The Berlin Treatment Algorithm: recommendations for tailored innovative therapeutic strategies for multiple sclerosis-related fatigue
Abstract More than 80% of multiple sclerosis (MS) patients suffer from fatigue. Despite this, there are few therapeutic options and evidence-based pharmacological treatments are lacking. The associated societal burden is substantial (MS fatigue is a major reason for part-time employment or early ret...
Ausführliche Beschreibung
Autor*in: |
Veauthier, Christian [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s). 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: The EPMA journal - London : BioMed Central, 2010, 7(2016), 1 vom: 24. Nov. |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2016 ; number:1 ; day:24 ; month:11 |
Links: |
---|
DOI / URN: |
10.1186/s13167-016-0073-3 |
---|
Katalog-ID: |
SPR030727111 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR030727111 | ||
003 | DE-627 | ||
005 | 20230519095513.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13167-016-0073-3 |2 doi | |
035 | |a (DE-627)SPR030727111 | ||
035 | |a (SPR)s13167-016-0073-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Veauthier, Christian |e verfasserin |0 (orcid)0000-0002-8164-6393 |4 aut | |
245 | 1 | 4 | |a The Berlin Treatment Algorithm: recommendations for tailored innovative therapeutic strategies for multiple sclerosis-related fatigue |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s). 2016 | ||
520 | |a Abstract More than 80% of multiple sclerosis (MS) patients suffer from fatigue. Despite this, there are few therapeutic options and evidence-based pharmacological treatments are lacking. The associated societal burden is substantial (MS fatigue is a major reason for part-time employment or early retirement), and at least one out of four MS patients view fatigue as the most burdensome symptom of their disease. The mechanisms underlying MS-related fatigue are poorly understood, and objective criteria for distinguishing and evaluating levels of fatigue and tiredness have not yet been developed. A further complication is that both symptoms may also be unspecific indicators of many other diseases (including depression, sleep disorders, anemia, renal failure, liver diseases, chronic obstructive pulmonary disease, drug side effects, recent MS relapses, infections, nocturia, cancer, thyroid hypofunction, lack of physical exercise). This paper reviews current treatment options of MS-related fatigue in order to establish an individualized therapeutic strategy that factors in existing comorbid disorders. To ensure that such a strategy can also be easily and widely implemented, a comprehensive approach is needed, which ideally takes into account all other possible causes and which is moreover cost efficient. Using a diagnostic interview, depressive disorders, sleep disorders and side effects of the medication should be identified and addressed. All MS patients suffering from fatigue should fill out the Modified Fatigue Impact Scale, Epworth Sleepiness Scale, the Beck Depression Inventory (or a similar depression scale), and the Pittsburgh Sleep Quality Index (or the Insomnia Severity Index). In some patients, polygraphic or polysomnographic investigations should be performed. The treatment of underlying sleep disorders, drug therapy with alfacalcidol or fampridine, exercise therapy, and cognitive behavioral therapy-based interventions may be effective against MS-related fatigue. The objectives of this article are to identify the reasons for fatigue in patients suffering from multiple sclerosis and to introduce individually tailored treatment approaches. Moreover, this paper focuses on current knowledge about MS-related fatigue in relation to brain atrophy and lesions, cognition, disease course, and other findings in an attempt to identify future research directions. | ||
650 | 4 | |a Polysomnography |7 (dpeaa)DE-He213 | |
650 | 4 | |a Restless legs syndrome |7 (dpeaa)DE-He213 | |
650 | 4 | |a Personalized medicine |7 (dpeaa)DE-He213 | |
650 | 4 | |a Resistance training |7 (dpeaa)DE-He213 | |
650 | 4 | |a Cognitive behavioral therapy |7 (dpeaa)DE-He213 | |
650 | 4 | |a Obstructive sleep apnea |7 (dpeaa)DE-He213 | |
650 | 4 | |a Patient stratification |7 (dpeaa)DE-He213 | |
650 | 4 | |a Depression |7 (dpeaa)DE-He213 | |
650 | 4 | |a Tiredness |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fatigue |7 (dpeaa)DE-He213 | |
650 | 4 | |a Multiple sclerosis |7 (dpeaa)DE-He213 | |
700 | 1 | |a Hasselmann, Helge |4 aut | |
700 | 1 | |a Gold, Stefan M. |4 aut | |
700 | 1 | |a Paul, Friedemann |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The EPMA journal |d London : BioMed Central, 2010 |g 7(2016), 1 vom: 24. Nov. |w (DE-627)62317877X |w (DE-600)2545928-4 |x 1878-5085 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2016 |g number:1 |g day:24 |g month:11 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13167-016-0073-3 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_266 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2016 |e 1 |b 24 |c 11 |
author_variant |
c v cv h h hh s m g sm smg f p fp |
---|---|
matchkey_str |
article:18785085:2016----::hbritetetloihrcmedtosotioeinvtvteaetctaeiso |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1186/s13167-016-0073-3 doi (DE-627)SPR030727111 (SPR)s13167-016-0073-3-e DE-627 ger DE-627 rakwb eng Veauthier, Christian verfasserin (orcid)0000-0002-8164-6393 aut The Berlin Treatment Algorithm: recommendations for tailored innovative therapeutic strategies for multiple sclerosis-related fatigue 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2016 Abstract More than 80% of multiple sclerosis (MS) patients suffer from fatigue. Despite this, there are few therapeutic options and evidence-based pharmacological treatments are lacking. The associated societal burden is substantial (MS fatigue is a major reason for part-time employment or early retirement), and at least one out of four MS patients view fatigue as the most burdensome symptom of their disease. The mechanisms underlying MS-related fatigue are poorly understood, and objective criteria for distinguishing and evaluating levels of fatigue and tiredness have not yet been developed. A further complication is that both symptoms may also be unspecific indicators of many other diseases (including depression, sleep disorders, anemia, renal failure, liver diseases, chronic obstructive pulmonary disease, drug side effects, recent MS relapses, infections, nocturia, cancer, thyroid hypofunction, lack of physical exercise). This paper reviews current treatment options of MS-related fatigue in order to establish an individualized therapeutic strategy that factors in existing comorbid disorders. To ensure that such a strategy can also be easily and widely implemented, a comprehensive approach is needed, which ideally takes into account all other possible causes and which is moreover cost efficient. Using a diagnostic interview, depressive disorders, sleep disorders and side effects of the medication should be identified and addressed. All MS patients suffering from fatigue should fill out the Modified Fatigue Impact Scale, Epworth Sleepiness Scale, the Beck Depression Inventory (or a similar depression scale), and the Pittsburgh Sleep Quality Index (or the Insomnia Severity Index). In some patients, polygraphic or polysomnographic investigations should be performed. The treatment of underlying sleep disorders, drug therapy with alfacalcidol or fampridine, exercise therapy, and cognitive behavioral therapy-based interventions may be effective against MS-related fatigue. The objectives of this article are to identify the reasons for fatigue in patients suffering from multiple sclerosis and to introduce individually tailored treatment approaches. Moreover, this paper focuses on current knowledge about MS-related fatigue in relation to brain atrophy and lesions, cognition, disease course, and other findings in an attempt to identify future research directions. Polysomnography (dpeaa)DE-He213 Restless legs syndrome (dpeaa)DE-He213 Personalized medicine (dpeaa)DE-He213 Resistance training (dpeaa)DE-He213 Cognitive behavioral therapy (dpeaa)DE-He213 Obstructive sleep apnea (dpeaa)DE-He213 Patient stratification (dpeaa)DE-He213 Depression (dpeaa)DE-He213 Tiredness (dpeaa)DE-He213 Fatigue (dpeaa)DE-He213 Multiple sclerosis (dpeaa)DE-He213 Hasselmann, Helge aut Gold, Stefan M. aut Paul, Friedemann aut Enthalten in The EPMA journal London : BioMed Central, 2010 7(2016), 1 vom: 24. Nov. (DE-627)62317877X (DE-600)2545928-4 1878-5085 nnns volume:7 year:2016 number:1 day:24 month:11 https://dx.doi.org/10.1186/s13167-016-0073-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 7 2016 1 24 11 |
spelling |
10.1186/s13167-016-0073-3 doi (DE-627)SPR030727111 (SPR)s13167-016-0073-3-e DE-627 ger DE-627 rakwb eng Veauthier, Christian verfasserin (orcid)0000-0002-8164-6393 aut The Berlin Treatment Algorithm: recommendations for tailored innovative therapeutic strategies for multiple sclerosis-related fatigue 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2016 Abstract More than 80% of multiple sclerosis (MS) patients suffer from fatigue. Despite this, there are few therapeutic options and evidence-based pharmacological treatments are lacking. The associated societal burden is substantial (MS fatigue is a major reason for part-time employment or early retirement), and at least one out of four MS patients view fatigue as the most burdensome symptom of their disease. The mechanisms underlying MS-related fatigue are poorly understood, and objective criteria for distinguishing and evaluating levels of fatigue and tiredness have not yet been developed. A further complication is that both symptoms may also be unspecific indicators of many other diseases (including depression, sleep disorders, anemia, renal failure, liver diseases, chronic obstructive pulmonary disease, drug side effects, recent MS relapses, infections, nocturia, cancer, thyroid hypofunction, lack of physical exercise). This paper reviews current treatment options of MS-related fatigue in order to establish an individualized therapeutic strategy that factors in existing comorbid disorders. To ensure that such a strategy can also be easily and widely implemented, a comprehensive approach is needed, which ideally takes into account all other possible causes and which is moreover cost efficient. Using a diagnostic interview, depressive disorders, sleep disorders and side effects of the medication should be identified and addressed. All MS patients suffering from fatigue should fill out the Modified Fatigue Impact Scale, Epworth Sleepiness Scale, the Beck Depression Inventory (or a similar depression scale), and the Pittsburgh Sleep Quality Index (or the Insomnia Severity Index). In some patients, polygraphic or polysomnographic investigations should be performed. The treatment of underlying sleep disorders, drug therapy with alfacalcidol or fampridine, exercise therapy, and cognitive behavioral therapy-based interventions may be effective against MS-related fatigue. The objectives of this article are to identify the reasons for fatigue in patients suffering from multiple sclerosis and to introduce individually tailored treatment approaches. Moreover, this paper focuses on current knowledge about MS-related fatigue in relation to brain atrophy and lesions, cognition, disease course, and other findings in an attempt to identify future research directions. Polysomnography (dpeaa)DE-He213 Restless legs syndrome (dpeaa)DE-He213 Personalized medicine (dpeaa)DE-He213 Resistance training (dpeaa)DE-He213 Cognitive behavioral therapy (dpeaa)DE-He213 Obstructive sleep apnea (dpeaa)DE-He213 Patient stratification (dpeaa)DE-He213 Depression (dpeaa)DE-He213 Tiredness (dpeaa)DE-He213 Fatigue (dpeaa)DE-He213 Multiple sclerosis (dpeaa)DE-He213 Hasselmann, Helge aut Gold, Stefan M. aut Paul, Friedemann aut Enthalten in The EPMA journal London : BioMed Central, 2010 7(2016), 1 vom: 24. Nov. (DE-627)62317877X (DE-600)2545928-4 1878-5085 nnns volume:7 year:2016 number:1 day:24 month:11 https://dx.doi.org/10.1186/s13167-016-0073-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 7 2016 1 24 11 |
allfields_unstemmed |
10.1186/s13167-016-0073-3 doi (DE-627)SPR030727111 (SPR)s13167-016-0073-3-e DE-627 ger DE-627 rakwb eng Veauthier, Christian verfasserin (orcid)0000-0002-8164-6393 aut The Berlin Treatment Algorithm: recommendations for tailored innovative therapeutic strategies for multiple sclerosis-related fatigue 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2016 Abstract More than 80% of multiple sclerosis (MS) patients suffer from fatigue. Despite this, there are few therapeutic options and evidence-based pharmacological treatments are lacking. The associated societal burden is substantial (MS fatigue is a major reason for part-time employment or early retirement), and at least one out of four MS patients view fatigue as the most burdensome symptom of their disease. The mechanisms underlying MS-related fatigue are poorly understood, and objective criteria for distinguishing and evaluating levels of fatigue and tiredness have not yet been developed. A further complication is that both symptoms may also be unspecific indicators of many other diseases (including depression, sleep disorders, anemia, renal failure, liver diseases, chronic obstructive pulmonary disease, drug side effects, recent MS relapses, infections, nocturia, cancer, thyroid hypofunction, lack of physical exercise). This paper reviews current treatment options of MS-related fatigue in order to establish an individualized therapeutic strategy that factors in existing comorbid disorders. To ensure that such a strategy can also be easily and widely implemented, a comprehensive approach is needed, which ideally takes into account all other possible causes and which is moreover cost efficient. Using a diagnostic interview, depressive disorders, sleep disorders and side effects of the medication should be identified and addressed. All MS patients suffering from fatigue should fill out the Modified Fatigue Impact Scale, Epworth Sleepiness Scale, the Beck Depression Inventory (or a similar depression scale), and the Pittsburgh Sleep Quality Index (or the Insomnia Severity Index). In some patients, polygraphic or polysomnographic investigations should be performed. The treatment of underlying sleep disorders, drug therapy with alfacalcidol or fampridine, exercise therapy, and cognitive behavioral therapy-based interventions may be effective against MS-related fatigue. The objectives of this article are to identify the reasons for fatigue in patients suffering from multiple sclerosis and to introduce individually tailored treatment approaches. Moreover, this paper focuses on current knowledge about MS-related fatigue in relation to brain atrophy and lesions, cognition, disease course, and other findings in an attempt to identify future research directions. Polysomnography (dpeaa)DE-He213 Restless legs syndrome (dpeaa)DE-He213 Personalized medicine (dpeaa)DE-He213 Resistance training (dpeaa)DE-He213 Cognitive behavioral therapy (dpeaa)DE-He213 Obstructive sleep apnea (dpeaa)DE-He213 Patient stratification (dpeaa)DE-He213 Depression (dpeaa)DE-He213 Tiredness (dpeaa)DE-He213 Fatigue (dpeaa)DE-He213 Multiple sclerosis (dpeaa)DE-He213 Hasselmann, Helge aut Gold, Stefan M. aut Paul, Friedemann aut Enthalten in The EPMA journal London : BioMed Central, 2010 7(2016), 1 vom: 24. Nov. (DE-627)62317877X (DE-600)2545928-4 1878-5085 nnns volume:7 year:2016 number:1 day:24 month:11 https://dx.doi.org/10.1186/s13167-016-0073-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 7 2016 1 24 11 |
allfieldsGer |
10.1186/s13167-016-0073-3 doi (DE-627)SPR030727111 (SPR)s13167-016-0073-3-e DE-627 ger DE-627 rakwb eng Veauthier, Christian verfasserin (orcid)0000-0002-8164-6393 aut The Berlin Treatment Algorithm: recommendations for tailored innovative therapeutic strategies for multiple sclerosis-related fatigue 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2016 Abstract More than 80% of multiple sclerosis (MS) patients suffer from fatigue. Despite this, there are few therapeutic options and evidence-based pharmacological treatments are lacking. The associated societal burden is substantial (MS fatigue is a major reason for part-time employment or early retirement), and at least one out of four MS patients view fatigue as the most burdensome symptom of their disease. The mechanisms underlying MS-related fatigue are poorly understood, and objective criteria for distinguishing and evaluating levels of fatigue and tiredness have not yet been developed. A further complication is that both symptoms may also be unspecific indicators of many other diseases (including depression, sleep disorders, anemia, renal failure, liver diseases, chronic obstructive pulmonary disease, drug side effects, recent MS relapses, infections, nocturia, cancer, thyroid hypofunction, lack of physical exercise). This paper reviews current treatment options of MS-related fatigue in order to establish an individualized therapeutic strategy that factors in existing comorbid disorders. To ensure that such a strategy can also be easily and widely implemented, a comprehensive approach is needed, which ideally takes into account all other possible causes and which is moreover cost efficient. Using a diagnostic interview, depressive disorders, sleep disorders and side effects of the medication should be identified and addressed. All MS patients suffering from fatigue should fill out the Modified Fatigue Impact Scale, Epworth Sleepiness Scale, the Beck Depression Inventory (or a similar depression scale), and the Pittsburgh Sleep Quality Index (or the Insomnia Severity Index). In some patients, polygraphic or polysomnographic investigations should be performed. The treatment of underlying sleep disorders, drug therapy with alfacalcidol or fampridine, exercise therapy, and cognitive behavioral therapy-based interventions may be effective against MS-related fatigue. The objectives of this article are to identify the reasons for fatigue in patients suffering from multiple sclerosis and to introduce individually tailored treatment approaches. Moreover, this paper focuses on current knowledge about MS-related fatigue in relation to brain atrophy and lesions, cognition, disease course, and other findings in an attempt to identify future research directions. Polysomnography (dpeaa)DE-He213 Restless legs syndrome (dpeaa)DE-He213 Personalized medicine (dpeaa)DE-He213 Resistance training (dpeaa)DE-He213 Cognitive behavioral therapy (dpeaa)DE-He213 Obstructive sleep apnea (dpeaa)DE-He213 Patient stratification (dpeaa)DE-He213 Depression (dpeaa)DE-He213 Tiredness (dpeaa)DE-He213 Fatigue (dpeaa)DE-He213 Multiple sclerosis (dpeaa)DE-He213 Hasselmann, Helge aut Gold, Stefan M. aut Paul, Friedemann aut Enthalten in The EPMA journal London : BioMed Central, 2010 7(2016), 1 vom: 24. Nov. (DE-627)62317877X (DE-600)2545928-4 1878-5085 nnns volume:7 year:2016 number:1 day:24 month:11 https://dx.doi.org/10.1186/s13167-016-0073-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 7 2016 1 24 11 |
allfieldsSound |
10.1186/s13167-016-0073-3 doi (DE-627)SPR030727111 (SPR)s13167-016-0073-3-e DE-627 ger DE-627 rakwb eng Veauthier, Christian verfasserin (orcid)0000-0002-8164-6393 aut The Berlin Treatment Algorithm: recommendations for tailored innovative therapeutic strategies for multiple sclerosis-related fatigue 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2016 Abstract More than 80% of multiple sclerosis (MS) patients suffer from fatigue. Despite this, there are few therapeutic options and evidence-based pharmacological treatments are lacking. The associated societal burden is substantial (MS fatigue is a major reason for part-time employment or early retirement), and at least one out of four MS patients view fatigue as the most burdensome symptom of their disease. The mechanisms underlying MS-related fatigue are poorly understood, and objective criteria for distinguishing and evaluating levels of fatigue and tiredness have not yet been developed. A further complication is that both symptoms may also be unspecific indicators of many other diseases (including depression, sleep disorders, anemia, renal failure, liver diseases, chronic obstructive pulmonary disease, drug side effects, recent MS relapses, infections, nocturia, cancer, thyroid hypofunction, lack of physical exercise). This paper reviews current treatment options of MS-related fatigue in order to establish an individualized therapeutic strategy that factors in existing comorbid disorders. To ensure that such a strategy can also be easily and widely implemented, a comprehensive approach is needed, which ideally takes into account all other possible causes and which is moreover cost efficient. Using a diagnostic interview, depressive disorders, sleep disorders and side effects of the medication should be identified and addressed. All MS patients suffering from fatigue should fill out the Modified Fatigue Impact Scale, Epworth Sleepiness Scale, the Beck Depression Inventory (or a similar depression scale), and the Pittsburgh Sleep Quality Index (or the Insomnia Severity Index). In some patients, polygraphic or polysomnographic investigations should be performed. The treatment of underlying sleep disorders, drug therapy with alfacalcidol or fampridine, exercise therapy, and cognitive behavioral therapy-based interventions may be effective against MS-related fatigue. The objectives of this article are to identify the reasons for fatigue in patients suffering from multiple sclerosis and to introduce individually tailored treatment approaches. Moreover, this paper focuses on current knowledge about MS-related fatigue in relation to brain atrophy and lesions, cognition, disease course, and other findings in an attempt to identify future research directions. Polysomnography (dpeaa)DE-He213 Restless legs syndrome (dpeaa)DE-He213 Personalized medicine (dpeaa)DE-He213 Resistance training (dpeaa)DE-He213 Cognitive behavioral therapy (dpeaa)DE-He213 Obstructive sleep apnea (dpeaa)DE-He213 Patient stratification (dpeaa)DE-He213 Depression (dpeaa)DE-He213 Tiredness (dpeaa)DE-He213 Fatigue (dpeaa)DE-He213 Multiple sclerosis (dpeaa)DE-He213 Hasselmann, Helge aut Gold, Stefan M. aut Paul, Friedemann aut Enthalten in The EPMA journal London : BioMed Central, 2010 7(2016), 1 vom: 24. Nov. (DE-627)62317877X (DE-600)2545928-4 1878-5085 nnns volume:7 year:2016 number:1 day:24 month:11 https://dx.doi.org/10.1186/s13167-016-0073-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 7 2016 1 24 11 |
language |
English |
source |
Enthalten in The EPMA journal 7(2016), 1 vom: 24. Nov. volume:7 year:2016 number:1 day:24 month:11 |
sourceStr |
Enthalten in The EPMA journal 7(2016), 1 vom: 24. Nov. volume:7 year:2016 number:1 day:24 month:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Polysomnography Restless legs syndrome Personalized medicine Resistance training Cognitive behavioral therapy Obstructive sleep apnea Patient stratification Depression Tiredness Fatigue Multiple sclerosis |
isfreeaccess_bool |
true |
container_title |
The EPMA journal |
authorswithroles_txt_mv |
Veauthier, Christian @@aut@@ Hasselmann, Helge @@aut@@ Gold, Stefan M. @@aut@@ Paul, Friedemann @@aut@@ |
publishDateDaySort_date |
2016-11-24T00:00:00Z |
hierarchy_top_id |
62317877X |
id |
SPR030727111 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030727111</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519095513.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13167-016-0073-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030727111</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13167-016-0073-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Veauthier, Christian</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-8164-6393</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Berlin Treatment Algorithm: recommendations for tailored innovative therapeutic strategies for multiple sclerosis-related fatigue</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract More than 80% of multiple sclerosis (MS) patients suffer from fatigue. Despite this, there are few therapeutic options and evidence-based pharmacological treatments are lacking. The associated societal burden is substantial (MS fatigue is a major reason for part-time employment or early retirement), and at least one out of four MS patients view fatigue as the most burdensome symptom of their disease. The mechanisms underlying MS-related fatigue are poorly understood, and objective criteria for distinguishing and evaluating levels of fatigue and tiredness have not yet been developed. A further complication is that both symptoms may also be unspecific indicators of many other diseases (including depression, sleep disorders, anemia, renal failure, liver diseases, chronic obstructive pulmonary disease, drug side effects, recent MS relapses, infections, nocturia, cancer, thyroid hypofunction, lack of physical exercise). This paper reviews current treatment options of MS-related fatigue in order to establish an individualized therapeutic strategy that factors in existing comorbid disorders. To ensure that such a strategy can also be easily and widely implemented, a comprehensive approach is needed, which ideally takes into account all other possible causes and which is moreover cost efficient. Using a diagnostic interview, depressive disorders, sleep disorders and side effects of the medication should be identified and addressed. All MS patients suffering from fatigue should fill out the Modified Fatigue Impact Scale, Epworth Sleepiness Scale, the Beck Depression Inventory (or a similar depression scale), and the Pittsburgh Sleep Quality Index (or the Insomnia Severity Index). In some patients, polygraphic or polysomnographic investigations should be performed. The treatment of underlying sleep disorders, drug therapy with alfacalcidol or fampridine, exercise therapy, and cognitive behavioral therapy-based interventions may be effective against MS-related fatigue. The objectives of this article are to identify the reasons for fatigue in patients suffering from multiple sclerosis and to introduce individually tailored treatment approaches. Moreover, this paper focuses on current knowledge about MS-related fatigue in relation to brain atrophy and lesions, cognition, disease course, and other findings in an attempt to identify future research directions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polysomnography</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Restless legs syndrome</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Personalized medicine</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resistance training</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cognitive behavioral therapy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Obstructive sleep apnea</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Patient stratification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Depression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tiredness</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fatigue</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple sclerosis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hasselmann, Helge</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gold, Stefan M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Paul, Friedemann</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The EPMA journal</subfield><subfield code="d">London : BioMed Central, 2010</subfield><subfield code="g">7(2016), 1 vom: 24. Nov.</subfield><subfield code="w">(DE-627)62317877X</subfield><subfield code="w">(DE-600)2545928-4</subfield><subfield code="x">1878-5085</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">day:24</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13167-016-0073-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="b">24</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
author |
Veauthier, Christian |
spellingShingle |
Veauthier, Christian misc Polysomnography misc Restless legs syndrome misc Personalized medicine misc Resistance training misc Cognitive behavioral therapy misc Obstructive sleep apnea misc Patient stratification misc Depression misc Tiredness misc Fatigue misc Multiple sclerosis The Berlin Treatment Algorithm: recommendations for tailored innovative therapeutic strategies for multiple sclerosis-related fatigue |
authorStr |
Veauthier, Christian |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)62317877X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1878-5085 |
topic_title |
The Berlin Treatment Algorithm: recommendations for tailored innovative therapeutic strategies for multiple sclerosis-related fatigue Polysomnography (dpeaa)DE-He213 Restless legs syndrome (dpeaa)DE-He213 Personalized medicine (dpeaa)DE-He213 Resistance training (dpeaa)DE-He213 Cognitive behavioral therapy (dpeaa)DE-He213 Obstructive sleep apnea (dpeaa)DE-He213 Patient stratification (dpeaa)DE-He213 Depression (dpeaa)DE-He213 Tiredness (dpeaa)DE-He213 Fatigue (dpeaa)DE-He213 Multiple sclerosis (dpeaa)DE-He213 |
topic |
misc Polysomnography misc Restless legs syndrome misc Personalized medicine misc Resistance training misc Cognitive behavioral therapy misc Obstructive sleep apnea misc Patient stratification misc Depression misc Tiredness misc Fatigue misc Multiple sclerosis |
topic_unstemmed |
misc Polysomnography misc Restless legs syndrome misc Personalized medicine misc Resistance training misc Cognitive behavioral therapy misc Obstructive sleep apnea misc Patient stratification misc Depression misc Tiredness misc Fatigue misc Multiple sclerosis |
topic_browse |
misc Polysomnography misc Restless legs syndrome misc Personalized medicine misc Resistance training misc Cognitive behavioral therapy misc Obstructive sleep apnea misc Patient stratification misc Depression misc Tiredness misc Fatigue misc Multiple sclerosis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The EPMA journal |
hierarchy_parent_id |
62317877X |
hierarchy_top_title |
The EPMA journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)62317877X (DE-600)2545928-4 |
title |
The Berlin Treatment Algorithm: recommendations for tailored innovative therapeutic strategies for multiple sclerosis-related fatigue |
ctrlnum |
(DE-627)SPR030727111 (SPR)s13167-016-0073-3-e |
title_full |
The Berlin Treatment Algorithm: recommendations for tailored innovative therapeutic strategies for multiple sclerosis-related fatigue |
author_sort |
Veauthier, Christian |
journal |
The EPMA journal |
journalStr |
The EPMA journal |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
author_browse |
Veauthier, Christian Hasselmann, Helge Gold, Stefan M. Paul, Friedemann |
container_volume |
7 |
format_se |
Elektronische Aufsätze |
author-letter |
Veauthier, Christian |
doi_str_mv |
10.1186/s13167-016-0073-3 |
normlink |
(ORCID)0000-0002-8164-6393 |
normlink_prefix_str_mv |
(orcid)0000-0002-8164-6393 |
title_sort |
berlin treatment algorithm: recommendations for tailored innovative therapeutic strategies for multiple sclerosis-related fatigue |
title_auth |
The Berlin Treatment Algorithm: recommendations for tailored innovative therapeutic strategies for multiple sclerosis-related fatigue |
abstract |
Abstract More than 80% of multiple sclerosis (MS) patients suffer from fatigue. Despite this, there are few therapeutic options and evidence-based pharmacological treatments are lacking. The associated societal burden is substantial (MS fatigue is a major reason for part-time employment or early retirement), and at least one out of four MS patients view fatigue as the most burdensome symptom of their disease. The mechanisms underlying MS-related fatigue are poorly understood, and objective criteria for distinguishing and evaluating levels of fatigue and tiredness have not yet been developed. A further complication is that both symptoms may also be unspecific indicators of many other diseases (including depression, sleep disorders, anemia, renal failure, liver diseases, chronic obstructive pulmonary disease, drug side effects, recent MS relapses, infections, nocturia, cancer, thyroid hypofunction, lack of physical exercise). This paper reviews current treatment options of MS-related fatigue in order to establish an individualized therapeutic strategy that factors in existing comorbid disorders. To ensure that such a strategy can also be easily and widely implemented, a comprehensive approach is needed, which ideally takes into account all other possible causes and which is moreover cost efficient. Using a diagnostic interview, depressive disorders, sleep disorders and side effects of the medication should be identified and addressed. All MS patients suffering from fatigue should fill out the Modified Fatigue Impact Scale, Epworth Sleepiness Scale, the Beck Depression Inventory (or a similar depression scale), and the Pittsburgh Sleep Quality Index (or the Insomnia Severity Index). In some patients, polygraphic or polysomnographic investigations should be performed. The treatment of underlying sleep disorders, drug therapy with alfacalcidol or fampridine, exercise therapy, and cognitive behavioral therapy-based interventions may be effective against MS-related fatigue. The objectives of this article are to identify the reasons for fatigue in patients suffering from multiple sclerosis and to introduce individually tailored treatment approaches. Moreover, this paper focuses on current knowledge about MS-related fatigue in relation to brain atrophy and lesions, cognition, disease course, and other findings in an attempt to identify future research directions. © The Author(s). 2016 |
abstractGer |
Abstract More than 80% of multiple sclerosis (MS) patients suffer from fatigue. Despite this, there are few therapeutic options and evidence-based pharmacological treatments are lacking. The associated societal burden is substantial (MS fatigue is a major reason for part-time employment or early retirement), and at least one out of four MS patients view fatigue as the most burdensome symptom of their disease. The mechanisms underlying MS-related fatigue are poorly understood, and objective criteria for distinguishing and evaluating levels of fatigue and tiredness have not yet been developed. A further complication is that both symptoms may also be unspecific indicators of many other diseases (including depression, sleep disorders, anemia, renal failure, liver diseases, chronic obstructive pulmonary disease, drug side effects, recent MS relapses, infections, nocturia, cancer, thyroid hypofunction, lack of physical exercise). This paper reviews current treatment options of MS-related fatigue in order to establish an individualized therapeutic strategy that factors in existing comorbid disorders. To ensure that such a strategy can also be easily and widely implemented, a comprehensive approach is needed, which ideally takes into account all other possible causes and which is moreover cost efficient. Using a diagnostic interview, depressive disorders, sleep disorders and side effects of the medication should be identified and addressed. All MS patients suffering from fatigue should fill out the Modified Fatigue Impact Scale, Epworth Sleepiness Scale, the Beck Depression Inventory (or a similar depression scale), and the Pittsburgh Sleep Quality Index (or the Insomnia Severity Index). In some patients, polygraphic or polysomnographic investigations should be performed. The treatment of underlying sleep disorders, drug therapy with alfacalcidol or fampridine, exercise therapy, and cognitive behavioral therapy-based interventions may be effective against MS-related fatigue. The objectives of this article are to identify the reasons for fatigue in patients suffering from multiple sclerosis and to introduce individually tailored treatment approaches. Moreover, this paper focuses on current knowledge about MS-related fatigue in relation to brain atrophy and lesions, cognition, disease course, and other findings in an attempt to identify future research directions. © The Author(s). 2016 |
abstract_unstemmed |
Abstract More than 80% of multiple sclerosis (MS) patients suffer from fatigue. Despite this, there are few therapeutic options and evidence-based pharmacological treatments are lacking. The associated societal burden is substantial (MS fatigue is a major reason for part-time employment or early retirement), and at least one out of four MS patients view fatigue as the most burdensome symptom of their disease. The mechanisms underlying MS-related fatigue are poorly understood, and objective criteria for distinguishing and evaluating levels of fatigue and tiredness have not yet been developed. A further complication is that both symptoms may also be unspecific indicators of many other diseases (including depression, sleep disorders, anemia, renal failure, liver diseases, chronic obstructive pulmonary disease, drug side effects, recent MS relapses, infections, nocturia, cancer, thyroid hypofunction, lack of physical exercise). This paper reviews current treatment options of MS-related fatigue in order to establish an individualized therapeutic strategy that factors in existing comorbid disorders. To ensure that such a strategy can also be easily and widely implemented, a comprehensive approach is needed, which ideally takes into account all other possible causes and which is moreover cost efficient. Using a diagnostic interview, depressive disorders, sleep disorders and side effects of the medication should be identified and addressed. All MS patients suffering from fatigue should fill out the Modified Fatigue Impact Scale, Epworth Sleepiness Scale, the Beck Depression Inventory (or a similar depression scale), and the Pittsburgh Sleep Quality Index (or the Insomnia Severity Index). In some patients, polygraphic or polysomnographic investigations should be performed. The treatment of underlying sleep disorders, drug therapy with alfacalcidol or fampridine, exercise therapy, and cognitive behavioral therapy-based interventions may be effective against MS-related fatigue. The objectives of this article are to identify the reasons for fatigue in patients suffering from multiple sclerosis and to introduce individually tailored treatment approaches. Moreover, this paper focuses on current knowledge about MS-related fatigue in relation to brain atrophy and lesions, cognition, disease course, and other findings in an attempt to identify future research directions. © The Author(s). 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
The Berlin Treatment Algorithm: recommendations for tailored innovative therapeutic strategies for multiple sclerosis-related fatigue |
url |
https://dx.doi.org/10.1186/s13167-016-0073-3 |
remote_bool |
true |
author2 |
Hasselmann, Helge Gold, Stefan M. Paul, Friedemann |
author2Str |
Hasselmann, Helge Gold, Stefan M. Paul, Friedemann |
ppnlink |
62317877X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13167-016-0073-3 |
up_date |
2024-07-03T19:46:55.238Z |
_version_ |
1803588484716298240 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030727111</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519095513.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13167-016-0073-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030727111</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13167-016-0073-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Veauthier, Christian</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-8164-6393</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Berlin Treatment Algorithm: recommendations for tailored innovative therapeutic strategies for multiple sclerosis-related fatigue</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract More than 80% of multiple sclerosis (MS) patients suffer from fatigue. Despite this, there are few therapeutic options and evidence-based pharmacological treatments are lacking. The associated societal burden is substantial (MS fatigue is a major reason for part-time employment or early retirement), and at least one out of four MS patients view fatigue as the most burdensome symptom of their disease. The mechanisms underlying MS-related fatigue are poorly understood, and objective criteria for distinguishing and evaluating levels of fatigue and tiredness have not yet been developed. A further complication is that both symptoms may also be unspecific indicators of many other diseases (including depression, sleep disorders, anemia, renal failure, liver diseases, chronic obstructive pulmonary disease, drug side effects, recent MS relapses, infections, nocturia, cancer, thyroid hypofunction, lack of physical exercise). This paper reviews current treatment options of MS-related fatigue in order to establish an individualized therapeutic strategy that factors in existing comorbid disorders. To ensure that such a strategy can also be easily and widely implemented, a comprehensive approach is needed, which ideally takes into account all other possible causes and which is moreover cost efficient. Using a diagnostic interview, depressive disorders, sleep disorders and side effects of the medication should be identified and addressed. All MS patients suffering from fatigue should fill out the Modified Fatigue Impact Scale, Epworth Sleepiness Scale, the Beck Depression Inventory (or a similar depression scale), and the Pittsburgh Sleep Quality Index (or the Insomnia Severity Index). In some patients, polygraphic or polysomnographic investigations should be performed. The treatment of underlying sleep disorders, drug therapy with alfacalcidol or fampridine, exercise therapy, and cognitive behavioral therapy-based interventions may be effective against MS-related fatigue. The objectives of this article are to identify the reasons for fatigue in patients suffering from multiple sclerosis and to introduce individually tailored treatment approaches. Moreover, this paper focuses on current knowledge about MS-related fatigue in relation to brain atrophy and lesions, cognition, disease course, and other findings in an attempt to identify future research directions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polysomnography</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Restless legs syndrome</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Personalized medicine</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resistance training</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cognitive behavioral therapy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Obstructive sleep apnea</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Patient stratification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Depression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tiredness</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fatigue</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple sclerosis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hasselmann, Helge</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gold, Stefan M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Paul, Friedemann</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The EPMA journal</subfield><subfield code="d">London : BioMed Central, 2010</subfield><subfield code="g">7(2016), 1 vom: 24. Nov.</subfield><subfield code="w">(DE-627)62317877X</subfield><subfield code="w">(DE-600)2545928-4</subfield><subfield code="x">1878-5085</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">day:24</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13167-016-0073-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="b">24</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
score |
7.402128 |