Degradation of endosulfan and lindane using Fenton’s reagent
Abstract Advanced oxidation of endosulfan and lindane was investigated using Fenton’s reagent ($ FeSO_{4} $/$ H_{2} %$ O_{2} $) in aqueous phase. A pH of 3 was chosen as optimum with the degradation efficiency of 83 % for endosulfan and 92 % for lindane. $ FeSO_{4} $ dose of 50 and 20 mg $ ml^{−1} $...
Ausführliche Beschreibung
Autor*in: |
Begum, Asfiya [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Applied water science - Berlin : Springer, 2011, 7(2014), 1 vom: 31. Okt., Seite 207-215 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2014 ; number:1 ; day:31 ; month:10 ; pages:207-215 |
Links: |
---|
DOI / URN: |
10.1007/s13201-014-0237-z |
---|
Katalog-ID: |
SPR031374948 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR031374948 | ||
003 | DE-627 | ||
005 | 20230331061442.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s13201-014-0237-z |2 doi | |
035 | |a (DE-627)SPR031374948 | ||
035 | |a (SPR)s13201-014-0237-z-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Begum, Asfiya |e verfasserin |4 aut | |
245 | 1 | 0 | |a Degradation of endosulfan and lindane using Fenton’s reagent |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2014 | ||
520 | |a Abstract Advanced oxidation of endosulfan and lindane was investigated using Fenton’s reagent ($ FeSO_{4} $/$ H_{2} %$ O_{2} $) in aqueous phase. A pH of 3 was chosen as optimum with the degradation efficiency of 83 % for endosulfan and 92 % for lindane. $ FeSO_{4} $ dose of 50 and 20 mg $ ml^{−1} $ was found to be optimum for endosulfan and lindane, respectively, with the degradation efficiency of ~83 % at pH 3. Further addition of $ FeSO_{4} $ remained unutilized and contributed to the dissolved solid content. $ FeSO_{4} $:$ H_{2} %$ O_{2} $ (w/w) ratio of 1:4.7 and 1:7 was optimized for endosulfan and lindane, respectively. First-order reaction kinetics (5, 7.5 and 10 ppm) were observed for both endosulfan and lindane degradations. Calculated rate constant values (kobs’) for initial endosulfan concentration of 5, 7.5 and 10 ppm were 0.021, 0.133, 0.046 $ min^{−1} $, respectively. While rate constant values (kobs’) of 0.057, 0.035 and 0.034 $ min^{−1} $ were observed for kinetics performed with 5, 7.5 and 10 ppm initial lindane concentrations, respectively. GC–MS analysis revealed that degradation process for endosulfan was sequential with the formation of methyl cyclohexane followed by 1-hexene. While lindane degradation process was spontaneous with the formation of 1-hexene formed by benzene ring fission. | ||
650 | 4 | |a Dechlorination |7 (dpeaa)DE-He213 | |
650 | 4 | |a Endosulfan |7 (dpeaa)DE-He213 | |
650 | 4 | |a Lindane |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fenton’s reaction |7 (dpeaa)DE-He213 | |
700 | 1 | |a Agnihotri, Prakhar |4 aut | |
700 | 1 | |a Mahindrakar, Amit B. |4 aut | |
700 | 1 | |a Gautam, Sumit Kumar |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied water science |d Berlin : Springer, 2011 |g 7(2014), 1 vom: 31. Okt., Seite 207-215 |w (DE-627)64730242X |w (DE-600)2594789-8 |x 2190-5495 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2014 |g number:1 |g day:31 |g month:10 |g pages:207-215 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s13201-014-0237-z |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2014 |e 1 |b 31 |c 10 |h 207-215 |
author_variant |
a b ab p a pa a b m ab abm s k g sk skg |
---|---|
matchkey_str |
article:21905495:2014----::erdtooedslaadidnuig |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1007/s13201-014-0237-z doi (DE-627)SPR031374948 (SPR)s13201-014-0237-z-e DE-627 ger DE-627 rakwb eng Begum, Asfiya verfasserin aut Degradation of endosulfan and lindane using Fenton’s reagent 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2014 Abstract Advanced oxidation of endosulfan and lindane was investigated using Fenton’s reagent ($ FeSO_{4} $/$ H_{2} %$ O_{2} $) in aqueous phase. A pH of 3 was chosen as optimum with the degradation efficiency of 83 % for endosulfan and 92 % for lindane. $ FeSO_{4} $ dose of 50 and 20 mg $ ml^{−1} $ was found to be optimum for endosulfan and lindane, respectively, with the degradation efficiency of ~83 % at pH 3. Further addition of $ FeSO_{4} $ remained unutilized and contributed to the dissolved solid content. $ FeSO_{4} $:$ H_{2} %$ O_{2} $ (w/w) ratio of 1:4.7 and 1:7 was optimized for endosulfan and lindane, respectively. First-order reaction kinetics (5, 7.5 and 10 ppm) were observed for both endosulfan and lindane degradations. Calculated rate constant values (kobs’) for initial endosulfan concentration of 5, 7.5 and 10 ppm were 0.021, 0.133, 0.046 $ min^{−1} $, respectively. While rate constant values (kobs’) of 0.057, 0.035 and 0.034 $ min^{−1} $ were observed for kinetics performed with 5, 7.5 and 10 ppm initial lindane concentrations, respectively. GC–MS analysis revealed that degradation process for endosulfan was sequential with the formation of methyl cyclohexane followed by 1-hexene. While lindane degradation process was spontaneous with the formation of 1-hexene formed by benzene ring fission. Dechlorination (dpeaa)DE-He213 Endosulfan (dpeaa)DE-He213 Lindane (dpeaa)DE-He213 Fenton’s reaction (dpeaa)DE-He213 Agnihotri, Prakhar aut Mahindrakar, Amit B. aut Gautam, Sumit Kumar aut Enthalten in Applied water science Berlin : Springer, 2011 7(2014), 1 vom: 31. Okt., Seite 207-215 (DE-627)64730242X (DE-600)2594789-8 2190-5495 nnns volume:7 year:2014 number:1 day:31 month:10 pages:207-215 https://dx.doi.org/10.1007/s13201-014-0237-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2014 1 31 10 207-215 |
spelling |
10.1007/s13201-014-0237-z doi (DE-627)SPR031374948 (SPR)s13201-014-0237-z-e DE-627 ger DE-627 rakwb eng Begum, Asfiya verfasserin aut Degradation of endosulfan and lindane using Fenton’s reagent 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2014 Abstract Advanced oxidation of endosulfan and lindane was investigated using Fenton’s reagent ($ FeSO_{4} $/$ H_{2} %$ O_{2} $) in aqueous phase. A pH of 3 was chosen as optimum with the degradation efficiency of 83 % for endosulfan and 92 % for lindane. $ FeSO_{4} $ dose of 50 and 20 mg $ ml^{−1} $ was found to be optimum for endosulfan and lindane, respectively, with the degradation efficiency of ~83 % at pH 3. Further addition of $ FeSO_{4} $ remained unutilized and contributed to the dissolved solid content. $ FeSO_{4} $:$ H_{2} %$ O_{2} $ (w/w) ratio of 1:4.7 and 1:7 was optimized for endosulfan and lindane, respectively. First-order reaction kinetics (5, 7.5 and 10 ppm) were observed for both endosulfan and lindane degradations. Calculated rate constant values (kobs’) for initial endosulfan concentration of 5, 7.5 and 10 ppm were 0.021, 0.133, 0.046 $ min^{−1} $, respectively. While rate constant values (kobs’) of 0.057, 0.035 and 0.034 $ min^{−1} $ were observed for kinetics performed with 5, 7.5 and 10 ppm initial lindane concentrations, respectively. GC–MS analysis revealed that degradation process for endosulfan was sequential with the formation of methyl cyclohexane followed by 1-hexene. While lindane degradation process was spontaneous with the formation of 1-hexene formed by benzene ring fission. Dechlorination (dpeaa)DE-He213 Endosulfan (dpeaa)DE-He213 Lindane (dpeaa)DE-He213 Fenton’s reaction (dpeaa)DE-He213 Agnihotri, Prakhar aut Mahindrakar, Amit B. aut Gautam, Sumit Kumar aut Enthalten in Applied water science Berlin : Springer, 2011 7(2014), 1 vom: 31. Okt., Seite 207-215 (DE-627)64730242X (DE-600)2594789-8 2190-5495 nnns volume:7 year:2014 number:1 day:31 month:10 pages:207-215 https://dx.doi.org/10.1007/s13201-014-0237-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2014 1 31 10 207-215 |
allfields_unstemmed |
10.1007/s13201-014-0237-z doi (DE-627)SPR031374948 (SPR)s13201-014-0237-z-e DE-627 ger DE-627 rakwb eng Begum, Asfiya verfasserin aut Degradation of endosulfan and lindane using Fenton’s reagent 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2014 Abstract Advanced oxidation of endosulfan and lindane was investigated using Fenton’s reagent ($ FeSO_{4} $/$ H_{2} %$ O_{2} $) in aqueous phase. A pH of 3 was chosen as optimum with the degradation efficiency of 83 % for endosulfan and 92 % for lindane. $ FeSO_{4} $ dose of 50 and 20 mg $ ml^{−1} $ was found to be optimum for endosulfan and lindane, respectively, with the degradation efficiency of ~83 % at pH 3. Further addition of $ FeSO_{4} $ remained unutilized and contributed to the dissolved solid content. $ FeSO_{4} $:$ H_{2} %$ O_{2} $ (w/w) ratio of 1:4.7 and 1:7 was optimized for endosulfan and lindane, respectively. First-order reaction kinetics (5, 7.5 and 10 ppm) were observed for both endosulfan and lindane degradations. Calculated rate constant values (kobs’) for initial endosulfan concentration of 5, 7.5 and 10 ppm were 0.021, 0.133, 0.046 $ min^{−1} $, respectively. While rate constant values (kobs’) of 0.057, 0.035 and 0.034 $ min^{−1} $ were observed for kinetics performed with 5, 7.5 and 10 ppm initial lindane concentrations, respectively. GC–MS analysis revealed that degradation process for endosulfan was sequential with the formation of methyl cyclohexane followed by 1-hexene. While lindane degradation process was spontaneous with the formation of 1-hexene formed by benzene ring fission. Dechlorination (dpeaa)DE-He213 Endosulfan (dpeaa)DE-He213 Lindane (dpeaa)DE-He213 Fenton’s reaction (dpeaa)DE-He213 Agnihotri, Prakhar aut Mahindrakar, Amit B. aut Gautam, Sumit Kumar aut Enthalten in Applied water science Berlin : Springer, 2011 7(2014), 1 vom: 31. Okt., Seite 207-215 (DE-627)64730242X (DE-600)2594789-8 2190-5495 nnns volume:7 year:2014 number:1 day:31 month:10 pages:207-215 https://dx.doi.org/10.1007/s13201-014-0237-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2014 1 31 10 207-215 |
allfieldsGer |
10.1007/s13201-014-0237-z doi (DE-627)SPR031374948 (SPR)s13201-014-0237-z-e DE-627 ger DE-627 rakwb eng Begum, Asfiya verfasserin aut Degradation of endosulfan and lindane using Fenton’s reagent 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2014 Abstract Advanced oxidation of endosulfan and lindane was investigated using Fenton’s reagent ($ FeSO_{4} $/$ H_{2} %$ O_{2} $) in aqueous phase. A pH of 3 was chosen as optimum with the degradation efficiency of 83 % for endosulfan and 92 % for lindane. $ FeSO_{4} $ dose of 50 and 20 mg $ ml^{−1} $ was found to be optimum for endosulfan and lindane, respectively, with the degradation efficiency of ~83 % at pH 3. Further addition of $ FeSO_{4} $ remained unutilized and contributed to the dissolved solid content. $ FeSO_{4} $:$ H_{2} %$ O_{2} $ (w/w) ratio of 1:4.7 and 1:7 was optimized for endosulfan and lindane, respectively. First-order reaction kinetics (5, 7.5 and 10 ppm) were observed for both endosulfan and lindane degradations. Calculated rate constant values (kobs’) for initial endosulfan concentration of 5, 7.5 and 10 ppm were 0.021, 0.133, 0.046 $ min^{−1} $, respectively. While rate constant values (kobs’) of 0.057, 0.035 and 0.034 $ min^{−1} $ were observed for kinetics performed with 5, 7.5 and 10 ppm initial lindane concentrations, respectively. GC–MS analysis revealed that degradation process for endosulfan was sequential with the formation of methyl cyclohexane followed by 1-hexene. While lindane degradation process was spontaneous with the formation of 1-hexene formed by benzene ring fission. Dechlorination (dpeaa)DE-He213 Endosulfan (dpeaa)DE-He213 Lindane (dpeaa)DE-He213 Fenton’s reaction (dpeaa)DE-He213 Agnihotri, Prakhar aut Mahindrakar, Amit B. aut Gautam, Sumit Kumar aut Enthalten in Applied water science Berlin : Springer, 2011 7(2014), 1 vom: 31. Okt., Seite 207-215 (DE-627)64730242X (DE-600)2594789-8 2190-5495 nnns volume:7 year:2014 number:1 day:31 month:10 pages:207-215 https://dx.doi.org/10.1007/s13201-014-0237-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2014 1 31 10 207-215 |
allfieldsSound |
10.1007/s13201-014-0237-z doi (DE-627)SPR031374948 (SPR)s13201-014-0237-z-e DE-627 ger DE-627 rakwb eng Begum, Asfiya verfasserin aut Degradation of endosulfan and lindane using Fenton’s reagent 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2014 Abstract Advanced oxidation of endosulfan and lindane was investigated using Fenton’s reagent ($ FeSO_{4} $/$ H_{2} %$ O_{2} $) in aqueous phase. A pH of 3 was chosen as optimum with the degradation efficiency of 83 % for endosulfan and 92 % for lindane. $ FeSO_{4} $ dose of 50 and 20 mg $ ml^{−1} $ was found to be optimum for endosulfan and lindane, respectively, with the degradation efficiency of ~83 % at pH 3. Further addition of $ FeSO_{4} $ remained unutilized and contributed to the dissolved solid content. $ FeSO_{4} $:$ H_{2} %$ O_{2} $ (w/w) ratio of 1:4.7 and 1:7 was optimized for endosulfan and lindane, respectively. First-order reaction kinetics (5, 7.5 and 10 ppm) were observed for both endosulfan and lindane degradations. Calculated rate constant values (kobs’) for initial endosulfan concentration of 5, 7.5 and 10 ppm were 0.021, 0.133, 0.046 $ min^{−1} $, respectively. While rate constant values (kobs’) of 0.057, 0.035 and 0.034 $ min^{−1} $ were observed for kinetics performed with 5, 7.5 and 10 ppm initial lindane concentrations, respectively. GC–MS analysis revealed that degradation process for endosulfan was sequential with the formation of methyl cyclohexane followed by 1-hexene. While lindane degradation process was spontaneous with the formation of 1-hexene formed by benzene ring fission. Dechlorination (dpeaa)DE-He213 Endosulfan (dpeaa)DE-He213 Lindane (dpeaa)DE-He213 Fenton’s reaction (dpeaa)DE-He213 Agnihotri, Prakhar aut Mahindrakar, Amit B. aut Gautam, Sumit Kumar aut Enthalten in Applied water science Berlin : Springer, 2011 7(2014), 1 vom: 31. Okt., Seite 207-215 (DE-627)64730242X (DE-600)2594789-8 2190-5495 nnns volume:7 year:2014 number:1 day:31 month:10 pages:207-215 https://dx.doi.org/10.1007/s13201-014-0237-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2014 1 31 10 207-215 |
language |
English |
source |
Enthalten in Applied water science 7(2014), 1 vom: 31. Okt., Seite 207-215 volume:7 year:2014 number:1 day:31 month:10 pages:207-215 |
sourceStr |
Enthalten in Applied water science 7(2014), 1 vom: 31. Okt., Seite 207-215 volume:7 year:2014 number:1 day:31 month:10 pages:207-215 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Dechlorination Endosulfan Lindane Fenton’s reaction |
isfreeaccess_bool |
true |
container_title |
Applied water science |
authorswithroles_txt_mv |
Begum, Asfiya @@aut@@ Agnihotri, Prakhar @@aut@@ Mahindrakar, Amit B. @@aut@@ Gautam, Sumit Kumar @@aut@@ |
publishDateDaySort_date |
2014-10-31T00:00:00Z |
hierarchy_top_id |
64730242X |
id |
SPR031374948 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR031374948</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331061442.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13201-014-0237-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR031374948</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13201-014-0237-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Begum, Asfiya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Degradation of endosulfan and lindane using Fenton’s reagent</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Advanced oxidation of endosulfan and lindane was investigated using Fenton’s reagent ($ FeSO_{4} $/$ H_{2} %$ O_{2} $) in aqueous phase. A pH of 3 was chosen as optimum with the degradation efficiency of 83 % for endosulfan and 92 % for lindane. $ FeSO_{4} $ dose of 50 and 20 mg $ ml^{−1} $ was found to be optimum for endosulfan and lindane, respectively, with the degradation efficiency of ~83 % at pH 3. Further addition of $ FeSO_{4} $ remained unutilized and contributed to the dissolved solid content. $ FeSO_{4} $:$ H_{2} %$ O_{2} $ (w/w) ratio of 1:4.7 and 1:7 was optimized for endosulfan and lindane, respectively. First-order reaction kinetics (5, 7.5 and 10 ppm) were observed for both endosulfan and lindane degradations. Calculated rate constant values (kobs’) for initial endosulfan concentration of 5, 7.5 and 10 ppm were 0.021, 0.133, 0.046 $ min^{−1} $, respectively. While rate constant values (kobs’) of 0.057, 0.035 and 0.034 $ min^{−1} $ were observed for kinetics performed with 5, 7.5 and 10 ppm initial lindane concentrations, respectively. GC–MS analysis revealed that degradation process for endosulfan was sequential with the formation of methyl cyclohexane followed by 1-hexene. While lindane degradation process was spontaneous with the formation of 1-hexene formed by benzene ring fission.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dechlorination</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Endosulfan</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lindane</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fenton’s reaction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Agnihotri, Prakhar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mahindrakar, Amit B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gautam, Sumit Kumar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied water science</subfield><subfield code="d">Berlin : Springer, 2011</subfield><subfield code="g">7(2014), 1 vom: 31. Okt., Seite 207-215</subfield><subfield code="w">(DE-627)64730242X</subfield><subfield code="w">(DE-600)2594789-8</subfield><subfield code="x">2190-5495</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">day:31</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:207-215</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13201-014-0237-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="b">31</subfield><subfield code="c">10</subfield><subfield code="h">207-215</subfield></datafield></record></collection>
|
author |
Begum, Asfiya |
spellingShingle |
Begum, Asfiya misc Dechlorination misc Endosulfan misc Lindane misc Fenton’s reaction Degradation of endosulfan and lindane using Fenton’s reagent |
authorStr |
Begum, Asfiya |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)64730242X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2190-5495 |
topic_title |
Degradation of endosulfan and lindane using Fenton’s reagent Dechlorination (dpeaa)DE-He213 Endosulfan (dpeaa)DE-He213 Lindane (dpeaa)DE-He213 Fenton’s reaction (dpeaa)DE-He213 |
topic |
misc Dechlorination misc Endosulfan misc Lindane misc Fenton’s reaction |
topic_unstemmed |
misc Dechlorination misc Endosulfan misc Lindane misc Fenton’s reaction |
topic_browse |
misc Dechlorination misc Endosulfan misc Lindane misc Fenton’s reaction |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied water science |
hierarchy_parent_id |
64730242X |
hierarchy_top_title |
Applied water science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)64730242X (DE-600)2594789-8 |
title |
Degradation of endosulfan and lindane using Fenton’s reagent |
ctrlnum |
(DE-627)SPR031374948 (SPR)s13201-014-0237-z-e |
title_full |
Degradation of endosulfan and lindane using Fenton’s reagent |
author_sort |
Begum, Asfiya |
journal |
Applied water science |
journalStr |
Applied water science |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
207 |
author_browse |
Begum, Asfiya Agnihotri, Prakhar Mahindrakar, Amit B. Gautam, Sumit Kumar |
container_volume |
7 |
format_se |
Elektronische Aufsätze |
author-letter |
Begum, Asfiya |
doi_str_mv |
10.1007/s13201-014-0237-z |
title_sort |
degradation of endosulfan and lindane using fenton’s reagent |
title_auth |
Degradation of endosulfan and lindane using Fenton’s reagent |
abstract |
Abstract Advanced oxidation of endosulfan and lindane was investigated using Fenton’s reagent ($ FeSO_{4} $/$ H_{2} %$ O_{2} $) in aqueous phase. A pH of 3 was chosen as optimum with the degradation efficiency of 83 % for endosulfan and 92 % for lindane. $ FeSO_{4} $ dose of 50 and 20 mg $ ml^{−1} $ was found to be optimum for endosulfan and lindane, respectively, with the degradation efficiency of ~83 % at pH 3. Further addition of $ FeSO_{4} $ remained unutilized and contributed to the dissolved solid content. $ FeSO_{4} $:$ H_{2} %$ O_{2} $ (w/w) ratio of 1:4.7 and 1:7 was optimized for endosulfan and lindane, respectively. First-order reaction kinetics (5, 7.5 and 10 ppm) were observed for both endosulfan and lindane degradations. Calculated rate constant values (kobs’) for initial endosulfan concentration of 5, 7.5 and 10 ppm were 0.021, 0.133, 0.046 $ min^{−1} $, respectively. While rate constant values (kobs’) of 0.057, 0.035 and 0.034 $ min^{−1} $ were observed for kinetics performed with 5, 7.5 and 10 ppm initial lindane concentrations, respectively. GC–MS analysis revealed that degradation process for endosulfan was sequential with the formation of methyl cyclohexane followed by 1-hexene. While lindane degradation process was spontaneous with the formation of 1-hexene formed by benzene ring fission. © The Author(s) 2014 |
abstractGer |
Abstract Advanced oxidation of endosulfan and lindane was investigated using Fenton’s reagent ($ FeSO_{4} $/$ H_{2} %$ O_{2} $) in aqueous phase. A pH of 3 was chosen as optimum with the degradation efficiency of 83 % for endosulfan and 92 % for lindane. $ FeSO_{4} $ dose of 50 and 20 mg $ ml^{−1} $ was found to be optimum for endosulfan and lindane, respectively, with the degradation efficiency of ~83 % at pH 3. Further addition of $ FeSO_{4} $ remained unutilized and contributed to the dissolved solid content. $ FeSO_{4} $:$ H_{2} %$ O_{2} $ (w/w) ratio of 1:4.7 and 1:7 was optimized for endosulfan and lindane, respectively. First-order reaction kinetics (5, 7.5 and 10 ppm) were observed for both endosulfan and lindane degradations. Calculated rate constant values (kobs’) for initial endosulfan concentration of 5, 7.5 and 10 ppm were 0.021, 0.133, 0.046 $ min^{−1} $, respectively. While rate constant values (kobs’) of 0.057, 0.035 and 0.034 $ min^{−1} $ were observed for kinetics performed with 5, 7.5 and 10 ppm initial lindane concentrations, respectively. GC–MS analysis revealed that degradation process for endosulfan was sequential with the formation of methyl cyclohexane followed by 1-hexene. While lindane degradation process was spontaneous with the formation of 1-hexene formed by benzene ring fission. © The Author(s) 2014 |
abstract_unstemmed |
Abstract Advanced oxidation of endosulfan and lindane was investigated using Fenton’s reagent ($ FeSO_{4} $/$ H_{2} %$ O_{2} $) in aqueous phase. A pH of 3 was chosen as optimum with the degradation efficiency of 83 % for endosulfan and 92 % for lindane. $ FeSO_{4} $ dose of 50 and 20 mg $ ml^{−1} $ was found to be optimum for endosulfan and lindane, respectively, with the degradation efficiency of ~83 % at pH 3. Further addition of $ FeSO_{4} $ remained unutilized and contributed to the dissolved solid content. $ FeSO_{4} $:$ H_{2} %$ O_{2} $ (w/w) ratio of 1:4.7 and 1:7 was optimized for endosulfan and lindane, respectively. First-order reaction kinetics (5, 7.5 and 10 ppm) were observed for both endosulfan and lindane degradations. Calculated rate constant values (kobs’) for initial endosulfan concentration of 5, 7.5 and 10 ppm were 0.021, 0.133, 0.046 $ min^{−1} $, respectively. While rate constant values (kobs’) of 0.057, 0.035 and 0.034 $ min^{−1} $ were observed for kinetics performed with 5, 7.5 and 10 ppm initial lindane concentrations, respectively. GC–MS analysis revealed that degradation process for endosulfan was sequential with the formation of methyl cyclohexane followed by 1-hexene. While lindane degradation process was spontaneous with the formation of 1-hexene formed by benzene ring fission. © The Author(s) 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Degradation of endosulfan and lindane using Fenton’s reagent |
url |
https://dx.doi.org/10.1007/s13201-014-0237-z |
remote_bool |
true |
author2 |
Agnihotri, Prakhar Mahindrakar, Amit B. Gautam, Sumit Kumar |
author2Str |
Agnihotri, Prakhar Mahindrakar, Amit B. Gautam, Sumit Kumar |
ppnlink |
64730242X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s13201-014-0237-z |
up_date |
2024-07-03T23:25:35.370Z |
_version_ |
1803602242170781696 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR031374948</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331061442.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13201-014-0237-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR031374948</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13201-014-0237-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Begum, Asfiya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Degradation of endosulfan and lindane using Fenton’s reagent</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Advanced oxidation of endosulfan and lindane was investigated using Fenton’s reagent ($ FeSO_{4} $/$ H_{2} %$ O_{2} $) in aqueous phase. A pH of 3 was chosen as optimum with the degradation efficiency of 83 % for endosulfan and 92 % for lindane. $ FeSO_{4} $ dose of 50 and 20 mg $ ml^{−1} $ was found to be optimum for endosulfan and lindane, respectively, with the degradation efficiency of ~83 % at pH 3. Further addition of $ FeSO_{4} $ remained unutilized and contributed to the dissolved solid content. $ FeSO_{4} $:$ H_{2} %$ O_{2} $ (w/w) ratio of 1:4.7 and 1:7 was optimized for endosulfan and lindane, respectively. First-order reaction kinetics (5, 7.5 and 10 ppm) were observed for both endosulfan and lindane degradations. Calculated rate constant values (kobs’) for initial endosulfan concentration of 5, 7.5 and 10 ppm were 0.021, 0.133, 0.046 $ min^{−1} $, respectively. While rate constant values (kobs’) of 0.057, 0.035 and 0.034 $ min^{−1} $ were observed for kinetics performed with 5, 7.5 and 10 ppm initial lindane concentrations, respectively. GC–MS analysis revealed that degradation process for endosulfan was sequential with the formation of methyl cyclohexane followed by 1-hexene. While lindane degradation process was spontaneous with the formation of 1-hexene formed by benzene ring fission.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dechlorination</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Endosulfan</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lindane</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fenton’s reaction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Agnihotri, Prakhar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mahindrakar, Amit B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gautam, Sumit Kumar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied water science</subfield><subfield code="d">Berlin : Springer, 2011</subfield><subfield code="g">7(2014), 1 vom: 31. Okt., Seite 207-215</subfield><subfield code="w">(DE-627)64730242X</subfield><subfield code="w">(DE-600)2594789-8</subfield><subfield code="x">2190-5495</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">day:31</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:207-215</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13201-014-0237-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="b">31</subfield><subfield code="c">10</subfield><subfield code="h">207-215</subfield></datafield></record></collection>
|
score |
7.3993473 |