Peripheral blood gene expression: it all boils down to the RNA collection tubes
Background Gene expression profiling from peripheral blood is a valuable tool for biomarker discovery in clinical studies. Different whole blood RNA collection and processing methods are highly variable and might confound comparisons of results across studies. The main aim of the study was to compar...
Ausführliche Beschreibung
Autor*in: |
Menke, Andreas [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Menke et al; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
---|
Übergeordnetes Werk: |
Enthalten in: BMC Research Notes - London, 2008, 5(2012), 1 vom: 04. Jan. |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2012 ; number:1 ; day:04 ; month:01 |
Links: |
---|
DOI / URN: |
10.1186/1756-0500-5-1 |
---|
Katalog-ID: |
SPR030280990 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR030280990 | ||
003 | DE-627 | ||
005 | 20230519080826.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2012 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1756-0500-5-1 |2 doi | |
035 | |a (DE-627)SPR030280990 | ||
035 | |a (SPR)1756-0500-5-1-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Menke, Andreas |e verfasserin |4 aut | |
245 | 1 | 0 | |a Peripheral blood gene expression: it all boils down to the RNA collection tubes |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Menke et al; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( | ||
520 | |a Background Gene expression profiling from peripheral blood is a valuable tool for biomarker discovery in clinical studies. Different whole blood RNA collection and processing methods are highly variable and might confound comparisons of results across studies. The main aim of the study was to compare genome-wide gene expression profiles obtained from the two widely used commercially available whole blood RNA collection systems - PAXgene™ and Tempus™ tubes. Comparisons of present call rates, variances, correlations and influence of globin reduction across the two collection systems was performed using in vivo glucocorticoid stimulation in 24 peripheral blood samples from three individuals. Results RNA quality, yield and numbers of detected transcripts from the two RNA collection systems was comparable, with no significant differences between the tube types. Globin reduction resulted in a significant increase in present call rates (p = 8.17 × $ 10^{-5} $ and p = 1.95 × $ 10^{-3} $ in PAXgene™ and Tempus™ tubes respectively) and significant decrease in gene expression variance in both RNA collection tubes (p = 0.0025 and p = 0.041 in PAXgene™ and Tempus™ tubes respectively). Comparisons of glucocorticoid receptor-stimulated gene expression profiles between the two collection tube systems revealed an overlap of only 17 to 54%, depending on the stringency level of the statistical thresholds. This overlap increased by 1-8% when the RNA samples were processed to remove the globin mRNA. Conclusion RNA obtained from PAXgene™ and Tempus™ tubes was comparable in terms of quality and yield, however, detectable gene expression changes after glucocorticoid receptor stimulation were distinct, with an overlap of only up to 46% between the two collection systems. This overlap increased to 54% when the samples were depleted of globin mRNA and drastically reduced to 17-18% when only gene expression differences with a fold change greater than 2.0 were assessed. These results indicate that gene expression profiles obtained from PAXgene™ and Tempus™ differ drastically and should not be analyzed together. These data suggest that researchers must exert caution while interpreting expression profiles obtained through different RNA collection tubes. | ||
650 | 4 | |a Blood Gene Expression |7 (dpeaa)DE-He213 | |
650 | 4 | |a Globin mRNA |7 (dpeaa)DE-He213 | |
650 | 4 | |a Impact Gene Expression |7 (dpeaa)DE-He213 | |
650 | 4 | |a Globin Reduction |7 (dpeaa)DE-He213 | |
650 | 4 | |a Peripheral Blood Gene Expression |7 (dpeaa)DE-He213 | |
700 | 1 | |a Rex-Haffner, Monika |4 aut | |
700 | 1 | |a Klengel, Torsten |4 aut | |
700 | 1 | |a Binder, Elisabeth B |4 aut | |
700 | 1 | |a Mehta, Divya |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC Research Notes |d London, 2008 |g 5(2012), 1 vom: 04. Jan. |w (DE-627)559431805 |w (DE-600)2413336-X |x 1756-0500 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2012 |g number:1 |g day:04 |g month:01 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1756-0500-5-1 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 5 |j 2012 |e 1 |b 04 |c 01 |
author_variant |
a m am m r h mrh t k tk e b b eb ebb d m dm |
---|---|
matchkey_str |
article:17560500:2012----::eihrllognepesoialoldwtte |
hierarchy_sort_str |
2012 |
publishDate |
2012 |
allfields |
10.1186/1756-0500-5-1 doi (DE-627)SPR030280990 (SPR)1756-0500-5-1-e DE-627 ger DE-627 rakwb eng Menke, Andreas verfasserin aut Peripheral blood gene expression: it all boils down to the RNA collection tubes 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Menke et al; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Gene expression profiling from peripheral blood is a valuable tool for biomarker discovery in clinical studies. Different whole blood RNA collection and processing methods are highly variable and might confound comparisons of results across studies. The main aim of the study was to compare genome-wide gene expression profiles obtained from the two widely used commercially available whole blood RNA collection systems - PAXgene™ and Tempus™ tubes. Comparisons of present call rates, variances, correlations and influence of globin reduction across the two collection systems was performed using in vivo glucocorticoid stimulation in 24 peripheral blood samples from three individuals. Results RNA quality, yield and numbers of detected transcripts from the two RNA collection systems was comparable, with no significant differences between the tube types. Globin reduction resulted in a significant increase in present call rates (p = 8.17 × $ 10^{-5} $ and p = 1.95 × $ 10^{-3} $ in PAXgene™ and Tempus™ tubes respectively) and significant decrease in gene expression variance in both RNA collection tubes (p = 0.0025 and p = 0.041 in PAXgene™ and Tempus™ tubes respectively). Comparisons of glucocorticoid receptor-stimulated gene expression profiles between the two collection tube systems revealed an overlap of only 17 to 54%, depending on the stringency level of the statistical thresholds. This overlap increased by 1-8% when the RNA samples were processed to remove the globin mRNA. Conclusion RNA obtained from PAXgene™ and Tempus™ tubes was comparable in terms of quality and yield, however, detectable gene expression changes after glucocorticoid receptor stimulation were distinct, with an overlap of only up to 46% between the two collection systems. This overlap increased to 54% when the samples were depleted of globin mRNA and drastically reduced to 17-18% when only gene expression differences with a fold change greater than 2.0 were assessed. These results indicate that gene expression profiles obtained from PAXgene™ and Tempus™ differ drastically and should not be analyzed together. These data suggest that researchers must exert caution while interpreting expression profiles obtained through different RNA collection tubes. Blood Gene Expression (dpeaa)DE-He213 Globin mRNA (dpeaa)DE-He213 Impact Gene Expression (dpeaa)DE-He213 Globin Reduction (dpeaa)DE-He213 Peripheral Blood Gene Expression (dpeaa)DE-He213 Rex-Haffner, Monika aut Klengel, Torsten aut Binder, Elisabeth B aut Mehta, Divya aut Enthalten in BMC Research Notes London, 2008 5(2012), 1 vom: 04. Jan. (DE-627)559431805 (DE-600)2413336-X 1756-0500 nnns volume:5 year:2012 number:1 day:04 month:01 https://dx.doi.org/10.1186/1756-0500-5-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2012 1 04 01 |
spelling |
10.1186/1756-0500-5-1 doi (DE-627)SPR030280990 (SPR)1756-0500-5-1-e DE-627 ger DE-627 rakwb eng Menke, Andreas verfasserin aut Peripheral blood gene expression: it all boils down to the RNA collection tubes 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Menke et al; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Gene expression profiling from peripheral blood is a valuable tool for biomarker discovery in clinical studies. Different whole blood RNA collection and processing methods are highly variable and might confound comparisons of results across studies. The main aim of the study was to compare genome-wide gene expression profiles obtained from the two widely used commercially available whole blood RNA collection systems - PAXgene™ and Tempus™ tubes. Comparisons of present call rates, variances, correlations and influence of globin reduction across the two collection systems was performed using in vivo glucocorticoid stimulation in 24 peripheral blood samples from three individuals. Results RNA quality, yield and numbers of detected transcripts from the two RNA collection systems was comparable, with no significant differences between the tube types. Globin reduction resulted in a significant increase in present call rates (p = 8.17 × $ 10^{-5} $ and p = 1.95 × $ 10^{-3} $ in PAXgene™ and Tempus™ tubes respectively) and significant decrease in gene expression variance in both RNA collection tubes (p = 0.0025 and p = 0.041 in PAXgene™ and Tempus™ tubes respectively). Comparisons of glucocorticoid receptor-stimulated gene expression profiles between the two collection tube systems revealed an overlap of only 17 to 54%, depending on the stringency level of the statistical thresholds. This overlap increased by 1-8% when the RNA samples were processed to remove the globin mRNA. Conclusion RNA obtained from PAXgene™ and Tempus™ tubes was comparable in terms of quality and yield, however, detectable gene expression changes after glucocorticoid receptor stimulation were distinct, with an overlap of only up to 46% between the two collection systems. This overlap increased to 54% when the samples were depleted of globin mRNA and drastically reduced to 17-18% when only gene expression differences with a fold change greater than 2.0 were assessed. These results indicate that gene expression profiles obtained from PAXgene™ and Tempus™ differ drastically and should not be analyzed together. These data suggest that researchers must exert caution while interpreting expression profiles obtained through different RNA collection tubes. Blood Gene Expression (dpeaa)DE-He213 Globin mRNA (dpeaa)DE-He213 Impact Gene Expression (dpeaa)DE-He213 Globin Reduction (dpeaa)DE-He213 Peripheral Blood Gene Expression (dpeaa)DE-He213 Rex-Haffner, Monika aut Klengel, Torsten aut Binder, Elisabeth B aut Mehta, Divya aut Enthalten in BMC Research Notes London, 2008 5(2012), 1 vom: 04. Jan. (DE-627)559431805 (DE-600)2413336-X 1756-0500 nnns volume:5 year:2012 number:1 day:04 month:01 https://dx.doi.org/10.1186/1756-0500-5-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2012 1 04 01 |
allfields_unstemmed |
10.1186/1756-0500-5-1 doi (DE-627)SPR030280990 (SPR)1756-0500-5-1-e DE-627 ger DE-627 rakwb eng Menke, Andreas verfasserin aut Peripheral blood gene expression: it all boils down to the RNA collection tubes 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Menke et al; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Gene expression profiling from peripheral blood is a valuable tool for biomarker discovery in clinical studies. Different whole blood RNA collection and processing methods are highly variable and might confound comparisons of results across studies. The main aim of the study was to compare genome-wide gene expression profiles obtained from the two widely used commercially available whole blood RNA collection systems - PAXgene™ and Tempus™ tubes. Comparisons of present call rates, variances, correlations and influence of globin reduction across the two collection systems was performed using in vivo glucocorticoid stimulation in 24 peripheral blood samples from three individuals. Results RNA quality, yield and numbers of detected transcripts from the two RNA collection systems was comparable, with no significant differences between the tube types. Globin reduction resulted in a significant increase in present call rates (p = 8.17 × $ 10^{-5} $ and p = 1.95 × $ 10^{-3} $ in PAXgene™ and Tempus™ tubes respectively) and significant decrease in gene expression variance in both RNA collection tubes (p = 0.0025 and p = 0.041 in PAXgene™ and Tempus™ tubes respectively). Comparisons of glucocorticoid receptor-stimulated gene expression profiles between the two collection tube systems revealed an overlap of only 17 to 54%, depending on the stringency level of the statistical thresholds. This overlap increased by 1-8% when the RNA samples were processed to remove the globin mRNA. Conclusion RNA obtained from PAXgene™ and Tempus™ tubes was comparable in terms of quality and yield, however, detectable gene expression changes after glucocorticoid receptor stimulation were distinct, with an overlap of only up to 46% between the two collection systems. This overlap increased to 54% when the samples were depleted of globin mRNA and drastically reduced to 17-18% when only gene expression differences with a fold change greater than 2.0 were assessed. These results indicate that gene expression profiles obtained from PAXgene™ and Tempus™ differ drastically and should not be analyzed together. These data suggest that researchers must exert caution while interpreting expression profiles obtained through different RNA collection tubes. Blood Gene Expression (dpeaa)DE-He213 Globin mRNA (dpeaa)DE-He213 Impact Gene Expression (dpeaa)DE-He213 Globin Reduction (dpeaa)DE-He213 Peripheral Blood Gene Expression (dpeaa)DE-He213 Rex-Haffner, Monika aut Klengel, Torsten aut Binder, Elisabeth B aut Mehta, Divya aut Enthalten in BMC Research Notes London, 2008 5(2012), 1 vom: 04. Jan. (DE-627)559431805 (DE-600)2413336-X 1756-0500 nnns volume:5 year:2012 number:1 day:04 month:01 https://dx.doi.org/10.1186/1756-0500-5-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2012 1 04 01 |
allfieldsGer |
10.1186/1756-0500-5-1 doi (DE-627)SPR030280990 (SPR)1756-0500-5-1-e DE-627 ger DE-627 rakwb eng Menke, Andreas verfasserin aut Peripheral blood gene expression: it all boils down to the RNA collection tubes 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Menke et al; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Gene expression profiling from peripheral blood is a valuable tool for biomarker discovery in clinical studies. Different whole blood RNA collection and processing methods are highly variable and might confound comparisons of results across studies. The main aim of the study was to compare genome-wide gene expression profiles obtained from the two widely used commercially available whole blood RNA collection systems - PAXgene™ and Tempus™ tubes. Comparisons of present call rates, variances, correlations and influence of globin reduction across the two collection systems was performed using in vivo glucocorticoid stimulation in 24 peripheral blood samples from three individuals. Results RNA quality, yield and numbers of detected transcripts from the two RNA collection systems was comparable, with no significant differences between the tube types. Globin reduction resulted in a significant increase in present call rates (p = 8.17 × $ 10^{-5} $ and p = 1.95 × $ 10^{-3} $ in PAXgene™ and Tempus™ tubes respectively) and significant decrease in gene expression variance in both RNA collection tubes (p = 0.0025 and p = 0.041 in PAXgene™ and Tempus™ tubes respectively). Comparisons of glucocorticoid receptor-stimulated gene expression profiles between the two collection tube systems revealed an overlap of only 17 to 54%, depending on the stringency level of the statistical thresholds. This overlap increased by 1-8% when the RNA samples were processed to remove the globin mRNA. Conclusion RNA obtained from PAXgene™ and Tempus™ tubes was comparable in terms of quality and yield, however, detectable gene expression changes after glucocorticoid receptor stimulation were distinct, with an overlap of only up to 46% between the two collection systems. This overlap increased to 54% when the samples were depleted of globin mRNA and drastically reduced to 17-18% when only gene expression differences with a fold change greater than 2.0 were assessed. These results indicate that gene expression profiles obtained from PAXgene™ and Tempus™ differ drastically and should not be analyzed together. These data suggest that researchers must exert caution while interpreting expression profiles obtained through different RNA collection tubes. Blood Gene Expression (dpeaa)DE-He213 Globin mRNA (dpeaa)DE-He213 Impact Gene Expression (dpeaa)DE-He213 Globin Reduction (dpeaa)DE-He213 Peripheral Blood Gene Expression (dpeaa)DE-He213 Rex-Haffner, Monika aut Klengel, Torsten aut Binder, Elisabeth B aut Mehta, Divya aut Enthalten in BMC Research Notes London, 2008 5(2012), 1 vom: 04. Jan. (DE-627)559431805 (DE-600)2413336-X 1756-0500 nnns volume:5 year:2012 number:1 day:04 month:01 https://dx.doi.org/10.1186/1756-0500-5-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2012 1 04 01 |
allfieldsSound |
10.1186/1756-0500-5-1 doi (DE-627)SPR030280990 (SPR)1756-0500-5-1-e DE-627 ger DE-627 rakwb eng Menke, Andreas verfasserin aut Peripheral blood gene expression: it all boils down to the RNA collection tubes 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Menke et al; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Gene expression profiling from peripheral blood is a valuable tool for biomarker discovery in clinical studies. Different whole blood RNA collection and processing methods are highly variable and might confound comparisons of results across studies. The main aim of the study was to compare genome-wide gene expression profiles obtained from the two widely used commercially available whole blood RNA collection systems - PAXgene™ and Tempus™ tubes. Comparisons of present call rates, variances, correlations and influence of globin reduction across the two collection systems was performed using in vivo glucocorticoid stimulation in 24 peripheral blood samples from three individuals. Results RNA quality, yield and numbers of detected transcripts from the two RNA collection systems was comparable, with no significant differences between the tube types. Globin reduction resulted in a significant increase in present call rates (p = 8.17 × $ 10^{-5} $ and p = 1.95 × $ 10^{-3} $ in PAXgene™ and Tempus™ tubes respectively) and significant decrease in gene expression variance in both RNA collection tubes (p = 0.0025 and p = 0.041 in PAXgene™ and Tempus™ tubes respectively). Comparisons of glucocorticoid receptor-stimulated gene expression profiles between the two collection tube systems revealed an overlap of only 17 to 54%, depending on the stringency level of the statistical thresholds. This overlap increased by 1-8% when the RNA samples were processed to remove the globin mRNA. Conclusion RNA obtained from PAXgene™ and Tempus™ tubes was comparable in terms of quality and yield, however, detectable gene expression changes after glucocorticoid receptor stimulation were distinct, with an overlap of only up to 46% between the two collection systems. This overlap increased to 54% when the samples were depleted of globin mRNA and drastically reduced to 17-18% when only gene expression differences with a fold change greater than 2.0 were assessed. These results indicate that gene expression profiles obtained from PAXgene™ and Tempus™ differ drastically and should not be analyzed together. These data suggest that researchers must exert caution while interpreting expression profiles obtained through different RNA collection tubes. Blood Gene Expression (dpeaa)DE-He213 Globin mRNA (dpeaa)DE-He213 Impact Gene Expression (dpeaa)DE-He213 Globin Reduction (dpeaa)DE-He213 Peripheral Blood Gene Expression (dpeaa)DE-He213 Rex-Haffner, Monika aut Klengel, Torsten aut Binder, Elisabeth B aut Mehta, Divya aut Enthalten in BMC Research Notes London, 2008 5(2012), 1 vom: 04. Jan. (DE-627)559431805 (DE-600)2413336-X 1756-0500 nnns volume:5 year:2012 number:1 day:04 month:01 https://dx.doi.org/10.1186/1756-0500-5-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2012 1 04 01 |
language |
English |
source |
Enthalten in BMC Research Notes 5(2012), 1 vom: 04. Jan. volume:5 year:2012 number:1 day:04 month:01 |
sourceStr |
Enthalten in BMC Research Notes 5(2012), 1 vom: 04. Jan. volume:5 year:2012 number:1 day:04 month:01 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Blood Gene Expression Globin mRNA Impact Gene Expression Globin Reduction Peripheral Blood Gene Expression |
isfreeaccess_bool |
true |
container_title |
BMC Research Notes |
authorswithroles_txt_mv |
Menke, Andreas @@aut@@ Rex-Haffner, Monika @@aut@@ Klengel, Torsten @@aut@@ Binder, Elisabeth B @@aut@@ Mehta, Divya @@aut@@ |
publishDateDaySort_date |
2012-01-04T00:00:00Z |
hierarchy_top_id |
559431805 |
id |
SPR030280990 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030280990</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519080826.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1756-0500-5-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030280990</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1756-0500-5-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Menke, Andreas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Peripheral blood gene expression: it all boils down to the RNA collection tubes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Menke et al; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Gene expression profiling from peripheral blood is a valuable tool for biomarker discovery in clinical studies. Different whole blood RNA collection and processing methods are highly variable and might confound comparisons of results across studies. The main aim of the study was to compare genome-wide gene expression profiles obtained from the two widely used commercially available whole blood RNA collection systems - PAXgene™ and Tempus™ tubes. Comparisons of present call rates, variances, correlations and influence of globin reduction across the two collection systems was performed using in vivo glucocorticoid stimulation in 24 peripheral blood samples from three individuals. Results RNA quality, yield and numbers of detected transcripts from the two RNA collection systems was comparable, with no significant differences between the tube types. Globin reduction resulted in a significant increase in present call rates (p = 8.17 × $ 10^{-5} $ and p = 1.95 × $ 10^{-3} $ in PAXgene™ and Tempus™ tubes respectively) and significant decrease in gene expression variance in both RNA collection tubes (p = 0.0025 and p = 0.041 in PAXgene™ and Tempus™ tubes respectively). Comparisons of glucocorticoid receptor-stimulated gene expression profiles between the two collection tube systems revealed an overlap of only 17 to 54%, depending on the stringency level of the statistical thresholds. This overlap increased by 1-8% when the RNA samples were processed to remove the globin mRNA. Conclusion RNA obtained from PAXgene™ and Tempus™ tubes was comparable in terms of quality and yield, however, detectable gene expression changes after glucocorticoid receptor stimulation were distinct, with an overlap of only up to 46% between the two collection systems. This overlap increased to 54% when the samples were depleted of globin mRNA and drastically reduced to 17-18% when only gene expression differences with a fold change greater than 2.0 were assessed. These results indicate that gene expression profiles obtained from PAXgene™ and Tempus™ differ drastically and should not be analyzed together. These data suggest that researchers must exert caution while interpreting expression profiles obtained through different RNA collection tubes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood Gene Expression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Globin mRNA</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Impact Gene Expression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Globin Reduction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Peripheral Blood Gene Expression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rex-Haffner, Monika</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Klengel, Torsten</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Binder, Elisabeth B</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mehta, Divya</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC Research Notes</subfield><subfield code="d">London, 2008</subfield><subfield code="g">5(2012), 1 vom: 04. Jan.</subfield><subfield code="w">(DE-627)559431805</subfield><subfield code="w">(DE-600)2413336-X</subfield><subfield code="x">1756-0500</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1</subfield><subfield code="g">day:04</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1756-0500-5-1</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2012</subfield><subfield code="e">1</subfield><subfield code="b">04</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
author |
Menke, Andreas |
spellingShingle |
Menke, Andreas misc Blood Gene Expression misc Globin mRNA misc Impact Gene Expression misc Globin Reduction misc Peripheral Blood Gene Expression Peripheral blood gene expression: it all boils down to the RNA collection tubes |
authorStr |
Menke, Andreas |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)559431805 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1756-0500 |
topic_title |
Peripheral blood gene expression: it all boils down to the RNA collection tubes Blood Gene Expression (dpeaa)DE-He213 Globin mRNA (dpeaa)DE-He213 Impact Gene Expression (dpeaa)DE-He213 Globin Reduction (dpeaa)DE-He213 Peripheral Blood Gene Expression (dpeaa)DE-He213 |
topic |
misc Blood Gene Expression misc Globin mRNA misc Impact Gene Expression misc Globin Reduction misc Peripheral Blood Gene Expression |
topic_unstemmed |
misc Blood Gene Expression misc Globin mRNA misc Impact Gene Expression misc Globin Reduction misc Peripheral Blood Gene Expression |
topic_browse |
misc Blood Gene Expression misc Globin mRNA misc Impact Gene Expression misc Globin Reduction misc Peripheral Blood Gene Expression |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC Research Notes |
hierarchy_parent_id |
559431805 |
hierarchy_top_title |
BMC Research Notes |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)559431805 (DE-600)2413336-X |
title |
Peripheral blood gene expression: it all boils down to the RNA collection tubes |
ctrlnum |
(DE-627)SPR030280990 (SPR)1756-0500-5-1-e |
title_full |
Peripheral blood gene expression: it all boils down to the RNA collection tubes |
author_sort |
Menke, Andreas |
journal |
BMC Research Notes |
journalStr |
BMC Research Notes |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
author_browse |
Menke, Andreas Rex-Haffner, Monika Klengel, Torsten Binder, Elisabeth B Mehta, Divya |
container_volume |
5 |
format_se |
Elektronische Aufsätze |
author-letter |
Menke, Andreas |
doi_str_mv |
10.1186/1756-0500-5-1 |
title_sort |
peripheral blood gene expression: it all boils down to the rna collection tubes |
title_auth |
Peripheral blood gene expression: it all boils down to the RNA collection tubes |
abstract |
Background Gene expression profiling from peripheral blood is a valuable tool for biomarker discovery in clinical studies. Different whole blood RNA collection and processing methods are highly variable and might confound comparisons of results across studies. The main aim of the study was to compare genome-wide gene expression profiles obtained from the two widely used commercially available whole blood RNA collection systems - PAXgene™ and Tempus™ tubes. Comparisons of present call rates, variances, correlations and influence of globin reduction across the two collection systems was performed using in vivo glucocorticoid stimulation in 24 peripheral blood samples from three individuals. Results RNA quality, yield and numbers of detected transcripts from the two RNA collection systems was comparable, with no significant differences between the tube types. Globin reduction resulted in a significant increase in present call rates (p = 8.17 × $ 10^{-5} $ and p = 1.95 × $ 10^{-3} $ in PAXgene™ and Tempus™ tubes respectively) and significant decrease in gene expression variance in both RNA collection tubes (p = 0.0025 and p = 0.041 in PAXgene™ and Tempus™ tubes respectively). Comparisons of glucocorticoid receptor-stimulated gene expression profiles between the two collection tube systems revealed an overlap of only 17 to 54%, depending on the stringency level of the statistical thresholds. This overlap increased by 1-8% when the RNA samples were processed to remove the globin mRNA. Conclusion RNA obtained from PAXgene™ and Tempus™ tubes was comparable in terms of quality and yield, however, detectable gene expression changes after glucocorticoid receptor stimulation were distinct, with an overlap of only up to 46% between the two collection systems. This overlap increased to 54% when the samples were depleted of globin mRNA and drastically reduced to 17-18% when only gene expression differences with a fold change greater than 2.0 were assessed. These results indicate that gene expression profiles obtained from PAXgene™ and Tempus™ differ drastically and should not be analyzed together. These data suggest that researchers must exert caution while interpreting expression profiles obtained through different RNA collection tubes. © Menke et al; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
abstractGer |
Background Gene expression profiling from peripheral blood is a valuable tool for biomarker discovery in clinical studies. Different whole blood RNA collection and processing methods are highly variable and might confound comparisons of results across studies. The main aim of the study was to compare genome-wide gene expression profiles obtained from the two widely used commercially available whole blood RNA collection systems - PAXgene™ and Tempus™ tubes. Comparisons of present call rates, variances, correlations and influence of globin reduction across the two collection systems was performed using in vivo glucocorticoid stimulation in 24 peripheral blood samples from three individuals. Results RNA quality, yield and numbers of detected transcripts from the two RNA collection systems was comparable, with no significant differences between the tube types. Globin reduction resulted in a significant increase in present call rates (p = 8.17 × $ 10^{-5} $ and p = 1.95 × $ 10^{-3} $ in PAXgene™ and Tempus™ tubes respectively) and significant decrease in gene expression variance in both RNA collection tubes (p = 0.0025 and p = 0.041 in PAXgene™ and Tempus™ tubes respectively). Comparisons of glucocorticoid receptor-stimulated gene expression profiles between the two collection tube systems revealed an overlap of only 17 to 54%, depending on the stringency level of the statistical thresholds. This overlap increased by 1-8% when the RNA samples were processed to remove the globin mRNA. Conclusion RNA obtained from PAXgene™ and Tempus™ tubes was comparable in terms of quality and yield, however, detectable gene expression changes after glucocorticoid receptor stimulation were distinct, with an overlap of only up to 46% between the two collection systems. This overlap increased to 54% when the samples were depleted of globin mRNA and drastically reduced to 17-18% when only gene expression differences with a fold change greater than 2.0 were assessed. These results indicate that gene expression profiles obtained from PAXgene™ and Tempus™ differ drastically and should not be analyzed together. These data suggest that researchers must exert caution while interpreting expression profiles obtained through different RNA collection tubes. © Menke et al; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
abstract_unstemmed |
Background Gene expression profiling from peripheral blood is a valuable tool for biomarker discovery in clinical studies. Different whole blood RNA collection and processing methods are highly variable and might confound comparisons of results across studies. The main aim of the study was to compare genome-wide gene expression profiles obtained from the two widely used commercially available whole blood RNA collection systems - PAXgene™ and Tempus™ tubes. Comparisons of present call rates, variances, correlations and influence of globin reduction across the two collection systems was performed using in vivo glucocorticoid stimulation in 24 peripheral blood samples from three individuals. Results RNA quality, yield and numbers of detected transcripts from the two RNA collection systems was comparable, with no significant differences between the tube types. Globin reduction resulted in a significant increase in present call rates (p = 8.17 × $ 10^{-5} $ and p = 1.95 × $ 10^{-3} $ in PAXgene™ and Tempus™ tubes respectively) and significant decrease in gene expression variance in both RNA collection tubes (p = 0.0025 and p = 0.041 in PAXgene™ and Tempus™ tubes respectively). Comparisons of glucocorticoid receptor-stimulated gene expression profiles between the two collection tube systems revealed an overlap of only 17 to 54%, depending on the stringency level of the statistical thresholds. This overlap increased by 1-8% when the RNA samples were processed to remove the globin mRNA. Conclusion RNA obtained from PAXgene™ and Tempus™ tubes was comparable in terms of quality and yield, however, detectable gene expression changes after glucocorticoid receptor stimulation were distinct, with an overlap of only up to 46% between the two collection systems. This overlap increased to 54% when the samples were depleted of globin mRNA and drastically reduced to 17-18% when only gene expression differences with a fold change greater than 2.0 were assessed. These results indicate that gene expression profiles obtained from PAXgene™ and Tempus™ differ drastically and should not be analyzed together. These data suggest that researchers must exert caution while interpreting expression profiles obtained through different RNA collection tubes. © Menke et al; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Peripheral blood gene expression: it all boils down to the RNA collection tubes |
url |
https://dx.doi.org/10.1186/1756-0500-5-1 |
remote_bool |
true |
author2 |
Rex-Haffner, Monika Klengel, Torsten Binder, Elisabeth B Mehta, Divya |
author2Str |
Rex-Haffner, Monika Klengel, Torsten Binder, Elisabeth B Mehta, Divya |
ppnlink |
559431805 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1756-0500-5-1 |
up_date |
2024-07-03T15:09:09.017Z |
_version_ |
1803571008917995520 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030280990</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519080826.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1756-0500-5-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030280990</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1756-0500-5-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Menke, Andreas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Peripheral blood gene expression: it all boils down to the RNA collection tubes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Menke et al; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Gene expression profiling from peripheral blood is a valuable tool for biomarker discovery in clinical studies. Different whole blood RNA collection and processing methods are highly variable and might confound comparisons of results across studies. The main aim of the study was to compare genome-wide gene expression profiles obtained from the two widely used commercially available whole blood RNA collection systems - PAXgene™ and Tempus™ tubes. Comparisons of present call rates, variances, correlations and influence of globin reduction across the two collection systems was performed using in vivo glucocorticoid stimulation in 24 peripheral blood samples from three individuals. Results RNA quality, yield and numbers of detected transcripts from the two RNA collection systems was comparable, with no significant differences between the tube types. Globin reduction resulted in a significant increase in present call rates (p = 8.17 × $ 10^{-5} $ and p = 1.95 × $ 10^{-3} $ in PAXgene™ and Tempus™ tubes respectively) and significant decrease in gene expression variance in both RNA collection tubes (p = 0.0025 and p = 0.041 in PAXgene™ and Tempus™ tubes respectively). Comparisons of glucocorticoid receptor-stimulated gene expression profiles between the two collection tube systems revealed an overlap of only 17 to 54%, depending on the stringency level of the statistical thresholds. This overlap increased by 1-8% when the RNA samples were processed to remove the globin mRNA. Conclusion RNA obtained from PAXgene™ and Tempus™ tubes was comparable in terms of quality and yield, however, detectable gene expression changes after glucocorticoid receptor stimulation were distinct, with an overlap of only up to 46% between the two collection systems. This overlap increased to 54% when the samples were depleted of globin mRNA and drastically reduced to 17-18% when only gene expression differences with a fold change greater than 2.0 were assessed. These results indicate that gene expression profiles obtained from PAXgene™ and Tempus™ differ drastically and should not be analyzed together. These data suggest that researchers must exert caution while interpreting expression profiles obtained through different RNA collection tubes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood Gene Expression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Globin mRNA</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Impact Gene Expression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Globin Reduction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Peripheral Blood Gene Expression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rex-Haffner, Monika</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Klengel, Torsten</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Binder, Elisabeth B</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mehta, Divya</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC Research Notes</subfield><subfield code="d">London, 2008</subfield><subfield code="g">5(2012), 1 vom: 04. Jan.</subfield><subfield code="w">(DE-627)559431805</subfield><subfield code="w">(DE-600)2413336-X</subfield><subfield code="x">1756-0500</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1</subfield><subfield code="g">day:04</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1756-0500-5-1</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2012</subfield><subfield code="e">1</subfield><subfield code="b">04</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
score |
7.4015436 |