process of data compression. Musical appreciation is a parasite on a much deeper information processing capacity. The coalescence of mathematical and musical talent in exceptional individuals has a parsimonious explanation. Musical geniuses are skilled in composing music that appears highly complex to the ear yet transpires to be highly simple to the mind. The listener's pleasure is influenced by the extent to which the auditory data can be resolved in the simplest terms possible. Data Compression (dpeaa)DE-He213 Recurrent Neural Network (dpeaa)DE-He213 Compression Algorithm (dpeaa)DE-He213 Lossy Compression (dpeaa)DE-He213 Scientific Insight (dpeaa)DE-He213 Enthalten in BMC Research Notes London, 2008 4(2011), 1 vom: 20. Jan. (DE-627)559431805 (DE-600)2413336-X 1756-0500 nnns volume:4 year:2011 number:1 day:20 month:01 https://dx.doi.org/10.1186/1756-0500-4-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2011 1 20 01 |
allfieldsGer |
10.1186/1756-0500-4-9 doi (DE-627)SPR030276942 (SPR)1756-0500-4-9-e DE-627 ger DE-627 rakwb eng Hudson, Nicholas J verfasserin aut Musical beauty and information compression: Complex to the ear but simple to the mind? 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Hudson et al; licensee BioMed Central Ltd. 2011 Background The biological origin of music, its universal appeal across human cultures and the cause of its beauty remain mysteries. For example, why is Ludwig Van Beethoven considered a musical genius but Kylie Minogue is not? Possible answers to these questions will be framed in the context of Information Theory. Presentation of the Hypothesis The entire life-long sensory data stream of a human is enormous. The adaptive solution to this problem of scale is information compression, thought to have evolved to better handle, interpret and store sensory data. In modern humans highly sophisticated information compression is clearly manifest in philosophical, mathematical and scientific insights. For example, the Laws of Physics explain apparently complex observations with simple rules. Deep cognitive insights are reported as intrinsically satisfying, implying that at some point in evolution, the practice of successful information compression became linked to the physiological reward system. I hypothesise that the establishment of this "compression and pleasure" connection paved the way for musical appreciation, which subsequently became free (perhaps even inevitable) to emerge once audio compression had become intrinsically pleasurable in its own right. Testing the Hypothesis For a range of compositions, empirically determine the relationship between the listener's pleasure and "lossless" audio compression. I hypothesise that enduring musical masterpieces will possess an interesting objective property: despite apparent complexity, they will also exhibit high compressibility. Implications of the Hypothesis Artistic masterpieces and deep Scientific insights share the common process of data compression. Musical appreciation is a parasite on a much deeper information processing capacity. The coalescence of mathematical and musical talent in exceptional individuals has a parsimonious explanation. Musical geniuses are skilled in composing music that appears highly complex to the ear yet transpires to be highly simple to the mind. The listener's pleasure is influenced by the extent to which the auditory data can be resolved in the simplest terms possible. Data Compression (dpeaa)DE-He213 Recurrent Neural Network (dpeaa)DE-He213 Compression Algorithm (dpeaa)DE-He213 Lossy Compression (dpeaa)DE-He213 Scientific Insight (dpeaa)DE-He213 Enthalten in BMC Research Notes London, 2008 4(2011), 1 vom: 20. Jan. (DE-627)559431805 (DE-600)2413336-X 1756-0500 nnns volume:4 year:2011 number:1 day:20 month:01 https://dx.doi.org/10.1186/1756-0500-4-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2011 1 20 01 |
allfieldsSound |
10.1186/1756-0500-4-9 doi (DE-627)SPR030276942 (SPR)1756-0500-4-9-e DE-627 ger DE-627 rakwb eng Hudson, Nicholas J verfasserin aut Musical beauty and information compression: Complex to the ear but simple to the mind? 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Hudson et al; licensee BioMed Central Ltd. 2011 Background The biological origin of music, its universal appeal across human cultures and the cause of its beauty remain mysteries. For example, why is Ludwig Van Beethoven considered a musical genius but Kylie Minogue is not? Possible answers to these questions will be framed in the context of Information Theory. Presentation of the Hypothesis The entire life-long sensory data stream of a human is enormous. The adaptive solution to this problem of scale is information compression, thought to have evolved to better handle, interpret and store sensory data. In modern humans highly sophisticated information compression is clearly manifest in philosophical, mathematical and scientific insights. For example, the Laws of Physics explain apparently complex observations with simple rules. Deep cognitive insights are reported as intrinsically satisfying, implying that at some point in evolution, the practice of successful information compression became linked to the physiological reward system. I hypothesise that the establishment of this "compression and pleasure" connection paved the way for musical appreciation, which subsequently became free (perhaps even inevitable) to emerge once audio compression had become intrinsically pleasurable in its own right. Testing the Hypothesis For a range of compositions, empirically determine the relationship between the listener's pleasure and "lossless" audio compression. I hypothesise that enduring musical masterpieces will possess an interesting objective property: despite apparent complexity, they will also exhibit high compressibility. Implications of the Hypothesis Artistic masterpieces and deep Scientific insights share the common process of data compression. Musical appreciation is a parasite on a much deeper information processing capacity. The coalescence of mathematical and musical talent in exceptional individuals has a parsimonious explanation. Musical geniuses are skilled in composing music that appears highly complex to the ear yet transpires to be highly simple to the mind. The listener's pleasure is influenced by the extent to which the auditory data can be resolved in the simplest terms possible. Data Compression (dpeaa)DE-He213 Recurrent Neural Network (dpeaa)DE-He213 Compression Algorithm (dpeaa)DE-He213 Lossy Compression (dpeaa)DE-He213 Scientific Insight (dpeaa)DE-He213 Enthalten in BMC Research Notes London, 2008 4(2011), 1 vom: 20. Jan. (DE-627)559431805 (DE-600)2413336-X 1756-0500 nnns volume:4 year:2011 number:1 day:20 month:01 https://dx.doi.org/10.1186/1756-0500-4-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2011 1 20 01 |
language |
English |
source |
Enthalten in BMC Research Notes 4(2011), 1 vom: 20. Jan. volume:4 year:2011 number:1 day:20 month:01 |
sourceStr |
Enthalten in BMC Research Notes 4(2011), 1 vom: 20. Jan. volume:4 year:2011 number:1 day:20 month:01 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Data Compression Recurrent Neural Network Compression Algorithm Lossy Compression Scientific Insight |
isfreeaccess_bool |
true |
container_title |
BMC Research Notes |
authorswithroles_txt_mv |
Hudson, Nicholas J @@aut@@ |
publishDateDaySort_date |
2011-01-20T00:00:00Z |
hierarchy_top_id |
559431805 |
id |
SPR030276942 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030276942</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519171257.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1756-0500-4-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030276942</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1756-0500-4-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hudson, Nicholas J</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Musical beauty and information compression: Complex to the ear but simple to the mind?</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Hudson et al; licensee BioMed Central Ltd. 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The biological origin of music, its universal appeal across human cultures and the cause of its beauty remain mysteries. For example, why is Ludwig Van Beethoven considered a musical genius but Kylie Minogue is not? Possible answers to these questions will be framed in the context of Information Theory. Presentation of the Hypothesis The entire life-long sensory data stream of a human is enormous. The adaptive solution to this problem of scale is information compression, thought to have evolved to better handle, interpret and store sensory data. In modern humans highly sophisticated information compression is clearly manifest in philosophical, mathematical and scientific insights. For example, the Laws of Physics explain apparently complex observations with simple rules. Deep cognitive insights are reported as intrinsically satisfying, implying that at some point in evolution, the practice of successful information compression became linked to the physiological reward system. I hypothesise that the establishment of this "compression and pleasure" connection paved the way for musical appreciation, which subsequently became free (perhaps even inevitable) to emerge once audio compression had become intrinsically pleasurable in its own right. Testing the Hypothesis For a range of compositions, empirically determine the relationship between the listener's pleasure and "lossless" audio compression. I hypothesise that enduring musical masterpieces will possess an interesting objective property: despite apparent complexity, they will also exhibit high compressibility. Implications of the Hypothesis Artistic masterpieces and deep Scientific insights share the common process of data compression. Musical appreciation is a parasite on a much deeper information processing capacity. The coalescence of mathematical and musical talent in exceptional individuals has a parsimonious explanation. Musical geniuses are skilled in composing music that appears highly complex to the ear yet transpires to be highly simple to the mind. The listener's pleasure is influenced by the extent to which the auditory data can be resolved in the simplest terms possible.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data Compression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recurrent Neural Network</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compression Algorithm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lossy Compression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scientific Insight</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC Research Notes</subfield><subfield code="d">London, 2008</subfield><subfield code="g">4(2011), 1 vom: 20. Jan.</subfield><subfield code="w">(DE-627)559431805</subfield><subfield code="w">(DE-600)2413336-X</subfield><subfield code="x">1756-0500</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:1</subfield><subfield code="g">day:20</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1756-0500-4-9</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2011</subfield><subfield code="e">1</subfield><subfield code="b">20</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
author |
Hudson, Nicholas J |
spellingShingle |
Hudson, Nicholas J misc Data Compression misc Recurrent Neural Network misc Compression Algorithm misc Lossy Compression misc Scientific Insight Musical beauty and information compression: Complex to the ear but simple to the mind? |
authorStr |
Hudson, Nicholas J |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)559431805 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1756-0500 |
topic_title |
Musical beauty and information compression: Complex to the ear but simple to the mind? Data Compression (dpeaa)DE-He213 Recurrent Neural Network (dpeaa)DE-He213 Compression Algorithm (dpeaa)DE-He213 Lossy Compression (dpeaa)DE-He213 Scientific Insight (dpeaa)DE-He213 |
topic |
misc Data Compression misc Recurrent Neural Network misc Compression Algorithm misc Lossy Compression misc Scientific Insight |
topic_unstemmed |
misc Data Compression misc Recurrent Neural Network misc Compression Algorithm misc Lossy Compression misc Scientific Insight |
topic_browse |
misc Data Compression misc Recurrent Neural Network misc Compression Algorithm misc Lossy Compression misc Scientific Insight |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC Research Notes |
hierarchy_parent_id |
559431805 |
hierarchy_top_title |
BMC Research Notes |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)559431805 (DE-600)2413336-X |
title |
Musical beauty and information compression: Complex to the ear but simple to the mind? |
ctrlnum |
(DE-627)SPR030276942 (SPR)1756-0500-4-9-e |
title_full |
Musical beauty and information compression: Complex to the ear but simple to the mind? |
author_sort |
Hudson, Nicholas J |
journal |
BMC Research Notes |
journalStr |
BMC Research Notes |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
author_browse |
Hudson, Nicholas J |
container_volume |
4 |
format_se |
Elektronische Aufsätze |
author-letter |
Hudson, Nicholas J |
doi_str_mv |
10.1186/1756-0500-4-9 |
title_sort |
musical beauty and information compression: complex to the ear but simple to the mind? |
title_auth |
Musical beauty and information compression: Complex to the ear but simple to the mind? |
abstract |
Background The biological origin of music, its universal appeal across human cultures and the cause of its beauty remain mysteries. For example, why is Ludwig Van Beethoven considered a musical genius but Kylie Minogue is not? Possible answers to these questions will be framed in the context of Information Theory. Presentation of the Hypothesis The entire life-long sensory data stream of a human is enormous. The adaptive solution to this problem of scale is information compression, thought to have evolved to better handle, interpret and store sensory data. In modern humans highly sophisticated information compression is clearly manifest in philosophical, mathematical and scientific insights. For example, the Laws of Physics explain apparently complex observations with simple rules. Deep cognitive insights are reported as intrinsically satisfying, implying that at some point in evolution, the practice of successful information compression became linked to the physiological reward system. I hypothesise that the establishment of this "compression and pleasure" connection paved the way for musical appreciation, which subsequently became free (perhaps even inevitable) to emerge once audio compression had become intrinsically pleasurable in its own right. Testing the Hypothesis For a range of compositions, empirically determine the relationship between the listener's pleasure and "lossless" audio compression. I hypothesise that enduring musical masterpieces will possess an interesting objective property: despite apparent complexity, they will also exhibit high compressibility. Implications of the Hypothesis Artistic masterpieces and deep Scientific insights share the common process of data compression. Musical appreciation is a parasite on a much deeper information processing capacity. The coalescence of mathematical and musical talent in exceptional individuals has a parsimonious explanation. Musical geniuses are skilled in composing music that appears highly complex to the ear yet transpires to be highly simple to the mind. The listener's pleasure is influenced by the extent to which the auditory data can be resolved in the simplest terms possible. © Hudson et al; licensee BioMed Central Ltd. 2011 |
abstractGer |
Background The biological origin of music, its universal appeal across human cultures and the cause of its beauty remain mysteries. For example, why is Ludwig Van Beethoven considered a musical genius but Kylie Minogue is not? Possible answers to these questions will be framed in the context of Information Theory. Presentation of the Hypothesis The entire life-long sensory data stream of a human is enormous. The adaptive solution to this problem of scale is information compression, thought to have evolved to better handle, interpret and store sensory data. In modern humans highly sophisticated information compression is clearly manifest in philosophical, mathematical and scientific insights. For example, the Laws of Physics explain apparently complex observations with simple rules. Deep cognitive insights are reported as intrinsically satisfying, implying that at some point in evolution, the practice of successful information compression became linked to the physiological reward system. I hypothesise that the establishment of this "compression and pleasure" connection paved the way for musical appreciation, which subsequently became free (perhaps even inevitable) to emerge once audio compression had become intrinsically pleasurable in its own right. Testing the Hypothesis For a range of compositions, empirically determine the relationship between the listener's pleasure and "lossless" audio compression. I hypothesise that enduring musical masterpieces will possess an interesting objective property: despite apparent complexity, they will also exhibit high compressibility. Implications of the Hypothesis Artistic masterpieces and deep Scientific insights share the common process of data compression. Musical appreciation is a parasite on a much deeper information processing capacity. The coalescence of mathematical and musical talent in exceptional individuals has a parsimonious explanation. Musical geniuses are skilled in composing music that appears highly complex to the ear yet transpires to be highly simple to the mind. The listener's pleasure is influenced by the extent to which the auditory data can be resolved in the simplest terms possible. © Hudson et al; licensee BioMed Central Ltd. 2011 |
abstract_unstemmed |
Background The biological origin of music, its universal appeal across human cultures and the cause of its beauty remain mysteries. For example, why is Ludwig Van Beethoven considered a musical genius but Kylie Minogue is not? Possible answers to these questions will be framed in the context of Information Theory. Presentation of the Hypothesis The entire life-long sensory data stream of a human is enormous. The adaptive solution to this problem of scale is information compression, thought to have evolved to better handle, interpret and store sensory data. In modern humans highly sophisticated information compression is clearly manifest in philosophical, mathematical and scientific insights. For example, the Laws of Physics explain apparently complex observations with simple rules. Deep cognitive insights are reported as intrinsically satisfying, implying that at some point in evolution, the practice of successful information compression became linked to the physiological reward system. I hypothesise that the establishment of this "compression and pleasure" connection paved the way for musical appreciation, which subsequently became free (perhaps even inevitable) to emerge once audio compression had become intrinsically pleasurable in its own right. Testing the Hypothesis For a range of compositions, empirically determine the relationship between the listener's pleasure and "lossless" audio compression. I hypothesise that enduring musical masterpieces will possess an interesting objective property: despite apparent complexity, they will also exhibit high compressibility. Implications of the Hypothesis Artistic masterpieces and deep Scientific insights share the common process of data compression. Musical appreciation is a parasite on a much deeper information processing capacity. The coalescence of mathematical and musical talent in exceptional individuals has a parsimonious explanation. Musical geniuses are skilled in composing music that appears highly complex to the ear yet transpires to be highly simple to the mind. The listener's pleasure is influenced by the extent to which the auditory data can be resolved in the simplest terms possible. © Hudson et al; licensee BioMed Central Ltd. 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Musical beauty and information compression: Complex to the ear but simple to the mind? |
url |
https://dx.doi.org/10.1186/1756-0500-4-9 |
remote_bool |
true |
ppnlink |
559431805 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1756-0500-4-9 |
up_date |
2024-07-03T15:07:32.686Z |
_version_ |
1803570907928592384 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030276942</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519171257.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1756-0500-4-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030276942</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1756-0500-4-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hudson, Nicholas J</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Musical beauty and information compression: Complex to the ear but simple to the mind?</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Hudson et al; licensee BioMed Central Ltd. 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The biological origin of music, its universal appeal across human cultures and the cause of its beauty remain mysteries. For example, why is Ludwig Van Beethoven considered a musical genius but Kylie Minogue is not? Possible answers to these questions will be framed in the context of Information Theory. Presentation of the Hypothesis The entire life-long sensory data stream of a human is enormous. The adaptive solution to this problem of scale is information compression, thought to have evolved to better handle, interpret and store sensory data. In modern humans highly sophisticated information compression is clearly manifest in philosophical, mathematical and scientific insights. For example, the Laws of Physics explain apparently complex observations with simple rules. Deep cognitive insights are reported as intrinsically satisfying, implying that at some point in evolution, the practice of successful information compression became linked to the physiological reward system. I hypothesise that the establishment of this "compression and pleasure" connection paved the way for musical appreciation, which subsequently became free (perhaps even inevitable) to emerge once audio compression had become intrinsically pleasurable in its own right. Testing the Hypothesis For a range of compositions, empirically determine the relationship between the listener's pleasure and "lossless" audio compression. I hypothesise that enduring musical masterpieces will possess an interesting objective property: despite apparent complexity, they will also exhibit high compressibility. Implications of the Hypothesis Artistic masterpieces and deep Scientific insights share the common process of data compression. Musical appreciation is a parasite on a much deeper information processing capacity. The coalescence of mathematical and musical talent in exceptional individuals has a parsimonious explanation. Musical geniuses are skilled in composing music that appears highly complex to the ear yet transpires to be highly simple to the mind. The listener's pleasure is influenced by the extent to which the auditory data can be resolved in the simplest terms possible.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data Compression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recurrent Neural Network</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compression Algorithm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lossy Compression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scientific Insight</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC Research Notes</subfield><subfield code="d">London, 2008</subfield><subfield code="g">4(2011), 1 vom: 20. Jan.</subfield><subfield code="w">(DE-627)559431805</subfield><subfield code="w">(DE-600)2413336-X</subfield><subfield code="x">1756-0500</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:1</subfield><subfield code="g">day:20</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1756-0500-4-9</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2011</subfield><subfield code="e">1</subfield><subfield code="b">20</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
score |
7.398144 |