CACTUS: cancer image annotating, calibrating, testing, understanding and sharing in breast cancer histopathology
Objective Develop CACTUS (cancer image annotating, calibrating, testing, understanding and sharing) as a novel web application for image archiving, annotation, grading, distribution, networking and evaluation. This helps pathologists to avoid unintended mistakes leading to quality assurance, teachin...
Ausführliche Beschreibung
Autor*in: |
Aksac, Alper [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC Research Notes - London, 2008, 13(2020), 1 vom: 06. Jan. |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2020 ; number:1 ; day:06 ; month:01 |
Links: |
---|
DOI / URN: |
10.1186/s13104-019-4866-z |
---|
Katalog-ID: |
SPR030347459 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR030347459 | ||
003 | DE-627 | ||
005 | 20230520000311.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13104-019-4866-z |2 doi | |
035 | |a (DE-627)SPR030347459 | ||
035 | |a (SPR)s13104-019-4866-z-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Aksac, Alper |e verfasserin |4 aut | |
245 | 1 | 0 | |a CACTUS: cancer image annotating, calibrating, testing, understanding and sharing in breast cancer histopathology |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2019 | ||
520 | |a Objective Develop CACTUS (cancer image annotating, calibrating, testing, understanding and sharing) as a novel web application for image archiving, annotation, grading, distribution, networking and evaluation. This helps pathologists to avoid unintended mistakes leading to quality assurance, teaching and evaluation in anatomical pathology. Effectiveness of the tool has been demonstrated by assessing pathologists performance in the grading of breast carcinoma and by comparing inter/intra-observer assessment of grading criteria amongst pathologists reviewing digital breast cancer images. Reproducibility has been assessed by inter-observer (kappa statistics) and intra-observer (intraclass correlation coefficient) concordance rates. Results CACTUS has been evaluated using a surgical pathology application—the assessment of breast cancer grade. We used CACTUS to present standardized images to four pathologists of differing experience. They were asked to evaluate all images to determine their assessment of Nottingham grade of a series of breast carcinoma cases. For each image, they were asked for their overall grade impression. CACTUS helps and guides pathologists to improve disease diagnosis with higher confidence and thereby reduces their workload and bias. CACTUS can be useful for both disseminating anatomical pathology images for teaching, as well as for evaluating agreement amongst pathologists or against a gold standard for evaluation or quality assurance. | ||
650 | 4 | |a Medical image analysis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Breast cancer |7 (dpeaa)DE-He213 | |
650 | 4 | |a Histopathology |7 (dpeaa)DE-He213 | |
650 | 4 | |a Annotation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Grading |7 (dpeaa)DE-He213 | |
700 | 1 | |a Ozyer, Tansel |4 aut | |
700 | 1 | |a Demetrick, Douglas J. |4 aut | |
700 | 1 | |a Alhajj, Reda |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC Research Notes |d London, 2008 |g 13(2020), 1 vom: 06. Jan. |w (DE-627)559431805 |w (DE-600)2413336-X |x 1756-0500 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2020 |g number:1 |g day:06 |g month:01 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13104-019-4866-z |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2020 |e 1 |b 06 |c 01 |
author_variant |
a a aa t o to d j d dj djd r a ra |
---|---|
matchkey_str |
article:17560500:2020----::atsacrmganttnclbaigetnudrtnignsaignr |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1186/s13104-019-4866-z doi (DE-627)SPR030347459 (SPR)s13104-019-4866-z-e DE-627 ger DE-627 rakwb eng Aksac, Alper verfasserin aut CACTUS: cancer image annotating, calibrating, testing, understanding and sharing in breast cancer histopathology 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2019 Objective Develop CACTUS (cancer image annotating, calibrating, testing, understanding and sharing) as a novel web application for image archiving, annotation, grading, distribution, networking and evaluation. This helps pathologists to avoid unintended mistakes leading to quality assurance, teaching and evaluation in anatomical pathology. Effectiveness of the tool has been demonstrated by assessing pathologists performance in the grading of breast carcinoma and by comparing inter/intra-observer assessment of grading criteria amongst pathologists reviewing digital breast cancer images. Reproducibility has been assessed by inter-observer (kappa statistics) and intra-observer (intraclass correlation coefficient) concordance rates. Results CACTUS has been evaluated using a surgical pathology application—the assessment of breast cancer grade. We used CACTUS to present standardized images to four pathologists of differing experience. They were asked to evaluate all images to determine their assessment of Nottingham grade of a series of breast carcinoma cases. For each image, they were asked for their overall grade impression. CACTUS helps and guides pathologists to improve disease diagnosis with higher confidence and thereby reduces their workload and bias. CACTUS can be useful for both disseminating anatomical pathology images for teaching, as well as for evaluating agreement amongst pathologists or against a gold standard for evaluation or quality assurance. Medical image analysis (dpeaa)DE-He213 Breast cancer (dpeaa)DE-He213 Histopathology (dpeaa)DE-He213 Annotation (dpeaa)DE-He213 Grading (dpeaa)DE-He213 Ozyer, Tansel aut Demetrick, Douglas J. aut Alhajj, Reda aut Enthalten in BMC Research Notes London, 2008 13(2020), 1 vom: 06. Jan. (DE-627)559431805 (DE-600)2413336-X 1756-0500 nnns volume:13 year:2020 number:1 day:06 month:01 https://dx.doi.org/10.1186/s13104-019-4866-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 1 06 01 |
spelling |
10.1186/s13104-019-4866-z doi (DE-627)SPR030347459 (SPR)s13104-019-4866-z-e DE-627 ger DE-627 rakwb eng Aksac, Alper verfasserin aut CACTUS: cancer image annotating, calibrating, testing, understanding and sharing in breast cancer histopathology 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2019 Objective Develop CACTUS (cancer image annotating, calibrating, testing, understanding and sharing) as a novel web application for image archiving, annotation, grading, distribution, networking and evaluation. This helps pathologists to avoid unintended mistakes leading to quality assurance, teaching and evaluation in anatomical pathology. Effectiveness of the tool has been demonstrated by assessing pathologists performance in the grading of breast carcinoma and by comparing inter/intra-observer assessment of grading criteria amongst pathologists reviewing digital breast cancer images. Reproducibility has been assessed by inter-observer (kappa statistics) and intra-observer (intraclass correlation coefficient) concordance rates. Results CACTUS has been evaluated using a surgical pathology application—the assessment of breast cancer grade. We used CACTUS to present standardized images to four pathologists of differing experience. They were asked to evaluate all images to determine their assessment of Nottingham grade of a series of breast carcinoma cases. For each image, they were asked for their overall grade impression. CACTUS helps and guides pathologists to improve disease diagnosis with higher confidence and thereby reduces their workload and bias. CACTUS can be useful for both disseminating anatomical pathology images for teaching, as well as for evaluating agreement amongst pathologists or against a gold standard for evaluation or quality assurance. Medical image analysis (dpeaa)DE-He213 Breast cancer (dpeaa)DE-He213 Histopathology (dpeaa)DE-He213 Annotation (dpeaa)DE-He213 Grading (dpeaa)DE-He213 Ozyer, Tansel aut Demetrick, Douglas J. aut Alhajj, Reda aut Enthalten in BMC Research Notes London, 2008 13(2020), 1 vom: 06. Jan. (DE-627)559431805 (DE-600)2413336-X 1756-0500 nnns volume:13 year:2020 number:1 day:06 month:01 https://dx.doi.org/10.1186/s13104-019-4866-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 1 06 01 |
allfields_unstemmed |
10.1186/s13104-019-4866-z doi (DE-627)SPR030347459 (SPR)s13104-019-4866-z-e DE-627 ger DE-627 rakwb eng Aksac, Alper verfasserin aut CACTUS: cancer image annotating, calibrating, testing, understanding and sharing in breast cancer histopathology 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2019 Objective Develop CACTUS (cancer image annotating, calibrating, testing, understanding and sharing) as a novel web application for image archiving, annotation, grading, distribution, networking and evaluation. This helps pathologists to avoid unintended mistakes leading to quality assurance, teaching and evaluation in anatomical pathology. Effectiveness of the tool has been demonstrated by assessing pathologists performance in the grading of breast carcinoma and by comparing inter/intra-observer assessment of grading criteria amongst pathologists reviewing digital breast cancer images. Reproducibility has been assessed by inter-observer (kappa statistics) and intra-observer (intraclass correlation coefficient) concordance rates. Results CACTUS has been evaluated using a surgical pathology application—the assessment of breast cancer grade. We used CACTUS to present standardized images to four pathologists of differing experience. They were asked to evaluate all images to determine their assessment of Nottingham grade of a series of breast carcinoma cases. For each image, they were asked for their overall grade impression. CACTUS helps and guides pathologists to improve disease diagnosis with higher confidence and thereby reduces their workload and bias. CACTUS can be useful for both disseminating anatomical pathology images for teaching, as well as for evaluating agreement amongst pathologists or against a gold standard for evaluation or quality assurance. Medical image analysis (dpeaa)DE-He213 Breast cancer (dpeaa)DE-He213 Histopathology (dpeaa)DE-He213 Annotation (dpeaa)DE-He213 Grading (dpeaa)DE-He213 Ozyer, Tansel aut Demetrick, Douglas J. aut Alhajj, Reda aut Enthalten in BMC Research Notes London, 2008 13(2020), 1 vom: 06. Jan. (DE-627)559431805 (DE-600)2413336-X 1756-0500 nnns volume:13 year:2020 number:1 day:06 month:01 https://dx.doi.org/10.1186/s13104-019-4866-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 1 06 01 |
allfieldsGer |
10.1186/s13104-019-4866-z doi (DE-627)SPR030347459 (SPR)s13104-019-4866-z-e DE-627 ger DE-627 rakwb eng Aksac, Alper verfasserin aut CACTUS: cancer image annotating, calibrating, testing, understanding and sharing in breast cancer histopathology 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2019 Objective Develop CACTUS (cancer image annotating, calibrating, testing, understanding and sharing) as a novel web application for image archiving, annotation, grading, distribution, networking and evaluation. This helps pathologists to avoid unintended mistakes leading to quality assurance, teaching and evaluation in anatomical pathology. Effectiveness of the tool has been demonstrated by assessing pathologists performance in the grading of breast carcinoma and by comparing inter/intra-observer assessment of grading criteria amongst pathologists reviewing digital breast cancer images. Reproducibility has been assessed by inter-observer (kappa statistics) and intra-observer (intraclass correlation coefficient) concordance rates. Results CACTUS has been evaluated using a surgical pathology application—the assessment of breast cancer grade. We used CACTUS to present standardized images to four pathologists of differing experience. They were asked to evaluate all images to determine their assessment of Nottingham grade of a series of breast carcinoma cases. For each image, they were asked for their overall grade impression. CACTUS helps and guides pathologists to improve disease diagnosis with higher confidence and thereby reduces their workload and bias. CACTUS can be useful for both disseminating anatomical pathology images for teaching, as well as for evaluating agreement amongst pathologists or against a gold standard for evaluation or quality assurance. Medical image analysis (dpeaa)DE-He213 Breast cancer (dpeaa)DE-He213 Histopathology (dpeaa)DE-He213 Annotation (dpeaa)DE-He213 Grading (dpeaa)DE-He213 Ozyer, Tansel aut Demetrick, Douglas J. aut Alhajj, Reda aut Enthalten in BMC Research Notes London, 2008 13(2020), 1 vom: 06. Jan. (DE-627)559431805 (DE-600)2413336-X 1756-0500 nnns volume:13 year:2020 number:1 day:06 month:01 https://dx.doi.org/10.1186/s13104-019-4866-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 1 06 01 |
allfieldsSound |
10.1186/s13104-019-4866-z doi (DE-627)SPR030347459 (SPR)s13104-019-4866-z-e DE-627 ger DE-627 rakwb eng Aksac, Alper verfasserin aut CACTUS: cancer image annotating, calibrating, testing, understanding and sharing in breast cancer histopathology 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2019 Objective Develop CACTUS (cancer image annotating, calibrating, testing, understanding and sharing) as a novel web application for image archiving, annotation, grading, distribution, networking and evaluation. This helps pathologists to avoid unintended mistakes leading to quality assurance, teaching and evaluation in anatomical pathology. Effectiveness of the tool has been demonstrated by assessing pathologists performance in the grading of breast carcinoma and by comparing inter/intra-observer assessment of grading criteria amongst pathologists reviewing digital breast cancer images. Reproducibility has been assessed by inter-observer (kappa statistics) and intra-observer (intraclass correlation coefficient) concordance rates. Results CACTUS has been evaluated using a surgical pathology application—the assessment of breast cancer grade. We used CACTUS to present standardized images to four pathologists of differing experience. They were asked to evaluate all images to determine their assessment of Nottingham grade of a series of breast carcinoma cases. For each image, they were asked for their overall grade impression. CACTUS helps and guides pathologists to improve disease diagnosis with higher confidence and thereby reduces their workload and bias. CACTUS can be useful for both disseminating anatomical pathology images for teaching, as well as for evaluating agreement amongst pathologists or against a gold standard for evaluation or quality assurance. Medical image analysis (dpeaa)DE-He213 Breast cancer (dpeaa)DE-He213 Histopathology (dpeaa)DE-He213 Annotation (dpeaa)DE-He213 Grading (dpeaa)DE-He213 Ozyer, Tansel aut Demetrick, Douglas J. aut Alhajj, Reda aut Enthalten in BMC Research Notes London, 2008 13(2020), 1 vom: 06. Jan. (DE-627)559431805 (DE-600)2413336-X 1756-0500 nnns volume:13 year:2020 number:1 day:06 month:01 https://dx.doi.org/10.1186/s13104-019-4866-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 1 06 01 |
language |
English |
source |
Enthalten in BMC Research Notes 13(2020), 1 vom: 06. Jan. volume:13 year:2020 number:1 day:06 month:01 |
sourceStr |
Enthalten in BMC Research Notes 13(2020), 1 vom: 06. Jan. volume:13 year:2020 number:1 day:06 month:01 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Medical image analysis Breast cancer Histopathology Annotation Grading |
isfreeaccess_bool |
true |
container_title |
BMC Research Notes |
authorswithroles_txt_mv |
Aksac, Alper @@aut@@ Ozyer, Tansel @@aut@@ Demetrick, Douglas J. @@aut@@ Alhajj, Reda @@aut@@ |
publishDateDaySort_date |
2020-01-06T00:00:00Z |
hierarchy_top_id |
559431805 |
id |
SPR030347459 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030347459</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520000311.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13104-019-4866-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030347459</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13104-019-4866-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aksac, Alper</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CACTUS: cancer image annotating, calibrating, testing, understanding and sharing in breast cancer histopathology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Objective Develop CACTUS (cancer image annotating, calibrating, testing, understanding and sharing) as a novel web application for image archiving, annotation, grading, distribution, networking and evaluation. This helps pathologists to avoid unintended mistakes leading to quality assurance, teaching and evaluation in anatomical pathology. Effectiveness of the tool has been demonstrated by assessing pathologists performance in the grading of breast carcinoma and by comparing inter/intra-observer assessment of grading criteria amongst pathologists reviewing digital breast cancer images. Reproducibility has been assessed by inter-observer (kappa statistics) and intra-observer (intraclass correlation coefficient) concordance rates. Results CACTUS has been evaluated using a surgical pathology application—the assessment of breast cancer grade. We used CACTUS to present standardized images to four pathologists of differing experience. They were asked to evaluate all images to determine their assessment of Nottingham grade of a series of breast carcinoma cases. For each image, they were asked for their overall grade impression. CACTUS helps and guides pathologists to improve disease diagnosis with higher confidence and thereby reduces their workload and bias. CACTUS can be useful for both disseminating anatomical pathology images for teaching, as well as for evaluating agreement amongst pathologists or against a gold standard for evaluation or quality assurance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medical image analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breast cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Histopathology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Annotation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grading</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ozyer, Tansel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Demetrick, Douglas J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alhajj, Reda</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC Research Notes</subfield><subfield code="d">London, 2008</subfield><subfield code="g">13(2020), 1 vom: 06. Jan.</subfield><subfield code="w">(DE-627)559431805</subfield><subfield code="w">(DE-600)2413336-X</subfield><subfield code="x">1756-0500</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:06</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13104-019-4866-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">06</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
author |
Aksac, Alper |
spellingShingle |
Aksac, Alper misc Medical image analysis misc Breast cancer misc Histopathology misc Annotation misc Grading CACTUS: cancer image annotating, calibrating, testing, understanding and sharing in breast cancer histopathology |
authorStr |
Aksac, Alper |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)559431805 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1756-0500 |
topic_title |
CACTUS: cancer image annotating, calibrating, testing, understanding and sharing in breast cancer histopathology Medical image analysis (dpeaa)DE-He213 Breast cancer (dpeaa)DE-He213 Histopathology (dpeaa)DE-He213 Annotation (dpeaa)DE-He213 Grading (dpeaa)DE-He213 |
topic |
misc Medical image analysis misc Breast cancer misc Histopathology misc Annotation misc Grading |
topic_unstemmed |
misc Medical image analysis misc Breast cancer misc Histopathology misc Annotation misc Grading |
topic_browse |
misc Medical image analysis misc Breast cancer misc Histopathology misc Annotation misc Grading |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC Research Notes |
hierarchy_parent_id |
559431805 |
hierarchy_top_title |
BMC Research Notes |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)559431805 (DE-600)2413336-X |
title |
CACTUS: cancer image annotating, calibrating, testing, understanding and sharing in breast cancer histopathology |
ctrlnum |
(DE-627)SPR030347459 (SPR)s13104-019-4866-z-e |
title_full |
CACTUS: cancer image annotating, calibrating, testing, understanding and sharing in breast cancer histopathology |
author_sort |
Aksac, Alper |
journal |
BMC Research Notes |
journalStr |
BMC Research Notes |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Aksac, Alper Ozyer, Tansel Demetrick, Douglas J. Alhajj, Reda |
container_volume |
13 |
format_se |
Elektronische Aufsätze |
author-letter |
Aksac, Alper |
doi_str_mv |
10.1186/s13104-019-4866-z |
title_sort |
cactus: cancer image annotating, calibrating, testing, understanding and sharing in breast cancer histopathology |
title_auth |
CACTUS: cancer image annotating, calibrating, testing, understanding and sharing in breast cancer histopathology |
abstract |
Objective Develop CACTUS (cancer image annotating, calibrating, testing, understanding and sharing) as a novel web application for image archiving, annotation, grading, distribution, networking and evaluation. This helps pathologists to avoid unintended mistakes leading to quality assurance, teaching and evaluation in anatomical pathology. Effectiveness of the tool has been demonstrated by assessing pathologists performance in the grading of breast carcinoma and by comparing inter/intra-observer assessment of grading criteria amongst pathologists reviewing digital breast cancer images. Reproducibility has been assessed by inter-observer (kappa statistics) and intra-observer (intraclass correlation coefficient) concordance rates. Results CACTUS has been evaluated using a surgical pathology application—the assessment of breast cancer grade. We used CACTUS to present standardized images to four pathologists of differing experience. They were asked to evaluate all images to determine their assessment of Nottingham grade of a series of breast carcinoma cases. For each image, they were asked for their overall grade impression. CACTUS helps and guides pathologists to improve disease diagnosis with higher confidence and thereby reduces their workload and bias. CACTUS can be useful for both disseminating anatomical pathology images for teaching, as well as for evaluating agreement amongst pathologists or against a gold standard for evaluation or quality assurance. © The Author(s) 2019 |
abstractGer |
Objective Develop CACTUS (cancer image annotating, calibrating, testing, understanding and sharing) as a novel web application for image archiving, annotation, grading, distribution, networking and evaluation. This helps pathologists to avoid unintended mistakes leading to quality assurance, teaching and evaluation in anatomical pathology. Effectiveness of the tool has been demonstrated by assessing pathologists performance in the grading of breast carcinoma and by comparing inter/intra-observer assessment of grading criteria amongst pathologists reviewing digital breast cancer images. Reproducibility has been assessed by inter-observer (kappa statistics) and intra-observer (intraclass correlation coefficient) concordance rates. Results CACTUS has been evaluated using a surgical pathology application—the assessment of breast cancer grade. We used CACTUS to present standardized images to four pathologists of differing experience. They were asked to evaluate all images to determine their assessment of Nottingham grade of a series of breast carcinoma cases. For each image, they were asked for their overall grade impression. CACTUS helps and guides pathologists to improve disease diagnosis with higher confidence and thereby reduces their workload and bias. CACTUS can be useful for both disseminating anatomical pathology images for teaching, as well as for evaluating agreement amongst pathologists or against a gold standard for evaluation or quality assurance. © The Author(s) 2019 |
abstract_unstemmed |
Objective Develop CACTUS (cancer image annotating, calibrating, testing, understanding and sharing) as a novel web application for image archiving, annotation, grading, distribution, networking and evaluation. This helps pathologists to avoid unintended mistakes leading to quality assurance, teaching and evaluation in anatomical pathology. Effectiveness of the tool has been demonstrated by assessing pathologists performance in the grading of breast carcinoma and by comparing inter/intra-observer assessment of grading criteria amongst pathologists reviewing digital breast cancer images. Reproducibility has been assessed by inter-observer (kappa statistics) and intra-observer (intraclass correlation coefficient) concordance rates. Results CACTUS has been evaluated using a surgical pathology application—the assessment of breast cancer grade. We used CACTUS to present standardized images to four pathologists of differing experience. They were asked to evaluate all images to determine their assessment of Nottingham grade of a series of breast carcinoma cases. For each image, they were asked for their overall grade impression. CACTUS helps and guides pathologists to improve disease diagnosis with higher confidence and thereby reduces their workload and bias. CACTUS can be useful for both disseminating anatomical pathology images for teaching, as well as for evaluating agreement amongst pathologists or against a gold standard for evaluation or quality assurance. © The Author(s) 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
CACTUS: cancer image annotating, calibrating, testing, understanding and sharing in breast cancer histopathology |
url |
https://dx.doi.org/10.1186/s13104-019-4866-z |
remote_bool |
true |
author2 |
Ozyer, Tansel Demetrick, Douglas J. Alhajj, Reda |
author2Str |
Ozyer, Tansel Demetrick, Douglas J. Alhajj, Reda |
ppnlink |
559431805 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13104-019-4866-z |
up_date |
2024-07-03T15:35:45.070Z |
_version_ |
1803572682504011776 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030347459</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520000311.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13104-019-4866-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030347459</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13104-019-4866-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aksac, Alper</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CACTUS: cancer image annotating, calibrating, testing, understanding and sharing in breast cancer histopathology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Objective Develop CACTUS (cancer image annotating, calibrating, testing, understanding and sharing) as a novel web application for image archiving, annotation, grading, distribution, networking and evaluation. This helps pathologists to avoid unintended mistakes leading to quality assurance, teaching and evaluation in anatomical pathology. Effectiveness of the tool has been demonstrated by assessing pathologists performance in the grading of breast carcinoma and by comparing inter/intra-observer assessment of grading criteria amongst pathologists reviewing digital breast cancer images. Reproducibility has been assessed by inter-observer (kappa statistics) and intra-observer (intraclass correlation coefficient) concordance rates. Results CACTUS has been evaluated using a surgical pathology application—the assessment of breast cancer grade. We used CACTUS to present standardized images to four pathologists of differing experience. They were asked to evaluate all images to determine their assessment of Nottingham grade of a series of breast carcinoma cases. For each image, they were asked for their overall grade impression. CACTUS helps and guides pathologists to improve disease diagnosis with higher confidence and thereby reduces their workload and bias. CACTUS can be useful for both disseminating anatomical pathology images for teaching, as well as for evaluating agreement amongst pathologists or against a gold standard for evaluation or quality assurance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medical image analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breast cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Histopathology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Annotation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grading</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ozyer, Tansel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Demetrick, Douglas J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alhajj, Reda</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC Research Notes</subfield><subfield code="d">London, 2008</subfield><subfield code="g">13(2020), 1 vom: 06. Jan.</subfield><subfield code="w">(DE-627)559431805</subfield><subfield code="w">(DE-600)2413336-X</subfield><subfield code="x">1756-0500</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:06</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13104-019-4866-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">06</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
score |
7.402231 |