Open intersection numbers, matrix models and MKP hierarchy
Abstract In this paper we conjecture that the generating function of the intersection numbers on the moduli spaces of Riemann surfaces with boundary, constructed recently by R. Pandharipande, J. Solomon and R. Tessler and extended by A. Buryak, is a tau-function of the KP integrable hierarchy. Moreo...
Ausführliche Beschreibung
Autor*in: |
Alexandrov, A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of high energy physics - Berlin : Springer, 1997, 2015(2015), 3 vom: 09. März |
---|---|
Übergeordnetes Werk: |
volume:2015 ; year:2015 ; number:3 ; day:09 ; month:03 |
Links: |
---|
DOI / URN: |
10.1007/JHEP03(2015)042 |
---|
Katalog-ID: |
SPR030483875 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR030483875 | ||
003 | DE-627 | ||
005 | 20230331091603.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/JHEP03(2015)042 |2 doi | |
035 | |a (DE-627)SPR030483875 | ||
035 | |a (SPR)JHEP03(2015)042-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Alexandrov, A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Open intersection numbers, matrix models and MKP hierarchy |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2015 | ||
520 | |a Abstract In this paper we conjecture that the generating function of the intersection numbers on the moduli spaces of Riemann surfaces with boundary, constructed recently by R. Pandharipande, J. Solomon and R. Tessler and extended by A. Buryak, is a tau-function of the KP integrable hierarchy. Moreover, it is given by a simple modification of the Kontsevich matrix integral so that the generating functions of open and closed intersection numbers are described by the MKP integrable hierarchy. Virasoro constraints for the open intersection numbers naturally follow from the matrix integral representation. | ||
650 | 4 | |a Matrix Models |7 (dpeaa)DE-He213 | |
650 | 4 | |a Integrable Hierarchies |7 (dpeaa)DE-He213 | |
650 | 4 | |a Topological Strings |7 (dpeaa)DE-He213 | |
773 | 0 | 8 | |i Enthalten in |t Journal of high energy physics |d Berlin : Springer, 1997 |g 2015(2015), 3 vom: 09. März |w (DE-627)320910571 |w (DE-600)2027350-2 |x 1029-8479 |7 nnns |
773 | 1 | 8 | |g volume:2015 |g year:2015 |g number:3 |g day:09 |g month:03 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/JHEP03(2015)042 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 2015 |j 2015 |e 3 |b 09 |c 03 |
author_variant |
a a aa |
---|---|
matchkey_str |
article:10298479:2015----::pnnescinubrmtimdla |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/JHEP03(2015)042 doi (DE-627)SPR030483875 (SPR)JHEP03(2015)042-e DE-627 ger DE-627 rakwb eng Alexandrov, A. verfasserin aut Open intersection numbers, matrix models and MKP hierarchy 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2015 Abstract In this paper we conjecture that the generating function of the intersection numbers on the moduli spaces of Riemann surfaces with boundary, constructed recently by R. Pandharipande, J. Solomon and R. Tessler and extended by A. Buryak, is a tau-function of the KP integrable hierarchy. Moreover, it is given by a simple modification of the Kontsevich matrix integral so that the generating functions of open and closed intersection numbers are described by the MKP integrable hierarchy. Virasoro constraints for the open intersection numbers naturally follow from the matrix integral representation. Matrix Models (dpeaa)DE-He213 Integrable Hierarchies (dpeaa)DE-He213 Topological Strings (dpeaa)DE-He213 Enthalten in Journal of high energy physics Berlin : Springer, 1997 2015(2015), 3 vom: 09. März (DE-627)320910571 (DE-600)2027350-2 1029-8479 nnns volume:2015 year:2015 number:3 day:09 month:03 https://dx.doi.org/10.1007/JHEP03(2015)042 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2015 2015 3 09 03 |
spelling |
10.1007/JHEP03(2015)042 doi (DE-627)SPR030483875 (SPR)JHEP03(2015)042-e DE-627 ger DE-627 rakwb eng Alexandrov, A. verfasserin aut Open intersection numbers, matrix models and MKP hierarchy 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2015 Abstract In this paper we conjecture that the generating function of the intersection numbers on the moduli spaces of Riemann surfaces with boundary, constructed recently by R. Pandharipande, J. Solomon and R. Tessler and extended by A. Buryak, is a tau-function of the KP integrable hierarchy. Moreover, it is given by a simple modification of the Kontsevich matrix integral so that the generating functions of open and closed intersection numbers are described by the MKP integrable hierarchy. Virasoro constraints for the open intersection numbers naturally follow from the matrix integral representation. Matrix Models (dpeaa)DE-He213 Integrable Hierarchies (dpeaa)DE-He213 Topological Strings (dpeaa)DE-He213 Enthalten in Journal of high energy physics Berlin : Springer, 1997 2015(2015), 3 vom: 09. März (DE-627)320910571 (DE-600)2027350-2 1029-8479 nnns volume:2015 year:2015 number:3 day:09 month:03 https://dx.doi.org/10.1007/JHEP03(2015)042 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2015 2015 3 09 03 |
allfields_unstemmed |
10.1007/JHEP03(2015)042 doi (DE-627)SPR030483875 (SPR)JHEP03(2015)042-e DE-627 ger DE-627 rakwb eng Alexandrov, A. verfasserin aut Open intersection numbers, matrix models and MKP hierarchy 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2015 Abstract In this paper we conjecture that the generating function of the intersection numbers on the moduli spaces of Riemann surfaces with boundary, constructed recently by R. Pandharipande, J. Solomon and R. Tessler and extended by A. Buryak, is a tau-function of the KP integrable hierarchy. Moreover, it is given by a simple modification of the Kontsevich matrix integral so that the generating functions of open and closed intersection numbers are described by the MKP integrable hierarchy. Virasoro constraints for the open intersection numbers naturally follow from the matrix integral representation. Matrix Models (dpeaa)DE-He213 Integrable Hierarchies (dpeaa)DE-He213 Topological Strings (dpeaa)DE-He213 Enthalten in Journal of high energy physics Berlin : Springer, 1997 2015(2015), 3 vom: 09. März (DE-627)320910571 (DE-600)2027350-2 1029-8479 nnns volume:2015 year:2015 number:3 day:09 month:03 https://dx.doi.org/10.1007/JHEP03(2015)042 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2015 2015 3 09 03 |
allfieldsGer |
10.1007/JHEP03(2015)042 doi (DE-627)SPR030483875 (SPR)JHEP03(2015)042-e DE-627 ger DE-627 rakwb eng Alexandrov, A. verfasserin aut Open intersection numbers, matrix models and MKP hierarchy 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2015 Abstract In this paper we conjecture that the generating function of the intersection numbers on the moduli spaces of Riemann surfaces with boundary, constructed recently by R. Pandharipande, J. Solomon and R. Tessler and extended by A. Buryak, is a tau-function of the KP integrable hierarchy. Moreover, it is given by a simple modification of the Kontsevich matrix integral so that the generating functions of open and closed intersection numbers are described by the MKP integrable hierarchy. Virasoro constraints for the open intersection numbers naturally follow from the matrix integral representation. Matrix Models (dpeaa)DE-He213 Integrable Hierarchies (dpeaa)DE-He213 Topological Strings (dpeaa)DE-He213 Enthalten in Journal of high energy physics Berlin : Springer, 1997 2015(2015), 3 vom: 09. März (DE-627)320910571 (DE-600)2027350-2 1029-8479 nnns volume:2015 year:2015 number:3 day:09 month:03 https://dx.doi.org/10.1007/JHEP03(2015)042 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2015 2015 3 09 03 |
allfieldsSound |
10.1007/JHEP03(2015)042 doi (DE-627)SPR030483875 (SPR)JHEP03(2015)042-e DE-627 ger DE-627 rakwb eng Alexandrov, A. verfasserin aut Open intersection numbers, matrix models and MKP hierarchy 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2015 Abstract In this paper we conjecture that the generating function of the intersection numbers on the moduli spaces of Riemann surfaces with boundary, constructed recently by R. Pandharipande, J. Solomon and R. Tessler and extended by A. Buryak, is a tau-function of the KP integrable hierarchy. Moreover, it is given by a simple modification of the Kontsevich matrix integral so that the generating functions of open and closed intersection numbers are described by the MKP integrable hierarchy. Virasoro constraints for the open intersection numbers naturally follow from the matrix integral representation. Matrix Models (dpeaa)DE-He213 Integrable Hierarchies (dpeaa)DE-He213 Topological Strings (dpeaa)DE-He213 Enthalten in Journal of high energy physics Berlin : Springer, 1997 2015(2015), 3 vom: 09. März (DE-627)320910571 (DE-600)2027350-2 1029-8479 nnns volume:2015 year:2015 number:3 day:09 month:03 https://dx.doi.org/10.1007/JHEP03(2015)042 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2015 2015 3 09 03 |
language |
English |
source |
Enthalten in Journal of high energy physics 2015(2015), 3 vom: 09. März volume:2015 year:2015 number:3 day:09 month:03 |
sourceStr |
Enthalten in Journal of high energy physics 2015(2015), 3 vom: 09. März volume:2015 year:2015 number:3 day:09 month:03 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Matrix Models Integrable Hierarchies Topological Strings |
isfreeaccess_bool |
true |
container_title |
Journal of high energy physics |
authorswithroles_txt_mv |
Alexandrov, A. @@aut@@ |
publishDateDaySort_date |
2015-03-09T00:00:00Z |
hierarchy_top_id |
320910571 |
id |
SPR030483875 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030483875</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331091603.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/JHEP03(2015)042</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030483875</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)JHEP03(2015)042-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alexandrov, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Open intersection numbers, matrix models and MKP hierarchy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper we conjecture that the generating function of the intersection numbers on the moduli spaces of Riemann surfaces with boundary, constructed recently by R. Pandharipande, J. Solomon and R. Tessler and extended by A. Buryak, is a tau-function of the KP integrable hierarchy. Moreover, it is given by a simple modification of the Kontsevich matrix integral so that the generating functions of open and closed intersection numbers are described by the MKP integrable hierarchy. Virasoro constraints for the open intersection numbers naturally follow from the matrix integral representation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix Models</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrable Hierarchies</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Strings</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of high energy physics</subfield><subfield code="d">Berlin : Springer, 1997</subfield><subfield code="g">2015(2015), 3 vom: 09. März</subfield><subfield code="w">(DE-627)320910571</subfield><subfield code="w">(DE-600)2027350-2</subfield><subfield code="x">1029-8479</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2015</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">day:09</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/JHEP03(2015)042</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2015</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="b">09</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
author |
Alexandrov, A. |
spellingShingle |
Alexandrov, A. misc Matrix Models misc Integrable Hierarchies misc Topological Strings Open intersection numbers, matrix models and MKP hierarchy |
authorStr |
Alexandrov, A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320910571 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1029-8479 |
topic_title |
Open intersection numbers, matrix models and MKP hierarchy Matrix Models (dpeaa)DE-He213 Integrable Hierarchies (dpeaa)DE-He213 Topological Strings (dpeaa)DE-He213 |
topic |
misc Matrix Models misc Integrable Hierarchies misc Topological Strings |
topic_unstemmed |
misc Matrix Models misc Integrable Hierarchies misc Topological Strings |
topic_browse |
misc Matrix Models misc Integrable Hierarchies misc Topological Strings |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of high energy physics |
hierarchy_parent_id |
320910571 |
hierarchy_top_title |
Journal of high energy physics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320910571 (DE-600)2027350-2 |
title |
Open intersection numbers, matrix models and MKP hierarchy |
ctrlnum |
(DE-627)SPR030483875 (SPR)JHEP03(2015)042-e |
title_full |
Open intersection numbers, matrix models and MKP hierarchy |
author_sort |
Alexandrov, A. |
journal |
Journal of high energy physics |
journalStr |
Journal of high energy physics |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
author_browse |
Alexandrov, A. |
container_volume |
2015 |
format_se |
Elektronische Aufsätze |
author-letter |
Alexandrov, A. |
doi_str_mv |
10.1007/JHEP03(2015)042 |
title_sort |
open intersection numbers, matrix models and mkp hierarchy |
title_auth |
Open intersection numbers, matrix models and MKP hierarchy |
abstract |
Abstract In this paper we conjecture that the generating function of the intersection numbers on the moduli spaces of Riemann surfaces with boundary, constructed recently by R. Pandharipande, J. Solomon and R. Tessler and extended by A. Buryak, is a tau-function of the KP integrable hierarchy. Moreover, it is given by a simple modification of the Kontsevich matrix integral so that the generating functions of open and closed intersection numbers are described by the MKP integrable hierarchy. Virasoro constraints for the open intersection numbers naturally follow from the matrix integral representation. © The Author(s) 2015 |
abstractGer |
Abstract In this paper we conjecture that the generating function of the intersection numbers on the moduli spaces of Riemann surfaces with boundary, constructed recently by R. Pandharipande, J. Solomon and R. Tessler and extended by A. Buryak, is a tau-function of the KP integrable hierarchy. Moreover, it is given by a simple modification of the Kontsevich matrix integral so that the generating functions of open and closed intersection numbers are described by the MKP integrable hierarchy. Virasoro constraints for the open intersection numbers naturally follow from the matrix integral representation. © The Author(s) 2015 |
abstract_unstemmed |
Abstract In this paper we conjecture that the generating function of the intersection numbers on the moduli spaces of Riemann surfaces with boundary, constructed recently by R. Pandharipande, J. Solomon and R. Tessler and extended by A. Buryak, is a tau-function of the KP integrable hierarchy. Moreover, it is given by a simple modification of the Kontsevich matrix integral so that the generating functions of open and closed intersection numbers are described by the MKP integrable hierarchy. Virasoro constraints for the open intersection numbers naturally follow from the matrix integral representation. © The Author(s) 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Open intersection numbers, matrix models and MKP hierarchy |
url |
https://dx.doi.org/10.1007/JHEP03(2015)042 |
remote_bool |
true |
ppnlink |
320910571 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/JHEP03(2015)042 |
up_date |
2024-07-03T17:11:38.882Z |
_version_ |
1803578715808989184 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030483875</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331091603.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/JHEP03(2015)042</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030483875</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)JHEP03(2015)042-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alexandrov, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Open intersection numbers, matrix models and MKP hierarchy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper we conjecture that the generating function of the intersection numbers on the moduli spaces of Riemann surfaces with boundary, constructed recently by R. Pandharipande, J. Solomon and R. Tessler and extended by A. Buryak, is a tau-function of the KP integrable hierarchy. Moreover, it is given by a simple modification of the Kontsevich matrix integral so that the generating functions of open and closed intersection numbers are described by the MKP integrable hierarchy. Virasoro constraints for the open intersection numbers naturally follow from the matrix integral representation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix Models</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrable Hierarchies</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Strings</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of high energy physics</subfield><subfield code="d">Berlin : Springer, 1997</subfield><subfield code="g">2015(2015), 3 vom: 09. März</subfield><subfield code="w">(DE-627)320910571</subfield><subfield code="w">(DE-600)2027350-2</subfield><subfield code="x">1029-8479</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2015</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">day:09</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/JHEP03(2015)042</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2015</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="b">09</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
score |
7.4019346 |