Unbiased estimates of cerebrospinal fluid β-amyloid 1–42 cutoffs in a large memory clinic population
Background We sought to define a cutoff for β-amyloid 1–42 in cerebrospinal fluid (CSF), a key marker for Alzheimer’s disease (AD), with data-driven Gaussian mixture modeling in a memory clinic population. Methods We performed a combined cross-sectional and prospective cohort study. We selected 2462...
Ausführliche Beschreibung
Autor*in: |
Bertens, Daniela [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s). 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Alzheimer's research & therapy - London : BioMed Central, 2009, 9(2017), 1 vom: 14. Feb. |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2017 ; number:1 ; day:14 ; month:02 |
Links: |
---|
DOI / URN: |
10.1186/s13195-016-0233-7 |
---|
Katalog-ID: |
SPR030815460 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR030815460 | ||
003 | DE-627 | ||
005 | 20230519203601.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13195-016-0233-7 |2 doi | |
035 | |a (DE-627)SPR030815460 | ||
035 | |a (SPR)s13195-016-0233-7-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Bertens, Daniela |e verfasserin |4 aut | |
245 | 1 | 0 | |a Unbiased estimates of cerebrospinal fluid β-amyloid 1–42 cutoffs in a large memory clinic population |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s). 2017 | ||
520 | |a Background We sought to define a cutoff for β-amyloid 1–42 in cerebrospinal fluid (CSF), a key marker for Alzheimer’s disease (AD), with data-driven Gaussian mixture modeling in a memory clinic population. Methods We performed a combined cross-sectional and prospective cohort study. We selected 2462 subjects with subjective cognitive decline, mild cognitive impairment, AD-type dementia, and dementia other than AD from the Amsterdam Dementia Cohort. We defined CSF β-amyloid 1–42 cutoffs by data-driven Gaussian mixture modeling in the total population and in subgroups based on clinical diagnosis, age, and apolipoprotein E (APOE) genotype. We investigated whether abnormal β-amyloid 1–42 as defined by the data-driven cutoff could better predict progression to AD-type dementia than abnormal β-amyloid 1–42 defined by a clinical diagnosis-based cutoff using Cox proportional hazards regression. Results In the total group of patients, we found a cutoff for abnormal CSF β-amyloid 1–42 of 680 pg/ml (95% CI 660–705 pg/ml). Similar cutoffs were found within diagnostic and APOE genotype subgroups. The cutoff was higher in elderly subjects than in younger subjects. The data-driven cutoff was higher than our clinical diagnosis-based cutoff and had a better predictive accuracy for progression to AD-type dementia in nondemented subjects (HR 7.6 versus 5.2, p < 0.01). Conclusions Mixture modeling is a robust method to determine cutoffs for CSF β-amyloid 1–42. It might better capture biological changes that are related to AD than cutoffs based on clinical diagnosis. | ||
650 | 4 | |a Alzheimer’s disease |7 (dpeaa)DE-He213 | |
650 | 4 | |a MCI |7 (dpeaa)DE-He213 | |
650 | 4 | |a Cerebrospinal fluid |7 (dpeaa)DE-He213 | |
650 | 4 | |a Diagnosis |7 (dpeaa)DE-He213 | |
700 | 1 | |a Tijms, Betty M. |4 aut | |
700 | 1 | |a Scheltens, Philip |4 aut | |
700 | 1 | |a Teunissen, Charlotte E. |4 aut | |
700 | 1 | |a Visser, Pieter Jelle |0 (orcid)0000-0001-8008-9727 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Alzheimer's research & therapy |d London : BioMed Central, 2009 |g 9(2017), 1 vom: 14. Feb. |w (DE-627)605683557 |w (DE-600)2506521-X |x 1758-9193 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2017 |g number:1 |g day:14 |g month:02 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13195-016-0233-7 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2017 |e 1 |b 14 |c 02 |
author_variant |
d b db b m t bm bmt p s ps c e t ce cet p j v pj pjv |
---|---|
matchkey_str |
article:17589193:2017----::nisdsiaeocrbopnlliayod4ctfsnlre |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1186/s13195-016-0233-7 doi (DE-627)SPR030815460 (SPR)s13195-016-0233-7-e DE-627 ger DE-627 rakwb eng Bertens, Daniela verfasserin aut Unbiased estimates of cerebrospinal fluid β-amyloid 1–42 cutoffs in a large memory clinic population 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2017 Background We sought to define a cutoff for β-amyloid 1–42 in cerebrospinal fluid (CSF), a key marker for Alzheimer’s disease (AD), with data-driven Gaussian mixture modeling in a memory clinic population. Methods We performed a combined cross-sectional and prospective cohort study. We selected 2462 subjects with subjective cognitive decline, mild cognitive impairment, AD-type dementia, and dementia other than AD from the Amsterdam Dementia Cohort. We defined CSF β-amyloid 1–42 cutoffs by data-driven Gaussian mixture modeling in the total population and in subgroups based on clinical diagnosis, age, and apolipoprotein E (APOE) genotype. We investigated whether abnormal β-amyloid 1–42 as defined by the data-driven cutoff could better predict progression to AD-type dementia than abnormal β-amyloid 1–42 defined by a clinical diagnosis-based cutoff using Cox proportional hazards regression. Results In the total group of patients, we found a cutoff for abnormal CSF β-amyloid 1–42 of 680 pg/ml (95% CI 660–705 pg/ml). Similar cutoffs were found within diagnostic and APOE genotype subgroups. The cutoff was higher in elderly subjects than in younger subjects. The data-driven cutoff was higher than our clinical diagnosis-based cutoff and had a better predictive accuracy for progression to AD-type dementia in nondemented subjects (HR 7.6 versus 5.2, p < 0.01). Conclusions Mixture modeling is a robust method to determine cutoffs for CSF β-amyloid 1–42. It might better capture biological changes that are related to AD than cutoffs based on clinical diagnosis. Alzheimer’s disease (dpeaa)DE-He213 MCI (dpeaa)DE-He213 Cerebrospinal fluid (dpeaa)DE-He213 Diagnosis (dpeaa)DE-He213 Tijms, Betty M. aut Scheltens, Philip aut Teunissen, Charlotte E. aut Visser, Pieter Jelle (orcid)0000-0001-8008-9727 aut Enthalten in Alzheimer's research & therapy London : BioMed Central, 2009 9(2017), 1 vom: 14. Feb. (DE-627)605683557 (DE-600)2506521-X 1758-9193 nnns volume:9 year:2017 number:1 day:14 month:02 https://dx.doi.org/10.1186/s13195-016-0233-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2017 1 14 02 |
spelling |
10.1186/s13195-016-0233-7 doi (DE-627)SPR030815460 (SPR)s13195-016-0233-7-e DE-627 ger DE-627 rakwb eng Bertens, Daniela verfasserin aut Unbiased estimates of cerebrospinal fluid β-amyloid 1–42 cutoffs in a large memory clinic population 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2017 Background We sought to define a cutoff for β-amyloid 1–42 in cerebrospinal fluid (CSF), a key marker for Alzheimer’s disease (AD), with data-driven Gaussian mixture modeling in a memory clinic population. Methods We performed a combined cross-sectional and prospective cohort study. We selected 2462 subjects with subjective cognitive decline, mild cognitive impairment, AD-type dementia, and dementia other than AD from the Amsterdam Dementia Cohort. We defined CSF β-amyloid 1–42 cutoffs by data-driven Gaussian mixture modeling in the total population and in subgroups based on clinical diagnosis, age, and apolipoprotein E (APOE) genotype. We investigated whether abnormal β-amyloid 1–42 as defined by the data-driven cutoff could better predict progression to AD-type dementia than abnormal β-amyloid 1–42 defined by a clinical diagnosis-based cutoff using Cox proportional hazards regression. Results In the total group of patients, we found a cutoff for abnormal CSF β-amyloid 1–42 of 680 pg/ml (95% CI 660–705 pg/ml). Similar cutoffs were found within diagnostic and APOE genotype subgroups. The cutoff was higher in elderly subjects than in younger subjects. The data-driven cutoff was higher than our clinical diagnosis-based cutoff and had a better predictive accuracy for progression to AD-type dementia in nondemented subjects (HR 7.6 versus 5.2, p < 0.01). Conclusions Mixture modeling is a robust method to determine cutoffs for CSF β-amyloid 1–42. It might better capture biological changes that are related to AD than cutoffs based on clinical diagnosis. Alzheimer’s disease (dpeaa)DE-He213 MCI (dpeaa)DE-He213 Cerebrospinal fluid (dpeaa)DE-He213 Diagnosis (dpeaa)DE-He213 Tijms, Betty M. aut Scheltens, Philip aut Teunissen, Charlotte E. aut Visser, Pieter Jelle (orcid)0000-0001-8008-9727 aut Enthalten in Alzheimer's research & therapy London : BioMed Central, 2009 9(2017), 1 vom: 14. Feb. (DE-627)605683557 (DE-600)2506521-X 1758-9193 nnns volume:9 year:2017 number:1 day:14 month:02 https://dx.doi.org/10.1186/s13195-016-0233-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2017 1 14 02 |
allfields_unstemmed |
10.1186/s13195-016-0233-7 doi (DE-627)SPR030815460 (SPR)s13195-016-0233-7-e DE-627 ger DE-627 rakwb eng Bertens, Daniela verfasserin aut Unbiased estimates of cerebrospinal fluid β-amyloid 1–42 cutoffs in a large memory clinic population 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2017 Background We sought to define a cutoff for β-amyloid 1–42 in cerebrospinal fluid (CSF), a key marker for Alzheimer’s disease (AD), with data-driven Gaussian mixture modeling in a memory clinic population. Methods We performed a combined cross-sectional and prospective cohort study. We selected 2462 subjects with subjective cognitive decline, mild cognitive impairment, AD-type dementia, and dementia other than AD from the Amsterdam Dementia Cohort. We defined CSF β-amyloid 1–42 cutoffs by data-driven Gaussian mixture modeling in the total population and in subgroups based on clinical diagnosis, age, and apolipoprotein E (APOE) genotype. We investigated whether abnormal β-amyloid 1–42 as defined by the data-driven cutoff could better predict progression to AD-type dementia than abnormal β-amyloid 1–42 defined by a clinical diagnosis-based cutoff using Cox proportional hazards regression. Results In the total group of patients, we found a cutoff for abnormal CSF β-amyloid 1–42 of 680 pg/ml (95% CI 660–705 pg/ml). Similar cutoffs were found within diagnostic and APOE genotype subgroups. The cutoff was higher in elderly subjects than in younger subjects. The data-driven cutoff was higher than our clinical diagnosis-based cutoff and had a better predictive accuracy for progression to AD-type dementia in nondemented subjects (HR 7.6 versus 5.2, p < 0.01). Conclusions Mixture modeling is a robust method to determine cutoffs for CSF β-amyloid 1–42. It might better capture biological changes that are related to AD than cutoffs based on clinical diagnosis. Alzheimer’s disease (dpeaa)DE-He213 MCI (dpeaa)DE-He213 Cerebrospinal fluid (dpeaa)DE-He213 Diagnosis (dpeaa)DE-He213 Tijms, Betty M. aut Scheltens, Philip aut Teunissen, Charlotte E. aut Visser, Pieter Jelle (orcid)0000-0001-8008-9727 aut Enthalten in Alzheimer's research & therapy London : BioMed Central, 2009 9(2017), 1 vom: 14. Feb. (DE-627)605683557 (DE-600)2506521-X 1758-9193 nnns volume:9 year:2017 number:1 day:14 month:02 https://dx.doi.org/10.1186/s13195-016-0233-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2017 1 14 02 |
allfieldsGer |
10.1186/s13195-016-0233-7 doi (DE-627)SPR030815460 (SPR)s13195-016-0233-7-e DE-627 ger DE-627 rakwb eng Bertens, Daniela verfasserin aut Unbiased estimates of cerebrospinal fluid β-amyloid 1–42 cutoffs in a large memory clinic population 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2017 Background We sought to define a cutoff for β-amyloid 1–42 in cerebrospinal fluid (CSF), a key marker for Alzheimer’s disease (AD), with data-driven Gaussian mixture modeling in a memory clinic population. Methods We performed a combined cross-sectional and prospective cohort study. We selected 2462 subjects with subjective cognitive decline, mild cognitive impairment, AD-type dementia, and dementia other than AD from the Amsterdam Dementia Cohort. We defined CSF β-amyloid 1–42 cutoffs by data-driven Gaussian mixture modeling in the total population and in subgroups based on clinical diagnosis, age, and apolipoprotein E (APOE) genotype. We investigated whether abnormal β-amyloid 1–42 as defined by the data-driven cutoff could better predict progression to AD-type dementia than abnormal β-amyloid 1–42 defined by a clinical diagnosis-based cutoff using Cox proportional hazards regression. Results In the total group of patients, we found a cutoff for abnormal CSF β-amyloid 1–42 of 680 pg/ml (95% CI 660–705 pg/ml). Similar cutoffs were found within diagnostic and APOE genotype subgroups. The cutoff was higher in elderly subjects than in younger subjects. The data-driven cutoff was higher than our clinical diagnosis-based cutoff and had a better predictive accuracy for progression to AD-type dementia in nondemented subjects (HR 7.6 versus 5.2, p < 0.01). Conclusions Mixture modeling is a robust method to determine cutoffs for CSF β-amyloid 1–42. It might better capture biological changes that are related to AD than cutoffs based on clinical diagnosis. Alzheimer’s disease (dpeaa)DE-He213 MCI (dpeaa)DE-He213 Cerebrospinal fluid (dpeaa)DE-He213 Diagnosis (dpeaa)DE-He213 Tijms, Betty M. aut Scheltens, Philip aut Teunissen, Charlotte E. aut Visser, Pieter Jelle (orcid)0000-0001-8008-9727 aut Enthalten in Alzheimer's research & therapy London : BioMed Central, 2009 9(2017), 1 vom: 14. Feb. (DE-627)605683557 (DE-600)2506521-X 1758-9193 nnns volume:9 year:2017 number:1 day:14 month:02 https://dx.doi.org/10.1186/s13195-016-0233-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2017 1 14 02 |
allfieldsSound |
10.1186/s13195-016-0233-7 doi (DE-627)SPR030815460 (SPR)s13195-016-0233-7-e DE-627 ger DE-627 rakwb eng Bertens, Daniela verfasserin aut Unbiased estimates of cerebrospinal fluid β-amyloid 1–42 cutoffs in a large memory clinic population 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2017 Background We sought to define a cutoff for β-amyloid 1–42 in cerebrospinal fluid (CSF), a key marker for Alzheimer’s disease (AD), with data-driven Gaussian mixture modeling in a memory clinic population. Methods We performed a combined cross-sectional and prospective cohort study. We selected 2462 subjects with subjective cognitive decline, mild cognitive impairment, AD-type dementia, and dementia other than AD from the Amsterdam Dementia Cohort. We defined CSF β-amyloid 1–42 cutoffs by data-driven Gaussian mixture modeling in the total population and in subgroups based on clinical diagnosis, age, and apolipoprotein E (APOE) genotype. We investigated whether abnormal β-amyloid 1–42 as defined by the data-driven cutoff could better predict progression to AD-type dementia than abnormal β-amyloid 1–42 defined by a clinical diagnosis-based cutoff using Cox proportional hazards regression. Results In the total group of patients, we found a cutoff for abnormal CSF β-amyloid 1–42 of 680 pg/ml (95% CI 660–705 pg/ml). Similar cutoffs were found within diagnostic and APOE genotype subgroups. The cutoff was higher in elderly subjects than in younger subjects. The data-driven cutoff was higher than our clinical diagnosis-based cutoff and had a better predictive accuracy for progression to AD-type dementia in nondemented subjects (HR 7.6 versus 5.2, p < 0.01). Conclusions Mixture modeling is a robust method to determine cutoffs for CSF β-amyloid 1–42. It might better capture biological changes that are related to AD than cutoffs based on clinical diagnosis. Alzheimer’s disease (dpeaa)DE-He213 MCI (dpeaa)DE-He213 Cerebrospinal fluid (dpeaa)DE-He213 Diagnosis (dpeaa)DE-He213 Tijms, Betty M. aut Scheltens, Philip aut Teunissen, Charlotte E. aut Visser, Pieter Jelle (orcid)0000-0001-8008-9727 aut Enthalten in Alzheimer's research & therapy London : BioMed Central, 2009 9(2017), 1 vom: 14. Feb. (DE-627)605683557 (DE-600)2506521-X 1758-9193 nnns volume:9 year:2017 number:1 day:14 month:02 https://dx.doi.org/10.1186/s13195-016-0233-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2017 1 14 02 |
language |
English |
source |
Enthalten in Alzheimer's research & therapy 9(2017), 1 vom: 14. Feb. volume:9 year:2017 number:1 day:14 month:02 |
sourceStr |
Enthalten in Alzheimer's research & therapy 9(2017), 1 vom: 14. Feb. volume:9 year:2017 number:1 day:14 month:02 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Alzheimer’s disease MCI Cerebrospinal fluid Diagnosis |
isfreeaccess_bool |
true |
container_title |
Alzheimer's research & therapy |
authorswithroles_txt_mv |
Bertens, Daniela @@aut@@ Tijms, Betty M. @@aut@@ Scheltens, Philip @@aut@@ Teunissen, Charlotte E. @@aut@@ Visser, Pieter Jelle @@aut@@ |
publishDateDaySort_date |
2017-02-14T00:00:00Z |
hierarchy_top_id |
605683557 |
id |
SPR030815460 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030815460</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519203601.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13195-016-0233-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030815460</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13195-016-0233-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bertens, Daniela</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unbiased estimates of cerebrospinal fluid β-amyloid 1–42 cutoffs in a large memory clinic population</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background We sought to define a cutoff for β-amyloid 1–42 in cerebrospinal fluid (CSF), a key marker for Alzheimer’s disease (AD), with data-driven Gaussian mixture modeling in a memory clinic population. Methods We performed a combined cross-sectional and prospective cohort study. We selected 2462 subjects with subjective cognitive decline, mild cognitive impairment, AD-type dementia, and dementia other than AD from the Amsterdam Dementia Cohort. We defined CSF β-amyloid 1–42 cutoffs by data-driven Gaussian mixture modeling in the total population and in subgroups based on clinical diagnosis, age, and apolipoprotein E (APOE) genotype. We investigated whether abnormal β-amyloid 1–42 as defined by the data-driven cutoff could better predict progression to AD-type dementia than abnormal β-amyloid 1–42 defined by a clinical diagnosis-based cutoff using Cox proportional hazards regression. Results In the total group of patients, we found a cutoff for abnormal CSF β-amyloid 1–42 of 680 pg/ml (95% CI 660–705 pg/ml). Similar cutoffs were found within diagnostic and APOE genotype subgroups. The cutoff was higher in elderly subjects than in younger subjects. The data-driven cutoff was higher than our clinical diagnosis-based cutoff and had a better predictive accuracy for progression to AD-type dementia in nondemented subjects (HR 7.6 versus 5.2, p < 0.01). Conclusions Mixture modeling is a robust method to determine cutoffs for CSF β-amyloid 1–42. It might better capture biological changes that are related to AD than cutoffs based on clinical diagnosis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alzheimer’s disease</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MCI</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cerebrospinal fluid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diagnosis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tijms, Betty M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Scheltens, Philip</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Teunissen, Charlotte E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Visser, Pieter Jelle</subfield><subfield code="0">(orcid)0000-0001-8008-9727</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Alzheimer's research & therapy</subfield><subfield code="d">London : BioMed Central, 2009</subfield><subfield code="g">9(2017), 1 vom: 14. Feb.</subfield><subfield code="w">(DE-627)605683557</subfield><subfield code="w">(DE-600)2506521-X</subfield><subfield code="x">1758-9193</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">day:14</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13195-016-0233-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="b">14</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
author |
Bertens, Daniela |
spellingShingle |
Bertens, Daniela misc Alzheimer’s disease misc MCI misc Cerebrospinal fluid misc Diagnosis Unbiased estimates of cerebrospinal fluid β-amyloid 1–42 cutoffs in a large memory clinic population |
authorStr |
Bertens, Daniela |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)605683557 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1758-9193 |
topic_title |
Unbiased estimates of cerebrospinal fluid β-amyloid 1–42 cutoffs in a large memory clinic population Alzheimer’s disease (dpeaa)DE-He213 MCI (dpeaa)DE-He213 Cerebrospinal fluid (dpeaa)DE-He213 Diagnosis (dpeaa)DE-He213 |
topic |
misc Alzheimer’s disease misc MCI misc Cerebrospinal fluid misc Diagnosis |
topic_unstemmed |
misc Alzheimer’s disease misc MCI misc Cerebrospinal fluid misc Diagnosis |
topic_browse |
misc Alzheimer’s disease misc MCI misc Cerebrospinal fluid misc Diagnosis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Alzheimer's research & therapy |
hierarchy_parent_id |
605683557 |
hierarchy_top_title |
Alzheimer's research & therapy |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)605683557 (DE-600)2506521-X |
title |
Unbiased estimates of cerebrospinal fluid β-amyloid 1–42 cutoffs in a large memory clinic population |
ctrlnum |
(DE-627)SPR030815460 (SPR)s13195-016-0233-7-e |
title_full |
Unbiased estimates of cerebrospinal fluid β-amyloid 1–42 cutoffs in a large memory clinic population |
author_sort |
Bertens, Daniela |
journal |
Alzheimer's research & therapy |
journalStr |
Alzheimer's research & therapy |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
author_browse |
Bertens, Daniela Tijms, Betty M. Scheltens, Philip Teunissen, Charlotte E. Visser, Pieter Jelle |
container_volume |
9 |
format_se |
Elektronische Aufsätze |
author-letter |
Bertens, Daniela |
doi_str_mv |
10.1186/s13195-016-0233-7 |
normlink |
(ORCID)0000-0001-8008-9727 |
normlink_prefix_str_mv |
(orcid)0000-0001-8008-9727 |
title_sort |
unbiased estimates of cerebrospinal fluid β-amyloid 1–42 cutoffs in a large memory clinic population |
title_auth |
Unbiased estimates of cerebrospinal fluid β-amyloid 1–42 cutoffs in a large memory clinic population |
abstract |
Background We sought to define a cutoff for β-amyloid 1–42 in cerebrospinal fluid (CSF), a key marker for Alzheimer’s disease (AD), with data-driven Gaussian mixture modeling in a memory clinic population. Methods We performed a combined cross-sectional and prospective cohort study. We selected 2462 subjects with subjective cognitive decline, mild cognitive impairment, AD-type dementia, and dementia other than AD from the Amsterdam Dementia Cohort. We defined CSF β-amyloid 1–42 cutoffs by data-driven Gaussian mixture modeling in the total population and in subgroups based on clinical diagnosis, age, and apolipoprotein E (APOE) genotype. We investigated whether abnormal β-amyloid 1–42 as defined by the data-driven cutoff could better predict progression to AD-type dementia than abnormal β-amyloid 1–42 defined by a clinical diagnosis-based cutoff using Cox proportional hazards regression. Results In the total group of patients, we found a cutoff for abnormal CSF β-amyloid 1–42 of 680 pg/ml (95% CI 660–705 pg/ml). Similar cutoffs were found within diagnostic and APOE genotype subgroups. The cutoff was higher in elderly subjects than in younger subjects. The data-driven cutoff was higher than our clinical diagnosis-based cutoff and had a better predictive accuracy for progression to AD-type dementia in nondemented subjects (HR 7.6 versus 5.2, p < 0.01). Conclusions Mixture modeling is a robust method to determine cutoffs for CSF β-amyloid 1–42. It might better capture biological changes that are related to AD than cutoffs based on clinical diagnosis. © The Author(s). 2017 |
abstractGer |
Background We sought to define a cutoff for β-amyloid 1–42 in cerebrospinal fluid (CSF), a key marker for Alzheimer’s disease (AD), with data-driven Gaussian mixture modeling in a memory clinic population. Methods We performed a combined cross-sectional and prospective cohort study. We selected 2462 subjects with subjective cognitive decline, mild cognitive impairment, AD-type dementia, and dementia other than AD from the Amsterdam Dementia Cohort. We defined CSF β-amyloid 1–42 cutoffs by data-driven Gaussian mixture modeling in the total population and in subgroups based on clinical diagnosis, age, and apolipoprotein E (APOE) genotype. We investigated whether abnormal β-amyloid 1–42 as defined by the data-driven cutoff could better predict progression to AD-type dementia than abnormal β-amyloid 1–42 defined by a clinical diagnosis-based cutoff using Cox proportional hazards regression. Results In the total group of patients, we found a cutoff for abnormal CSF β-amyloid 1–42 of 680 pg/ml (95% CI 660–705 pg/ml). Similar cutoffs were found within diagnostic and APOE genotype subgroups. The cutoff was higher in elderly subjects than in younger subjects. The data-driven cutoff was higher than our clinical diagnosis-based cutoff and had a better predictive accuracy for progression to AD-type dementia in nondemented subjects (HR 7.6 versus 5.2, p < 0.01). Conclusions Mixture modeling is a robust method to determine cutoffs for CSF β-amyloid 1–42. It might better capture biological changes that are related to AD than cutoffs based on clinical diagnosis. © The Author(s). 2017 |
abstract_unstemmed |
Background We sought to define a cutoff for β-amyloid 1–42 in cerebrospinal fluid (CSF), a key marker for Alzheimer’s disease (AD), with data-driven Gaussian mixture modeling in a memory clinic population. Methods We performed a combined cross-sectional and prospective cohort study. We selected 2462 subjects with subjective cognitive decline, mild cognitive impairment, AD-type dementia, and dementia other than AD from the Amsterdam Dementia Cohort. We defined CSF β-amyloid 1–42 cutoffs by data-driven Gaussian mixture modeling in the total population and in subgroups based on clinical diagnosis, age, and apolipoprotein E (APOE) genotype. We investigated whether abnormal β-amyloid 1–42 as defined by the data-driven cutoff could better predict progression to AD-type dementia than abnormal β-amyloid 1–42 defined by a clinical diagnosis-based cutoff using Cox proportional hazards regression. Results In the total group of patients, we found a cutoff for abnormal CSF β-amyloid 1–42 of 680 pg/ml (95% CI 660–705 pg/ml). Similar cutoffs were found within diagnostic and APOE genotype subgroups. The cutoff was higher in elderly subjects than in younger subjects. The data-driven cutoff was higher than our clinical diagnosis-based cutoff and had a better predictive accuracy for progression to AD-type dementia in nondemented subjects (HR 7.6 versus 5.2, p < 0.01). Conclusions Mixture modeling is a robust method to determine cutoffs for CSF β-amyloid 1–42. It might better capture biological changes that are related to AD than cutoffs based on clinical diagnosis. © The Author(s). 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Unbiased estimates of cerebrospinal fluid β-amyloid 1–42 cutoffs in a large memory clinic population |
url |
https://dx.doi.org/10.1186/s13195-016-0233-7 |
remote_bool |
true |
author2 |
Tijms, Betty M. Scheltens, Philip Teunissen, Charlotte E. Visser, Pieter Jelle |
author2Str |
Tijms, Betty M. Scheltens, Philip Teunissen, Charlotte E. Visser, Pieter Jelle |
ppnlink |
605683557 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13195-016-0233-7 |
up_date |
2024-07-03T20:16:53.226Z |
_version_ |
1803590370050703361 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR030815460</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519203601.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13195-016-0233-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR030815460</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13195-016-0233-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bertens, Daniela</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unbiased estimates of cerebrospinal fluid β-amyloid 1–42 cutoffs in a large memory clinic population</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background We sought to define a cutoff for β-amyloid 1–42 in cerebrospinal fluid (CSF), a key marker for Alzheimer’s disease (AD), with data-driven Gaussian mixture modeling in a memory clinic population. Methods We performed a combined cross-sectional and prospective cohort study. We selected 2462 subjects with subjective cognitive decline, mild cognitive impairment, AD-type dementia, and dementia other than AD from the Amsterdam Dementia Cohort. We defined CSF β-amyloid 1–42 cutoffs by data-driven Gaussian mixture modeling in the total population and in subgroups based on clinical diagnosis, age, and apolipoprotein E (APOE) genotype. We investigated whether abnormal β-amyloid 1–42 as defined by the data-driven cutoff could better predict progression to AD-type dementia than abnormal β-amyloid 1–42 defined by a clinical diagnosis-based cutoff using Cox proportional hazards regression. Results In the total group of patients, we found a cutoff for abnormal CSF β-amyloid 1–42 of 680 pg/ml (95% CI 660–705 pg/ml). Similar cutoffs were found within diagnostic and APOE genotype subgroups. The cutoff was higher in elderly subjects than in younger subjects. The data-driven cutoff was higher than our clinical diagnosis-based cutoff and had a better predictive accuracy for progression to AD-type dementia in nondemented subjects (HR 7.6 versus 5.2, p < 0.01). Conclusions Mixture modeling is a robust method to determine cutoffs for CSF β-amyloid 1–42. It might better capture biological changes that are related to AD than cutoffs based on clinical diagnosis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alzheimer’s disease</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MCI</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cerebrospinal fluid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diagnosis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tijms, Betty M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Scheltens, Philip</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Teunissen, Charlotte E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Visser, Pieter Jelle</subfield><subfield code="0">(orcid)0000-0001-8008-9727</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Alzheimer's research & therapy</subfield><subfield code="d">London : BioMed Central, 2009</subfield><subfield code="g">9(2017), 1 vom: 14. Feb.</subfield><subfield code="w">(DE-627)605683557</subfield><subfield code="w">(DE-600)2506521-X</subfield><subfield code="x">1758-9193</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">day:14</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13195-016-0233-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="b">14</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
score |
7.4022093 |