An elitist non-dominated sorting bat algorithm NSBAT-II for multi-objective optimization of phthalic anhydride reactor
Abstract Nature inspired meta-heuristic algorithms are an integral part of modern optimization techniques. One such algorithm is bat algorithm which is inspired from echolocation behavior of bats and has been successfully applied to non-linear single-objective optimization problems. In this paper, a...
Ausführliche Beschreibung
Autor*in: |
Prakash, Shiv [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: International Journal of Systems Assurance Engineering and Management - Springer-Verlag, 2010, 7(2016), 3 vom: 07. Mai, Seite 299-315 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2016 ; number:3 ; day:07 ; month:05 ; pages:299-315 |
Links: |
---|
DOI / URN: |
10.1007/s13198-016-0467-6 |
---|
Katalog-ID: |
SPR03125635X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR03125635X | ||
003 | DE-627 | ||
005 | 20230331061317.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s13198-016-0467-6 |2 doi | |
035 | |a (DE-627)SPR03125635X | ||
035 | |a (SPR)s13198-016-0467-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Prakash, Shiv |e verfasserin |4 aut | |
245 | 1 | 3 | |a An elitist non-dominated sorting bat algorithm NSBAT-II for multi-objective optimization of phthalic anhydride reactor |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2016 | ||
520 | |a Abstract Nature inspired meta-heuristic algorithms are an integral part of modern optimization techniques. One such algorithm is bat algorithm which is inspired from echolocation behavior of bats and has been successfully applied to non-linear single-objective optimization problems. In this paper, a multi-objective extension of bat algorithm is proposed using the concepts of Pareto non-dominance and elitism. The novel algorithm is tested using thirty multi-objective test problems. The performance is measured using metrics namely, hyper-volume ratio, generational distance and spacing. The newly developed algorithm is then applied to a real-world multi-objective optimization problem of a phthalic anhydride reactor. It shows faster convergence for test problems as well as the industrial optimization problem than two popular nature inspired meta-heuristic algorithms, i.e. multi-objective non-dominated sorting particle swarm optimization and real-coded elitist non-dominated sorting genetic algorithm. | ||
650 | 4 | |a Genetic algorithm |7 (dpeaa)DE-He213 | |
650 | 4 | |a Bat algorithm |7 (dpeaa)DE-He213 | |
650 | 4 | |a Particle swarm optimization |7 (dpeaa)DE-He213 | |
650 | 4 | |a Phthalic anhydride reactor |7 (dpeaa)DE-He213 | |
700 | 1 | |a Trivedi, Vibhu |4 aut | |
700 | 1 | |a Ramteke, Manojkumar |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International Journal of Systems Assurance Engineering and Management |d Springer-Verlag, 2010 |g 7(2016), 3 vom: 07. Mai, Seite 299-315 |w (DE-627)SPR031222420 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2016 |g number:3 |g day:07 |g month:05 |g pages:299-315 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s13198-016-0467-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
951 | |a AR | ||
952 | |d 7 |j 2016 |e 3 |b 07 |c 05 |h 299-315 |
author_variant |
s p sp v t vt m r mr |
---|---|
matchkey_str |
prakashshivtrivedivibhuramtekemanojkumar:2016----:nltsnnoiaesrigaagrtmsaifrutojciepiiai |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s13198-016-0467-6 doi (DE-627)SPR03125635X (SPR)s13198-016-0467-6-e DE-627 ger DE-627 rakwb eng Prakash, Shiv verfasserin aut An elitist non-dominated sorting bat algorithm NSBAT-II for multi-objective optimization of phthalic anhydride reactor 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2016 Abstract Nature inspired meta-heuristic algorithms are an integral part of modern optimization techniques. One such algorithm is bat algorithm which is inspired from echolocation behavior of bats and has been successfully applied to non-linear single-objective optimization problems. In this paper, a multi-objective extension of bat algorithm is proposed using the concepts of Pareto non-dominance and elitism. The novel algorithm is tested using thirty multi-objective test problems. The performance is measured using metrics namely, hyper-volume ratio, generational distance and spacing. The newly developed algorithm is then applied to a real-world multi-objective optimization problem of a phthalic anhydride reactor. It shows faster convergence for test problems as well as the industrial optimization problem than two popular nature inspired meta-heuristic algorithms, i.e. multi-objective non-dominated sorting particle swarm optimization and real-coded elitist non-dominated sorting genetic algorithm. Genetic algorithm (dpeaa)DE-He213 Bat algorithm (dpeaa)DE-He213 Particle swarm optimization (dpeaa)DE-He213 Phthalic anhydride reactor (dpeaa)DE-He213 Trivedi, Vibhu aut Ramteke, Manojkumar aut Enthalten in International Journal of Systems Assurance Engineering and Management Springer-Verlag, 2010 7(2016), 3 vom: 07. Mai, Seite 299-315 (DE-627)SPR031222420 nnns volume:7 year:2016 number:3 day:07 month:05 pages:299-315 https://dx.doi.org/10.1007/s13198-016-0467-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 7 2016 3 07 05 299-315 |
spelling |
10.1007/s13198-016-0467-6 doi (DE-627)SPR03125635X (SPR)s13198-016-0467-6-e DE-627 ger DE-627 rakwb eng Prakash, Shiv verfasserin aut An elitist non-dominated sorting bat algorithm NSBAT-II for multi-objective optimization of phthalic anhydride reactor 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2016 Abstract Nature inspired meta-heuristic algorithms are an integral part of modern optimization techniques. One such algorithm is bat algorithm which is inspired from echolocation behavior of bats and has been successfully applied to non-linear single-objective optimization problems. In this paper, a multi-objective extension of bat algorithm is proposed using the concepts of Pareto non-dominance and elitism. The novel algorithm is tested using thirty multi-objective test problems. The performance is measured using metrics namely, hyper-volume ratio, generational distance and spacing. The newly developed algorithm is then applied to a real-world multi-objective optimization problem of a phthalic anhydride reactor. It shows faster convergence for test problems as well as the industrial optimization problem than two popular nature inspired meta-heuristic algorithms, i.e. multi-objective non-dominated sorting particle swarm optimization and real-coded elitist non-dominated sorting genetic algorithm. Genetic algorithm (dpeaa)DE-He213 Bat algorithm (dpeaa)DE-He213 Particle swarm optimization (dpeaa)DE-He213 Phthalic anhydride reactor (dpeaa)DE-He213 Trivedi, Vibhu aut Ramteke, Manojkumar aut Enthalten in International Journal of Systems Assurance Engineering and Management Springer-Verlag, 2010 7(2016), 3 vom: 07. Mai, Seite 299-315 (DE-627)SPR031222420 nnns volume:7 year:2016 number:3 day:07 month:05 pages:299-315 https://dx.doi.org/10.1007/s13198-016-0467-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 7 2016 3 07 05 299-315 |
allfields_unstemmed |
10.1007/s13198-016-0467-6 doi (DE-627)SPR03125635X (SPR)s13198-016-0467-6-e DE-627 ger DE-627 rakwb eng Prakash, Shiv verfasserin aut An elitist non-dominated sorting bat algorithm NSBAT-II for multi-objective optimization of phthalic anhydride reactor 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2016 Abstract Nature inspired meta-heuristic algorithms are an integral part of modern optimization techniques. One such algorithm is bat algorithm which is inspired from echolocation behavior of bats and has been successfully applied to non-linear single-objective optimization problems. In this paper, a multi-objective extension of bat algorithm is proposed using the concepts of Pareto non-dominance and elitism. The novel algorithm is tested using thirty multi-objective test problems. The performance is measured using metrics namely, hyper-volume ratio, generational distance and spacing. The newly developed algorithm is then applied to a real-world multi-objective optimization problem of a phthalic anhydride reactor. It shows faster convergence for test problems as well as the industrial optimization problem than two popular nature inspired meta-heuristic algorithms, i.e. multi-objective non-dominated sorting particle swarm optimization and real-coded elitist non-dominated sorting genetic algorithm. Genetic algorithm (dpeaa)DE-He213 Bat algorithm (dpeaa)DE-He213 Particle swarm optimization (dpeaa)DE-He213 Phthalic anhydride reactor (dpeaa)DE-He213 Trivedi, Vibhu aut Ramteke, Manojkumar aut Enthalten in International Journal of Systems Assurance Engineering and Management Springer-Verlag, 2010 7(2016), 3 vom: 07. Mai, Seite 299-315 (DE-627)SPR031222420 nnns volume:7 year:2016 number:3 day:07 month:05 pages:299-315 https://dx.doi.org/10.1007/s13198-016-0467-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 7 2016 3 07 05 299-315 |
allfieldsGer |
10.1007/s13198-016-0467-6 doi (DE-627)SPR03125635X (SPR)s13198-016-0467-6-e DE-627 ger DE-627 rakwb eng Prakash, Shiv verfasserin aut An elitist non-dominated sorting bat algorithm NSBAT-II for multi-objective optimization of phthalic anhydride reactor 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2016 Abstract Nature inspired meta-heuristic algorithms are an integral part of modern optimization techniques. One such algorithm is bat algorithm which is inspired from echolocation behavior of bats and has been successfully applied to non-linear single-objective optimization problems. In this paper, a multi-objective extension of bat algorithm is proposed using the concepts of Pareto non-dominance and elitism. The novel algorithm is tested using thirty multi-objective test problems. The performance is measured using metrics namely, hyper-volume ratio, generational distance and spacing. The newly developed algorithm is then applied to a real-world multi-objective optimization problem of a phthalic anhydride reactor. It shows faster convergence for test problems as well as the industrial optimization problem than two popular nature inspired meta-heuristic algorithms, i.e. multi-objective non-dominated sorting particle swarm optimization and real-coded elitist non-dominated sorting genetic algorithm. Genetic algorithm (dpeaa)DE-He213 Bat algorithm (dpeaa)DE-He213 Particle swarm optimization (dpeaa)DE-He213 Phthalic anhydride reactor (dpeaa)DE-He213 Trivedi, Vibhu aut Ramteke, Manojkumar aut Enthalten in International Journal of Systems Assurance Engineering and Management Springer-Verlag, 2010 7(2016), 3 vom: 07. Mai, Seite 299-315 (DE-627)SPR031222420 nnns volume:7 year:2016 number:3 day:07 month:05 pages:299-315 https://dx.doi.org/10.1007/s13198-016-0467-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 7 2016 3 07 05 299-315 |
allfieldsSound |
10.1007/s13198-016-0467-6 doi (DE-627)SPR03125635X (SPR)s13198-016-0467-6-e DE-627 ger DE-627 rakwb eng Prakash, Shiv verfasserin aut An elitist non-dominated sorting bat algorithm NSBAT-II for multi-objective optimization of phthalic anhydride reactor 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2016 Abstract Nature inspired meta-heuristic algorithms are an integral part of modern optimization techniques. One such algorithm is bat algorithm which is inspired from echolocation behavior of bats and has been successfully applied to non-linear single-objective optimization problems. In this paper, a multi-objective extension of bat algorithm is proposed using the concepts of Pareto non-dominance and elitism. The novel algorithm is tested using thirty multi-objective test problems. The performance is measured using metrics namely, hyper-volume ratio, generational distance and spacing. The newly developed algorithm is then applied to a real-world multi-objective optimization problem of a phthalic anhydride reactor. It shows faster convergence for test problems as well as the industrial optimization problem than two popular nature inspired meta-heuristic algorithms, i.e. multi-objective non-dominated sorting particle swarm optimization and real-coded elitist non-dominated sorting genetic algorithm. Genetic algorithm (dpeaa)DE-He213 Bat algorithm (dpeaa)DE-He213 Particle swarm optimization (dpeaa)DE-He213 Phthalic anhydride reactor (dpeaa)DE-He213 Trivedi, Vibhu aut Ramteke, Manojkumar aut Enthalten in International Journal of Systems Assurance Engineering and Management Springer-Verlag, 2010 7(2016), 3 vom: 07. Mai, Seite 299-315 (DE-627)SPR031222420 nnns volume:7 year:2016 number:3 day:07 month:05 pages:299-315 https://dx.doi.org/10.1007/s13198-016-0467-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 7 2016 3 07 05 299-315 |
language |
English |
source |
Enthalten in International Journal of Systems Assurance Engineering and Management 7(2016), 3 vom: 07. Mai, Seite 299-315 volume:7 year:2016 number:3 day:07 month:05 pages:299-315 |
sourceStr |
Enthalten in International Journal of Systems Assurance Engineering and Management 7(2016), 3 vom: 07. Mai, Seite 299-315 volume:7 year:2016 number:3 day:07 month:05 pages:299-315 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Genetic algorithm Bat algorithm Particle swarm optimization Phthalic anhydride reactor |
isfreeaccess_bool |
false |
container_title |
International Journal of Systems Assurance Engineering and Management |
authorswithroles_txt_mv |
Prakash, Shiv @@aut@@ Trivedi, Vibhu @@aut@@ Ramteke, Manojkumar @@aut@@ |
publishDateDaySort_date |
2016-05-07T00:00:00Z |
hierarchy_top_id |
SPR031222420 |
id |
SPR03125635X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR03125635X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331061317.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13198-016-0467-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR03125635X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13198-016-0467-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Prakash, Shiv</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An elitist non-dominated sorting bat algorithm NSBAT-II for multi-objective optimization of phthalic anhydride reactor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Nature inspired meta-heuristic algorithms are an integral part of modern optimization techniques. One such algorithm is bat algorithm which is inspired from echolocation behavior of bats and has been successfully applied to non-linear single-objective optimization problems. In this paper, a multi-objective extension of bat algorithm is proposed using the concepts of Pareto non-dominance and elitism. The novel algorithm is tested using thirty multi-objective test problems. The performance is measured using metrics namely, hyper-volume ratio, generational distance and spacing. The newly developed algorithm is then applied to a real-world multi-objective optimization problem of a phthalic anhydride reactor. It shows faster convergence for test problems as well as the industrial optimization problem than two popular nature inspired meta-heuristic algorithms, i.e. multi-objective non-dominated sorting particle swarm optimization and real-coded elitist non-dominated sorting genetic algorithm.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetic algorithm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bat algorithm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particle swarm optimization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phthalic anhydride reactor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trivedi, Vibhu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramteke, Manojkumar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International Journal of Systems Assurance Engineering and Management</subfield><subfield code="d">Springer-Verlag, 2010</subfield><subfield code="g">7(2016), 3 vom: 07. Mai, Seite 299-315</subfield><subfield code="w">(DE-627)SPR031222420</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">day:07</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:299-315</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13198-016-0467-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="b">07</subfield><subfield code="c">05</subfield><subfield code="h">299-315</subfield></datafield></record></collection>
|
author |
Prakash, Shiv |
spellingShingle |
Prakash, Shiv misc Genetic algorithm misc Bat algorithm misc Particle swarm optimization misc Phthalic anhydride reactor An elitist non-dominated sorting bat algorithm NSBAT-II for multi-objective optimization of phthalic anhydride reactor |
authorStr |
Prakash, Shiv |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR031222420 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
An elitist non-dominated sorting bat algorithm NSBAT-II for multi-objective optimization of phthalic anhydride reactor Genetic algorithm (dpeaa)DE-He213 Bat algorithm (dpeaa)DE-He213 Particle swarm optimization (dpeaa)DE-He213 Phthalic anhydride reactor (dpeaa)DE-He213 |
topic |
misc Genetic algorithm misc Bat algorithm misc Particle swarm optimization misc Phthalic anhydride reactor |
topic_unstemmed |
misc Genetic algorithm misc Bat algorithm misc Particle swarm optimization misc Phthalic anhydride reactor |
topic_browse |
misc Genetic algorithm misc Bat algorithm misc Particle swarm optimization misc Phthalic anhydride reactor |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Systems Assurance Engineering and Management |
hierarchy_parent_id |
SPR031222420 |
hierarchy_top_title |
International Journal of Systems Assurance Engineering and Management |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR031222420 |
title |
An elitist non-dominated sorting bat algorithm NSBAT-II for multi-objective optimization of phthalic anhydride reactor |
ctrlnum |
(DE-627)SPR03125635X (SPR)s13198-016-0467-6-e |
title_full |
An elitist non-dominated sorting bat algorithm NSBAT-II for multi-objective optimization of phthalic anhydride reactor |
author_sort |
Prakash, Shiv |
journal |
International Journal of Systems Assurance Engineering and Management |
journalStr |
International Journal of Systems Assurance Engineering and Management |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
299 |
author_browse |
Prakash, Shiv Trivedi, Vibhu Ramteke, Manojkumar |
container_volume |
7 |
format_se |
Elektronische Aufsätze |
author-letter |
Prakash, Shiv |
doi_str_mv |
10.1007/s13198-016-0467-6 |
title_sort |
elitist non-dominated sorting bat algorithm nsbat-ii for multi-objective optimization of phthalic anhydride reactor |
title_auth |
An elitist non-dominated sorting bat algorithm NSBAT-II for multi-objective optimization of phthalic anhydride reactor |
abstract |
Abstract Nature inspired meta-heuristic algorithms are an integral part of modern optimization techniques. One such algorithm is bat algorithm which is inspired from echolocation behavior of bats and has been successfully applied to non-linear single-objective optimization problems. In this paper, a multi-objective extension of bat algorithm is proposed using the concepts of Pareto non-dominance and elitism. The novel algorithm is tested using thirty multi-objective test problems. The performance is measured using metrics namely, hyper-volume ratio, generational distance and spacing. The newly developed algorithm is then applied to a real-world multi-objective optimization problem of a phthalic anhydride reactor. It shows faster convergence for test problems as well as the industrial optimization problem than two popular nature inspired meta-heuristic algorithms, i.e. multi-objective non-dominated sorting particle swarm optimization and real-coded elitist non-dominated sorting genetic algorithm. © The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2016 |
abstractGer |
Abstract Nature inspired meta-heuristic algorithms are an integral part of modern optimization techniques. One such algorithm is bat algorithm which is inspired from echolocation behavior of bats and has been successfully applied to non-linear single-objective optimization problems. In this paper, a multi-objective extension of bat algorithm is proposed using the concepts of Pareto non-dominance and elitism. The novel algorithm is tested using thirty multi-objective test problems. The performance is measured using metrics namely, hyper-volume ratio, generational distance and spacing. The newly developed algorithm is then applied to a real-world multi-objective optimization problem of a phthalic anhydride reactor. It shows faster convergence for test problems as well as the industrial optimization problem than two popular nature inspired meta-heuristic algorithms, i.e. multi-objective non-dominated sorting particle swarm optimization and real-coded elitist non-dominated sorting genetic algorithm. © The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2016 |
abstract_unstemmed |
Abstract Nature inspired meta-heuristic algorithms are an integral part of modern optimization techniques. One such algorithm is bat algorithm which is inspired from echolocation behavior of bats and has been successfully applied to non-linear single-objective optimization problems. In this paper, a multi-objective extension of bat algorithm is proposed using the concepts of Pareto non-dominance and elitism. The novel algorithm is tested using thirty multi-objective test problems. The performance is measured using metrics namely, hyper-volume ratio, generational distance and spacing. The newly developed algorithm is then applied to a real-world multi-objective optimization problem of a phthalic anhydride reactor. It shows faster convergence for test problems as well as the industrial optimization problem than two popular nature inspired meta-heuristic algorithms, i.e. multi-objective non-dominated sorting particle swarm optimization and real-coded elitist non-dominated sorting genetic algorithm. © The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER |
container_issue |
3 |
title_short |
An elitist non-dominated sorting bat algorithm NSBAT-II for multi-objective optimization of phthalic anhydride reactor |
url |
https://dx.doi.org/10.1007/s13198-016-0467-6 |
remote_bool |
true |
author2 |
Trivedi, Vibhu Ramteke, Manojkumar |
author2Str |
Trivedi, Vibhu Ramteke, Manojkumar |
ppnlink |
SPR031222420 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s13198-016-0467-6 |
up_date |
2024-07-03T22:53:17.724Z |
_version_ |
1803600210403786752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR03125635X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331061317.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13198-016-0467-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR03125635X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13198-016-0467-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Prakash, Shiv</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An elitist non-dominated sorting bat algorithm NSBAT-II for multi-objective optimization of phthalic anhydride reactor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Nature inspired meta-heuristic algorithms are an integral part of modern optimization techniques. One such algorithm is bat algorithm which is inspired from echolocation behavior of bats and has been successfully applied to non-linear single-objective optimization problems. In this paper, a multi-objective extension of bat algorithm is proposed using the concepts of Pareto non-dominance and elitism. The novel algorithm is tested using thirty multi-objective test problems. The performance is measured using metrics namely, hyper-volume ratio, generational distance and spacing. The newly developed algorithm is then applied to a real-world multi-objective optimization problem of a phthalic anhydride reactor. It shows faster convergence for test problems as well as the industrial optimization problem than two popular nature inspired meta-heuristic algorithms, i.e. multi-objective non-dominated sorting particle swarm optimization and real-coded elitist non-dominated sorting genetic algorithm.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetic algorithm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bat algorithm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particle swarm optimization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phthalic anhydride reactor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trivedi, Vibhu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramteke, Manojkumar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International Journal of Systems Assurance Engineering and Management</subfield><subfield code="d">Springer-Verlag, 2010</subfield><subfield code="g">7(2016), 3 vom: 07. Mai, Seite 299-315</subfield><subfield code="w">(DE-627)SPR031222420</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">day:07</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:299-315</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13198-016-0467-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="b">07</subfield><subfield code="c">05</subfield><subfield code="h">299-315</subfield></datafield></record></collection>
|
score |
7.3995953 |