MicroRNAs as novel biomarkers for pancreatic cancer diagnosis: a meta-analysis based on 18 articles
Abstract Dysregulated microRNAs (miRNAs) have been reported to be associated with pancreatic cancer (PaC), suggesting that they may serve as useful novel diagnostic biomarkers for PaC. Various studies have been performed to investigate the diagnostic value of miRNAs for PaC but have obtained conflic...
Ausführliche Beschreibung
Autor*in: |
Ding, Zhongyang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© International Society of Oncology and BioMarkers (ISOBM) 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Tumor biology - Amsterdam : IOS Press, 1987, 35(2014), 9 vom: 02. Juni, Seite 8837-8848 |
---|---|
Übergeordnetes Werk: |
volume:35 ; year:2014 ; number:9 ; day:02 ; month:06 ; pages:8837-8848 |
Links: |
---|
DOI / URN: |
10.1007/s13277-014-2133-4 |
---|
Katalog-ID: |
SPR031148018 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR031148018 | ||
003 | DE-627 | ||
005 | 20230520003717.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s13277-014-2133-4 |2 doi | |
035 | |a (DE-627)SPR031148018 | ||
035 | |a (SPR)s13277-014-2133-4-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Ding, Zhongyang |e verfasserin |4 aut | |
245 | 1 | 0 | |a MicroRNAs as novel biomarkers for pancreatic cancer diagnosis: a meta-analysis based on 18 articles |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © International Society of Oncology and BioMarkers (ISOBM) 2014 | ||
520 | |a Abstract Dysregulated microRNAs (miRNAs) have been reported to be associated with pancreatic cancer (PaC), suggesting that they may serve as useful novel diagnostic biomarkers for PaC. Various studies have been performed to investigate the diagnostic value of miRNAs for PaC but have obtained conflicting results. Therefore, this meta-analysis aims to comprehensively and quantitatively evaluate the potential diagnostic value of miRNAs for PaC. We systematically searched PubMed, Embase, Google Scholar, Cochrane Library, and Chinese National Knowledge Infrastructure for publications concerning the diagnostic value of miRNAs for PaC without language restriction. The quality of each study was scored using the revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). The summary receiver operator characteristic curve and other parameters were applied to check the overall test performance. Heterogeneity was tested with the I2 test and publication bias was tested with the Deek’s funnel plot asymmetry test. This meta-analysis included 18 articles with a total of 2,036 patients and 1,444 controls. The pooled sensitivity was 82 % (95 % CI, 78–86 %); the specificity was 77 % (95 % CI, 73–81 %); the PLR was 3.6 (95 % CI, 3.0–4.4); the NLR was 0.23 (95 % CI, 0.18–0.29); the DOR was 16 (95 % CI, 10–24); and the AUC was 0.86 (95 % CI, 0.83–0.89). Subgroups analyses were also performed and revealed that there were significant differences between some subgroups: the multiple-miRNAs profiling-based assays, non-blood-based assays, and healthy control-based studies all showed higher accuracies in diagnosing PaC than that of their counterparts. This meta-analysis suggests that the use of miRNAs has potential diagnostic value with a relatively high sensitivity and specificity for PaC, particularly the use of multiple miRNAs for discriminating PaC patients from healthy individuals. More prospective studies on the diagnostic value of miRNAs for PaC are needed in the future. | ||
650 | 4 | |a microRNAs |7 (dpeaa)DE-He213 | |
650 | 4 | |a Pancreatic cancer |7 (dpeaa)DE-He213 | |
650 | 4 | |a Meta-analysis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Diagnostic accuracy |7 (dpeaa)DE-He213 | |
700 | 1 | |a Wu, Haorong |4 aut | |
700 | 1 | |a Zhang, Jiaming |4 aut | |
700 | 1 | |a Huang, Guorong |4 aut | |
700 | 1 | |a Ji, Dongdong |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Tumor biology |d Amsterdam : IOS Press, 1987 |g 35(2014), 9 vom: 02. Juni, Seite 8837-8848 |w (DE-627)300897855 |w (DE-600)1483579-4 |x 1423-0380 |7 nnns |
773 | 1 | 8 | |g volume:35 |g year:2014 |g number:9 |g day:02 |g month:06 |g pages:8837-8848 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s13277-014-2133-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4338 | ||
951 | |a AR | ||
952 | |d 35 |j 2014 |e 9 |b 02 |c 06 |h 8837-8848 |
author_variant |
z d zd h w hw j z jz g h gh d j dj |
---|---|
matchkey_str |
article:14230380:2014----::irraanvlimresopnraicnedanssmtaa |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1007/s13277-014-2133-4 doi (DE-627)SPR031148018 (SPR)s13277-014-2133-4-e DE-627 ger DE-627 rakwb eng Ding, Zhongyang verfasserin aut MicroRNAs as novel biomarkers for pancreatic cancer diagnosis: a meta-analysis based on 18 articles 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © International Society of Oncology and BioMarkers (ISOBM) 2014 Abstract Dysregulated microRNAs (miRNAs) have been reported to be associated with pancreatic cancer (PaC), suggesting that they may serve as useful novel diagnostic biomarkers for PaC. Various studies have been performed to investigate the diagnostic value of miRNAs for PaC but have obtained conflicting results. Therefore, this meta-analysis aims to comprehensively and quantitatively evaluate the potential diagnostic value of miRNAs for PaC. We systematically searched PubMed, Embase, Google Scholar, Cochrane Library, and Chinese National Knowledge Infrastructure for publications concerning the diagnostic value of miRNAs for PaC without language restriction. The quality of each study was scored using the revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). The summary receiver operator characteristic curve and other parameters were applied to check the overall test performance. Heterogeneity was tested with the I2 test and publication bias was tested with the Deek’s funnel plot asymmetry test. This meta-analysis included 18 articles with a total of 2,036 patients and 1,444 controls. The pooled sensitivity was 82 % (95 % CI, 78–86 %); the specificity was 77 % (95 % CI, 73–81 %); the PLR was 3.6 (95 % CI, 3.0–4.4); the NLR was 0.23 (95 % CI, 0.18–0.29); the DOR was 16 (95 % CI, 10–24); and the AUC was 0.86 (95 % CI, 0.83–0.89). Subgroups analyses were also performed and revealed that there were significant differences between some subgroups: the multiple-miRNAs profiling-based assays, non-blood-based assays, and healthy control-based studies all showed higher accuracies in diagnosing PaC than that of their counterparts. This meta-analysis suggests that the use of miRNAs has potential diagnostic value with a relatively high sensitivity and specificity for PaC, particularly the use of multiple miRNAs for discriminating PaC patients from healthy individuals. More prospective studies on the diagnostic value of miRNAs for PaC are needed in the future. microRNAs (dpeaa)DE-He213 Pancreatic cancer (dpeaa)DE-He213 Meta-analysis (dpeaa)DE-He213 Diagnostic accuracy (dpeaa)DE-He213 Wu, Haorong aut Zhang, Jiaming aut Huang, Guorong aut Ji, Dongdong aut Enthalten in Tumor biology Amsterdam : IOS Press, 1987 35(2014), 9 vom: 02. Juni, Seite 8837-8848 (DE-627)300897855 (DE-600)1483579-4 1423-0380 nnns volume:35 year:2014 number:9 day:02 month:06 pages:8837-8848 https://dx.doi.org/10.1007/s13277-014-2133-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_22 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_63 GBV_ILN_95 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_370 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4338 AR 35 2014 9 02 06 8837-8848 |
spelling |
10.1007/s13277-014-2133-4 doi (DE-627)SPR031148018 (SPR)s13277-014-2133-4-e DE-627 ger DE-627 rakwb eng Ding, Zhongyang verfasserin aut MicroRNAs as novel biomarkers for pancreatic cancer diagnosis: a meta-analysis based on 18 articles 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © International Society of Oncology and BioMarkers (ISOBM) 2014 Abstract Dysregulated microRNAs (miRNAs) have been reported to be associated with pancreatic cancer (PaC), suggesting that they may serve as useful novel diagnostic biomarkers for PaC. Various studies have been performed to investigate the diagnostic value of miRNAs for PaC but have obtained conflicting results. Therefore, this meta-analysis aims to comprehensively and quantitatively evaluate the potential diagnostic value of miRNAs for PaC. We systematically searched PubMed, Embase, Google Scholar, Cochrane Library, and Chinese National Knowledge Infrastructure for publications concerning the diagnostic value of miRNAs for PaC without language restriction. The quality of each study was scored using the revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). The summary receiver operator characteristic curve and other parameters were applied to check the overall test performance. Heterogeneity was tested with the I2 test and publication bias was tested with the Deek’s funnel plot asymmetry test. This meta-analysis included 18 articles with a total of 2,036 patients and 1,444 controls. The pooled sensitivity was 82 % (95 % CI, 78–86 %); the specificity was 77 % (95 % CI, 73–81 %); the PLR was 3.6 (95 % CI, 3.0–4.4); the NLR was 0.23 (95 % CI, 0.18–0.29); the DOR was 16 (95 % CI, 10–24); and the AUC was 0.86 (95 % CI, 0.83–0.89). Subgroups analyses were also performed and revealed that there were significant differences between some subgroups: the multiple-miRNAs profiling-based assays, non-blood-based assays, and healthy control-based studies all showed higher accuracies in diagnosing PaC than that of their counterparts. This meta-analysis suggests that the use of miRNAs has potential diagnostic value with a relatively high sensitivity and specificity for PaC, particularly the use of multiple miRNAs for discriminating PaC patients from healthy individuals. More prospective studies on the diagnostic value of miRNAs for PaC are needed in the future. microRNAs (dpeaa)DE-He213 Pancreatic cancer (dpeaa)DE-He213 Meta-analysis (dpeaa)DE-He213 Diagnostic accuracy (dpeaa)DE-He213 Wu, Haorong aut Zhang, Jiaming aut Huang, Guorong aut Ji, Dongdong aut Enthalten in Tumor biology Amsterdam : IOS Press, 1987 35(2014), 9 vom: 02. Juni, Seite 8837-8848 (DE-627)300897855 (DE-600)1483579-4 1423-0380 nnns volume:35 year:2014 number:9 day:02 month:06 pages:8837-8848 https://dx.doi.org/10.1007/s13277-014-2133-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_22 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_63 GBV_ILN_95 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_370 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4338 AR 35 2014 9 02 06 8837-8848 |
allfields_unstemmed |
10.1007/s13277-014-2133-4 doi (DE-627)SPR031148018 (SPR)s13277-014-2133-4-e DE-627 ger DE-627 rakwb eng Ding, Zhongyang verfasserin aut MicroRNAs as novel biomarkers for pancreatic cancer diagnosis: a meta-analysis based on 18 articles 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © International Society of Oncology and BioMarkers (ISOBM) 2014 Abstract Dysregulated microRNAs (miRNAs) have been reported to be associated with pancreatic cancer (PaC), suggesting that they may serve as useful novel diagnostic biomarkers for PaC. Various studies have been performed to investigate the diagnostic value of miRNAs for PaC but have obtained conflicting results. Therefore, this meta-analysis aims to comprehensively and quantitatively evaluate the potential diagnostic value of miRNAs for PaC. We systematically searched PubMed, Embase, Google Scholar, Cochrane Library, and Chinese National Knowledge Infrastructure for publications concerning the diagnostic value of miRNAs for PaC without language restriction. The quality of each study was scored using the revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). The summary receiver operator characteristic curve and other parameters were applied to check the overall test performance. Heterogeneity was tested with the I2 test and publication bias was tested with the Deek’s funnel plot asymmetry test. This meta-analysis included 18 articles with a total of 2,036 patients and 1,444 controls. The pooled sensitivity was 82 % (95 % CI, 78–86 %); the specificity was 77 % (95 % CI, 73–81 %); the PLR was 3.6 (95 % CI, 3.0–4.4); the NLR was 0.23 (95 % CI, 0.18–0.29); the DOR was 16 (95 % CI, 10–24); and the AUC was 0.86 (95 % CI, 0.83–0.89). Subgroups analyses were also performed and revealed that there were significant differences between some subgroups: the multiple-miRNAs profiling-based assays, non-blood-based assays, and healthy control-based studies all showed higher accuracies in diagnosing PaC than that of their counterparts. This meta-analysis suggests that the use of miRNAs has potential diagnostic value with a relatively high sensitivity and specificity for PaC, particularly the use of multiple miRNAs for discriminating PaC patients from healthy individuals. More prospective studies on the diagnostic value of miRNAs for PaC are needed in the future. microRNAs (dpeaa)DE-He213 Pancreatic cancer (dpeaa)DE-He213 Meta-analysis (dpeaa)DE-He213 Diagnostic accuracy (dpeaa)DE-He213 Wu, Haorong aut Zhang, Jiaming aut Huang, Guorong aut Ji, Dongdong aut Enthalten in Tumor biology Amsterdam : IOS Press, 1987 35(2014), 9 vom: 02. Juni, Seite 8837-8848 (DE-627)300897855 (DE-600)1483579-4 1423-0380 nnns volume:35 year:2014 number:9 day:02 month:06 pages:8837-8848 https://dx.doi.org/10.1007/s13277-014-2133-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_22 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_63 GBV_ILN_95 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_370 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4338 AR 35 2014 9 02 06 8837-8848 |
allfieldsGer |
10.1007/s13277-014-2133-4 doi (DE-627)SPR031148018 (SPR)s13277-014-2133-4-e DE-627 ger DE-627 rakwb eng Ding, Zhongyang verfasserin aut MicroRNAs as novel biomarkers for pancreatic cancer diagnosis: a meta-analysis based on 18 articles 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © International Society of Oncology and BioMarkers (ISOBM) 2014 Abstract Dysregulated microRNAs (miRNAs) have been reported to be associated with pancreatic cancer (PaC), suggesting that they may serve as useful novel diagnostic biomarkers for PaC. Various studies have been performed to investigate the diagnostic value of miRNAs for PaC but have obtained conflicting results. Therefore, this meta-analysis aims to comprehensively and quantitatively evaluate the potential diagnostic value of miRNAs for PaC. We systematically searched PubMed, Embase, Google Scholar, Cochrane Library, and Chinese National Knowledge Infrastructure for publications concerning the diagnostic value of miRNAs for PaC without language restriction. The quality of each study was scored using the revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). The summary receiver operator characteristic curve and other parameters were applied to check the overall test performance. Heterogeneity was tested with the I2 test and publication bias was tested with the Deek’s funnel plot asymmetry test. This meta-analysis included 18 articles with a total of 2,036 patients and 1,444 controls. The pooled sensitivity was 82 % (95 % CI, 78–86 %); the specificity was 77 % (95 % CI, 73–81 %); the PLR was 3.6 (95 % CI, 3.0–4.4); the NLR was 0.23 (95 % CI, 0.18–0.29); the DOR was 16 (95 % CI, 10–24); and the AUC was 0.86 (95 % CI, 0.83–0.89). Subgroups analyses were also performed and revealed that there were significant differences between some subgroups: the multiple-miRNAs profiling-based assays, non-blood-based assays, and healthy control-based studies all showed higher accuracies in diagnosing PaC than that of their counterparts. This meta-analysis suggests that the use of miRNAs has potential diagnostic value with a relatively high sensitivity and specificity for PaC, particularly the use of multiple miRNAs for discriminating PaC patients from healthy individuals. More prospective studies on the diagnostic value of miRNAs for PaC are needed in the future. microRNAs (dpeaa)DE-He213 Pancreatic cancer (dpeaa)DE-He213 Meta-analysis (dpeaa)DE-He213 Diagnostic accuracy (dpeaa)DE-He213 Wu, Haorong aut Zhang, Jiaming aut Huang, Guorong aut Ji, Dongdong aut Enthalten in Tumor biology Amsterdam : IOS Press, 1987 35(2014), 9 vom: 02. Juni, Seite 8837-8848 (DE-627)300897855 (DE-600)1483579-4 1423-0380 nnns volume:35 year:2014 number:9 day:02 month:06 pages:8837-8848 https://dx.doi.org/10.1007/s13277-014-2133-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_22 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_63 GBV_ILN_95 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_370 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4338 AR 35 2014 9 02 06 8837-8848 |
allfieldsSound |
10.1007/s13277-014-2133-4 doi (DE-627)SPR031148018 (SPR)s13277-014-2133-4-e DE-627 ger DE-627 rakwb eng Ding, Zhongyang verfasserin aut MicroRNAs as novel biomarkers for pancreatic cancer diagnosis: a meta-analysis based on 18 articles 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © International Society of Oncology and BioMarkers (ISOBM) 2014 Abstract Dysregulated microRNAs (miRNAs) have been reported to be associated with pancreatic cancer (PaC), suggesting that they may serve as useful novel diagnostic biomarkers for PaC. Various studies have been performed to investigate the diagnostic value of miRNAs for PaC but have obtained conflicting results. Therefore, this meta-analysis aims to comprehensively and quantitatively evaluate the potential diagnostic value of miRNAs for PaC. We systematically searched PubMed, Embase, Google Scholar, Cochrane Library, and Chinese National Knowledge Infrastructure for publications concerning the diagnostic value of miRNAs for PaC without language restriction. The quality of each study was scored using the revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). The summary receiver operator characteristic curve and other parameters were applied to check the overall test performance. Heterogeneity was tested with the I2 test and publication bias was tested with the Deek’s funnel plot asymmetry test. This meta-analysis included 18 articles with a total of 2,036 patients and 1,444 controls. The pooled sensitivity was 82 % (95 % CI, 78–86 %); the specificity was 77 % (95 % CI, 73–81 %); the PLR was 3.6 (95 % CI, 3.0–4.4); the NLR was 0.23 (95 % CI, 0.18–0.29); the DOR was 16 (95 % CI, 10–24); and the AUC was 0.86 (95 % CI, 0.83–0.89). Subgroups analyses were also performed and revealed that there were significant differences between some subgroups: the multiple-miRNAs profiling-based assays, non-blood-based assays, and healthy control-based studies all showed higher accuracies in diagnosing PaC than that of their counterparts. This meta-analysis suggests that the use of miRNAs has potential diagnostic value with a relatively high sensitivity and specificity for PaC, particularly the use of multiple miRNAs for discriminating PaC patients from healthy individuals. More prospective studies on the diagnostic value of miRNAs for PaC are needed in the future. microRNAs (dpeaa)DE-He213 Pancreatic cancer (dpeaa)DE-He213 Meta-analysis (dpeaa)DE-He213 Diagnostic accuracy (dpeaa)DE-He213 Wu, Haorong aut Zhang, Jiaming aut Huang, Guorong aut Ji, Dongdong aut Enthalten in Tumor biology Amsterdam : IOS Press, 1987 35(2014), 9 vom: 02. Juni, Seite 8837-8848 (DE-627)300897855 (DE-600)1483579-4 1423-0380 nnns volume:35 year:2014 number:9 day:02 month:06 pages:8837-8848 https://dx.doi.org/10.1007/s13277-014-2133-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_22 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_63 GBV_ILN_95 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_370 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4338 AR 35 2014 9 02 06 8837-8848 |
language |
English |
source |
Enthalten in Tumor biology 35(2014), 9 vom: 02. Juni, Seite 8837-8848 volume:35 year:2014 number:9 day:02 month:06 pages:8837-8848 |
sourceStr |
Enthalten in Tumor biology 35(2014), 9 vom: 02. Juni, Seite 8837-8848 volume:35 year:2014 number:9 day:02 month:06 pages:8837-8848 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
microRNAs Pancreatic cancer Meta-analysis Diagnostic accuracy |
isfreeaccess_bool |
false |
container_title |
Tumor biology |
authorswithroles_txt_mv |
Ding, Zhongyang @@aut@@ Wu, Haorong @@aut@@ Zhang, Jiaming @@aut@@ Huang, Guorong @@aut@@ Ji, Dongdong @@aut@@ |
publishDateDaySort_date |
2014-06-02T00:00:00Z |
hierarchy_top_id |
300897855 |
id |
SPR031148018 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR031148018</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520003717.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13277-014-2133-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR031148018</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13277-014-2133-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ding, Zhongyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">MicroRNAs as novel biomarkers for pancreatic cancer diagnosis: a meta-analysis based on 18 articles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© International Society of Oncology and BioMarkers (ISOBM) 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Dysregulated microRNAs (miRNAs) have been reported to be associated with pancreatic cancer (PaC), suggesting that they may serve as useful novel diagnostic biomarkers for PaC. Various studies have been performed to investigate the diagnostic value of miRNAs for PaC but have obtained conflicting results. Therefore, this meta-analysis aims to comprehensively and quantitatively evaluate the potential diagnostic value of miRNAs for PaC. We systematically searched PubMed, Embase, Google Scholar, Cochrane Library, and Chinese National Knowledge Infrastructure for publications concerning the diagnostic value of miRNAs for PaC without language restriction. The quality of each study was scored using the revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). The summary receiver operator characteristic curve and other parameters were applied to check the overall test performance. Heterogeneity was tested with the I2 test and publication bias was tested with the Deek’s funnel plot asymmetry test. This meta-analysis included 18 articles with a total of 2,036 patients and 1,444 controls. The pooled sensitivity was 82 % (95 % CI, 78–86 %); the specificity was 77 % (95 % CI, 73–81 %); the PLR was 3.6 (95 % CI, 3.0–4.4); the NLR was 0.23 (95 % CI, 0.18–0.29); the DOR was 16 (95 % CI, 10–24); and the AUC was 0.86 (95 % CI, 0.83–0.89). Subgroups analyses were also performed and revealed that there were significant differences between some subgroups: the multiple-miRNAs profiling-based assays, non-blood-based assays, and healthy control-based studies all showed higher accuracies in diagnosing PaC than that of their counterparts. This meta-analysis suggests that the use of miRNAs has potential diagnostic value with a relatively high sensitivity and specificity for PaC, particularly the use of multiple miRNAs for discriminating PaC patients from healthy individuals. More prospective studies on the diagnostic value of miRNAs for PaC are needed in the future.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microRNAs</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pancreatic cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Meta-analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diagnostic accuracy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Haorong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jiaming</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Guorong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ji, Dongdong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Tumor biology</subfield><subfield code="d">Amsterdam : IOS Press, 1987</subfield><subfield code="g">35(2014), 9 vom: 02. Juni, Seite 8837-8848</subfield><subfield code="w">(DE-627)300897855</subfield><subfield code="w">(DE-600)1483579-4</subfield><subfield code="x">1423-0380</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:35</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:9</subfield><subfield code="g">day:02</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:8837-8848</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13277-014-2133-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">35</subfield><subfield code="j">2014</subfield><subfield code="e">9</subfield><subfield code="b">02</subfield><subfield code="c">06</subfield><subfield code="h">8837-8848</subfield></datafield></record></collection>
|
author |
Ding, Zhongyang |
spellingShingle |
Ding, Zhongyang misc microRNAs misc Pancreatic cancer misc Meta-analysis misc Diagnostic accuracy MicroRNAs as novel biomarkers for pancreatic cancer diagnosis: a meta-analysis based on 18 articles |
authorStr |
Ding, Zhongyang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)300897855 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1423-0380 |
topic_title |
MicroRNAs as novel biomarkers for pancreatic cancer diagnosis: a meta-analysis based on 18 articles microRNAs (dpeaa)DE-He213 Pancreatic cancer (dpeaa)DE-He213 Meta-analysis (dpeaa)DE-He213 Diagnostic accuracy (dpeaa)DE-He213 |
topic |
misc microRNAs misc Pancreatic cancer misc Meta-analysis misc Diagnostic accuracy |
topic_unstemmed |
misc microRNAs misc Pancreatic cancer misc Meta-analysis misc Diagnostic accuracy |
topic_browse |
misc microRNAs misc Pancreatic cancer misc Meta-analysis misc Diagnostic accuracy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Tumor biology |
hierarchy_parent_id |
300897855 |
hierarchy_top_title |
Tumor biology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)300897855 (DE-600)1483579-4 |
title |
MicroRNAs as novel biomarkers for pancreatic cancer diagnosis: a meta-analysis based on 18 articles |
ctrlnum |
(DE-627)SPR031148018 (SPR)s13277-014-2133-4-e |
title_full |
MicroRNAs as novel biomarkers for pancreatic cancer diagnosis: a meta-analysis based on 18 articles |
author_sort |
Ding, Zhongyang |
journal |
Tumor biology |
journalStr |
Tumor biology |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
8837 |
author_browse |
Ding, Zhongyang Wu, Haorong Zhang, Jiaming Huang, Guorong Ji, Dongdong |
container_volume |
35 |
format_se |
Elektronische Aufsätze |
author-letter |
Ding, Zhongyang |
doi_str_mv |
10.1007/s13277-014-2133-4 |
title_sort |
micrornas as novel biomarkers for pancreatic cancer diagnosis: a meta-analysis based on 18 articles |
title_auth |
MicroRNAs as novel biomarkers for pancreatic cancer diagnosis: a meta-analysis based on 18 articles |
abstract |
Abstract Dysregulated microRNAs (miRNAs) have been reported to be associated with pancreatic cancer (PaC), suggesting that they may serve as useful novel diagnostic biomarkers for PaC. Various studies have been performed to investigate the diagnostic value of miRNAs for PaC but have obtained conflicting results. Therefore, this meta-analysis aims to comprehensively and quantitatively evaluate the potential diagnostic value of miRNAs for PaC. We systematically searched PubMed, Embase, Google Scholar, Cochrane Library, and Chinese National Knowledge Infrastructure for publications concerning the diagnostic value of miRNAs for PaC without language restriction. The quality of each study was scored using the revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). The summary receiver operator characteristic curve and other parameters were applied to check the overall test performance. Heterogeneity was tested with the I2 test and publication bias was tested with the Deek’s funnel plot asymmetry test. This meta-analysis included 18 articles with a total of 2,036 patients and 1,444 controls. The pooled sensitivity was 82 % (95 % CI, 78–86 %); the specificity was 77 % (95 % CI, 73–81 %); the PLR was 3.6 (95 % CI, 3.0–4.4); the NLR was 0.23 (95 % CI, 0.18–0.29); the DOR was 16 (95 % CI, 10–24); and the AUC was 0.86 (95 % CI, 0.83–0.89). Subgroups analyses were also performed and revealed that there were significant differences between some subgroups: the multiple-miRNAs profiling-based assays, non-blood-based assays, and healthy control-based studies all showed higher accuracies in diagnosing PaC than that of their counterparts. This meta-analysis suggests that the use of miRNAs has potential diagnostic value with a relatively high sensitivity and specificity for PaC, particularly the use of multiple miRNAs for discriminating PaC patients from healthy individuals. More prospective studies on the diagnostic value of miRNAs for PaC are needed in the future. © International Society of Oncology and BioMarkers (ISOBM) 2014 |
abstractGer |
Abstract Dysregulated microRNAs (miRNAs) have been reported to be associated with pancreatic cancer (PaC), suggesting that they may serve as useful novel diagnostic biomarkers for PaC. Various studies have been performed to investigate the diagnostic value of miRNAs for PaC but have obtained conflicting results. Therefore, this meta-analysis aims to comprehensively and quantitatively evaluate the potential diagnostic value of miRNAs for PaC. We systematically searched PubMed, Embase, Google Scholar, Cochrane Library, and Chinese National Knowledge Infrastructure for publications concerning the diagnostic value of miRNAs for PaC without language restriction. The quality of each study was scored using the revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). The summary receiver operator characteristic curve and other parameters were applied to check the overall test performance. Heterogeneity was tested with the I2 test and publication bias was tested with the Deek’s funnel plot asymmetry test. This meta-analysis included 18 articles with a total of 2,036 patients and 1,444 controls. The pooled sensitivity was 82 % (95 % CI, 78–86 %); the specificity was 77 % (95 % CI, 73–81 %); the PLR was 3.6 (95 % CI, 3.0–4.4); the NLR was 0.23 (95 % CI, 0.18–0.29); the DOR was 16 (95 % CI, 10–24); and the AUC was 0.86 (95 % CI, 0.83–0.89). Subgroups analyses were also performed and revealed that there were significant differences between some subgroups: the multiple-miRNAs profiling-based assays, non-blood-based assays, and healthy control-based studies all showed higher accuracies in diagnosing PaC than that of their counterparts. This meta-analysis suggests that the use of miRNAs has potential diagnostic value with a relatively high sensitivity and specificity for PaC, particularly the use of multiple miRNAs for discriminating PaC patients from healthy individuals. More prospective studies on the diagnostic value of miRNAs for PaC are needed in the future. © International Society of Oncology and BioMarkers (ISOBM) 2014 |
abstract_unstemmed |
Abstract Dysregulated microRNAs (miRNAs) have been reported to be associated with pancreatic cancer (PaC), suggesting that they may serve as useful novel diagnostic biomarkers for PaC. Various studies have been performed to investigate the diagnostic value of miRNAs for PaC but have obtained conflicting results. Therefore, this meta-analysis aims to comprehensively and quantitatively evaluate the potential diagnostic value of miRNAs for PaC. We systematically searched PubMed, Embase, Google Scholar, Cochrane Library, and Chinese National Knowledge Infrastructure for publications concerning the diagnostic value of miRNAs for PaC without language restriction. The quality of each study was scored using the revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). The summary receiver operator characteristic curve and other parameters were applied to check the overall test performance. Heterogeneity was tested with the I2 test and publication bias was tested with the Deek’s funnel plot asymmetry test. This meta-analysis included 18 articles with a total of 2,036 patients and 1,444 controls. The pooled sensitivity was 82 % (95 % CI, 78–86 %); the specificity was 77 % (95 % CI, 73–81 %); the PLR was 3.6 (95 % CI, 3.0–4.4); the NLR was 0.23 (95 % CI, 0.18–0.29); the DOR was 16 (95 % CI, 10–24); and the AUC was 0.86 (95 % CI, 0.83–0.89). Subgroups analyses were also performed and revealed that there were significant differences between some subgroups: the multiple-miRNAs profiling-based assays, non-blood-based assays, and healthy control-based studies all showed higher accuracies in diagnosing PaC than that of their counterparts. This meta-analysis suggests that the use of miRNAs has potential diagnostic value with a relatively high sensitivity and specificity for PaC, particularly the use of multiple miRNAs for discriminating PaC patients from healthy individuals. More prospective studies on the diagnostic value of miRNAs for PaC are needed in the future. © International Society of Oncology and BioMarkers (ISOBM) 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_22 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_63 GBV_ILN_95 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_370 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4338 |
container_issue |
9 |
title_short |
MicroRNAs as novel biomarkers for pancreatic cancer diagnosis: a meta-analysis based on 18 articles |
url |
https://dx.doi.org/10.1007/s13277-014-2133-4 |
remote_bool |
true |
author2 |
Wu, Haorong Zhang, Jiaming Huang, Guorong Ji, Dongdong |
author2Str |
Wu, Haorong Zhang, Jiaming Huang, Guorong Ji, Dongdong |
ppnlink |
300897855 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s13277-014-2133-4 |
up_date |
2024-07-03T22:15:39.202Z |
_version_ |
1803597842170773504 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR031148018</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520003717.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13277-014-2133-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR031148018</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13277-014-2133-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ding, Zhongyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">MicroRNAs as novel biomarkers for pancreatic cancer diagnosis: a meta-analysis based on 18 articles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© International Society of Oncology and BioMarkers (ISOBM) 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Dysregulated microRNAs (miRNAs) have been reported to be associated with pancreatic cancer (PaC), suggesting that they may serve as useful novel diagnostic biomarkers for PaC. Various studies have been performed to investigate the diagnostic value of miRNAs for PaC but have obtained conflicting results. Therefore, this meta-analysis aims to comprehensively and quantitatively evaluate the potential diagnostic value of miRNAs for PaC. We systematically searched PubMed, Embase, Google Scholar, Cochrane Library, and Chinese National Knowledge Infrastructure for publications concerning the diagnostic value of miRNAs for PaC without language restriction. The quality of each study was scored using the revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). The summary receiver operator characteristic curve and other parameters were applied to check the overall test performance. Heterogeneity was tested with the I2 test and publication bias was tested with the Deek’s funnel plot asymmetry test. This meta-analysis included 18 articles with a total of 2,036 patients and 1,444 controls. The pooled sensitivity was 82 % (95 % CI, 78–86 %); the specificity was 77 % (95 % CI, 73–81 %); the PLR was 3.6 (95 % CI, 3.0–4.4); the NLR was 0.23 (95 % CI, 0.18–0.29); the DOR was 16 (95 % CI, 10–24); and the AUC was 0.86 (95 % CI, 0.83–0.89). Subgroups analyses were also performed and revealed that there were significant differences between some subgroups: the multiple-miRNAs profiling-based assays, non-blood-based assays, and healthy control-based studies all showed higher accuracies in diagnosing PaC than that of their counterparts. This meta-analysis suggests that the use of miRNAs has potential diagnostic value with a relatively high sensitivity and specificity for PaC, particularly the use of multiple miRNAs for discriminating PaC patients from healthy individuals. More prospective studies on the diagnostic value of miRNAs for PaC are needed in the future.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microRNAs</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pancreatic cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Meta-analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diagnostic accuracy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Haorong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jiaming</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Guorong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ji, Dongdong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Tumor biology</subfield><subfield code="d">Amsterdam : IOS Press, 1987</subfield><subfield code="g">35(2014), 9 vom: 02. Juni, Seite 8837-8848</subfield><subfield code="w">(DE-627)300897855</subfield><subfield code="w">(DE-600)1483579-4</subfield><subfield code="x">1423-0380</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:35</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:9</subfield><subfield code="g">day:02</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:8837-8848</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13277-014-2133-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">35</subfield><subfield code="j">2014</subfield><subfield code="e">9</subfield><subfield code="b">02</subfield><subfield code="c">06</subfield><subfield code="h">8837-8848</subfield></datafield></record></collection>
|
score |
7.401026 |