Going from classical to quantum description of bound charged particles II: Implications for the atomic physics
Abstract. This paper is the continuation of the analysis of bound quantum systems started in part I (A.L. Kholmetskii, T. Yarman and O.V. Missevitch, Going from classical to quantum description of bound charged particles. I: Basic concepts and assertions), which is based on a novel approach to the t...
Ausführliche Beschreibung
Autor*in: |
Kholmetskii, A. L. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Società Italiana di Fisica and Springer 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: The European physical journal - Berlin : Springer, 2011, 126(2011), 4 vom: 11. Apr. |
---|---|
Übergeordnetes Werk: |
volume:126 ; year:2011 ; number:4 ; day:11 ; month:04 |
Links: |
---|
DOI / URN: |
10.1140/epjp/i2011-11035-7 |
---|
Katalog-ID: |
SPR031448577 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR031448577 | ||
003 | DE-627 | ||
005 | 20230331072706.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2011 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1140/epjp/i2011-11035-7 |2 doi | |
035 | |a (DE-627)SPR031448577 | ||
035 | |a (SPR)i2011-11035-7-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Kholmetskii, A. L. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Going from classical to quantum description of bound charged particles II: Implications for the atomic physics |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Società Italiana di Fisica and Springer 2011 | ||
520 | |a Abstract. This paper is the continuation of the analysis of bound quantum systems started in part I (A.L. Kholmetskii, T. Yarman and O.V. Missevitch, Going from classical to quantum description of bound charged particles. I: Basic concepts and assertions), which is based on a novel approach to the transition from classical to quantum description of electrically bound charges, involving the requirement of energy-momentum conservation for the bound electromagnetic (EM) field, when the EM radiation is forbidden. It has been shown that the modified expression for the energy levels of hydrogenic atoms within such a pure bound field theory (PBFT) provides the same gross and fine structure of energy levels, like in the standard theory. At the same time, at the scale of hyperfine interactions, our approach, in general, does evoke some important corrections to the energy levels. Part of such corrections, like the spin-spin splitting in the hydrogen atom, is less than the present theoretical/experimental uncertainties in the evaluation of hyperfine contributions into the atomic levels. But the most interesting result is the appearance of a number of significant corrections (the 1S -2S interval and 1S spin-spin interval in positronium, 1S and 2S -2P Lamb shift in light hydrogenic atoms), which improve considerably the convergence between theoretical predictions and experimental results. In particular, the corrected 1S -2S interval and 1S spin-spin splitting in positronium practically eliminate the existing up-to-date discrepancy between theoretical and experimental data. The re-estimated classic 2S -2P Lamb shift as well as ground-state Lamb shift in the hydrogen atom lead to the proton charge radius rp = 0.841(6) fm (from 2S -2P Lamb shift), and rp = 0.846(22) fm (from 1S Lamb shift), which perfectly agrees with the latest estimation of proton size via the measurement of 2S -2P Lamb shift in muonic hydrogen, i.e.rp = 0.84184(67) fm. Finally, we consider the decay of bound muons in meso-atoms and achieve a quantitative agreement between experimental data and the results obtained through our approach. | ||
650 | 4 | |a Lamb Shift |7 (dpeaa)DE-He213 | |
650 | 4 | |a Proton Charge |7 (dpeaa)DE-He213 | |
650 | 4 | |a Muonic Hydrogen |7 (dpeaa)DE-He213 | |
650 | 4 | |a Relativistic Dilation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Proton Charge Radius |7 (dpeaa)DE-He213 | |
700 | 1 | |a Yarman, T. |4 aut | |
700 | 1 | |a Missevitch, O. V. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The European physical journal |d Berlin : Springer, 2011 |g 126(2011), 4 vom: 11. Apr. |w (DE-627)647653958 |w (DE-600)2595693-0 |x 2190-5444 |7 nnns |
773 | 1 | 8 | |g volume:126 |g year:2011 |g number:4 |g day:11 |g month:04 |
856 | 4 | 0 | |u https://dx.doi.org/10.1140/epjp/i2011-11035-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 126 |j 2011 |e 4 |b 11 |c 04 |
author_variant |
a l k al alk t y ty o v m ov ovm |
---|---|
matchkey_str |
article:21905444:2011----::onfocasclounudsrpinfoncagdatceiipi |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1140/epjp/i2011-11035-7 doi (DE-627)SPR031448577 (SPR)i2011-11035-7-e DE-627 ger DE-627 rakwb eng Kholmetskii, A. L. verfasserin aut Going from classical to quantum description of bound charged particles II: Implications for the atomic physics 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Società Italiana di Fisica and Springer 2011 Abstract. This paper is the continuation of the analysis of bound quantum systems started in part I (A.L. Kholmetskii, T. Yarman and O.V. Missevitch, Going from classical to quantum description of bound charged particles. I: Basic concepts and assertions), which is based on a novel approach to the transition from classical to quantum description of electrically bound charges, involving the requirement of energy-momentum conservation for the bound electromagnetic (EM) field, when the EM radiation is forbidden. It has been shown that the modified expression for the energy levels of hydrogenic atoms within such a pure bound field theory (PBFT) provides the same gross and fine structure of energy levels, like in the standard theory. At the same time, at the scale of hyperfine interactions, our approach, in general, does evoke some important corrections to the energy levels. Part of such corrections, like the spin-spin splitting in the hydrogen atom, is less than the present theoretical/experimental uncertainties in the evaluation of hyperfine contributions into the atomic levels. But the most interesting result is the appearance of a number of significant corrections (the 1S -2S interval and 1S spin-spin interval in positronium, 1S and 2S -2P Lamb shift in light hydrogenic atoms), which improve considerably the convergence between theoretical predictions and experimental results. In particular, the corrected 1S -2S interval and 1S spin-spin splitting in positronium practically eliminate the existing up-to-date discrepancy between theoretical and experimental data. The re-estimated classic 2S -2P Lamb shift as well as ground-state Lamb shift in the hydrogen atom lead to the proton charge radius rp = 0.841(6) fm (from 2S -2P Lamb shift), and rp = 0.846(22) fm (from 1S Lamb shift), which perfectly agrees with the latest estimation of proton size via the measurement of 2S -2P Lamb shift in muonic hydrogen, i.e.rp = 0.84184(67) fm. Finally, we consider the decay of bound muons in meso-atoms and achieve a quantitative agreement between experimental data and the results obtained through our approach. Lamb Shift (dpeaa)DE-He213 Proton Charge (dpeaa)DE-He213 Muonic Hydrogen (dpeaa)DE-He213 Relativistic Dilation (dpeaa)DE-He213 Proton Charge Radius (dpeaa)DE-He213 Yarman, T. aut Missevitch, O. V. aut Enthalten in The European physical journal Berlin : Springer, 2011 126(2011), 4 vom: 11. Apr. (DE-627)647653958 (DE-600)2595693-0 2190-5444 nnns volume:126 year:2011 number:4 day:11 month:04 https://dx.doi.org/10.1140/epjp/i2011-11035-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 126 2011 4 11 04 |
spelling |
10.1140/epjp/i2011-11035-7 doi (DE-627)SPR031448577 (SPR)i2011-11035-7-e DE-627 ger DE-627 rakwb eng Kholmetskii, A. L. verfasserin aut Going from classical to quantum description of bound charged particles II: Implications for the atomic physics 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Società Italiana di Fisica and Springer 2011 Abstract. This paper is the continuation of the analysis of bound quantum systems started in part I (A.L. Kholmetskii, T. Yarman and O.V. Missevitch, Going from classical to quantum description of bound charged particles. I: Basic concepts and assertions), which is based on a novel approach to the transition from classical to quantum description of electrically bound charges, involving the requirement of energy-momentum conservation for the bound electromagnetic (EM) field, when the EM radiation is forbidden. It has been shown that the modified expression for the energy levels of hydrogenic atoms within such a pure bound field theory (PBFT) provides the same gross and fine structure of energy levels, like in the standard theory. At the same time, at the scale of hyperfine interactions, our approach, in general, does evoke some important corrections to the energy levels. Part of such corrections, like the spin-spin splitting in the hydrogen atom, is less than the present theoretical/experimental uncertainties in the evaluation of hyperfine contributions into the atomic levels. But the most interesting result is the appearance of a number of significant corrections (the 1S -2S interval and 1S spin-spin interval in positronium, 1S and 2S -2P Lamb shift in light hydrogenic atoms), which improve considerably the convergence between theoretical predictions and experimental results. In particular, the corrected 1S -2S interval and 1S spin-spin splitting in positronium practically eliminate the existing up-to-date discrepancy between theoretical and experimental data. The re-estimated classic 2S -2P Lamb shift as well as ground-state Lamb shift in the hydrogen atom lead to the proton charge radius rp = 0.841(6) fm (from 2S -2P Lamb shift), and rp = 0.846(22) fm (from 1S Lamb shift), which perfectly agrees with the latest estimation of proton size via the measurement of 2S -2P Lamb shift in muonic hydrogen, i.e.rp = 0.84184(67) fm. Finally, we consider the decay of bound muons in meso-atoms and achieve a quantitative agreement between experimental data and the results obtained through our approach. Lamb Shift (dpeaa)DE-He213 Proton Charge (dpeaa)DE-He213 Muonic Hydrogen (dpeaa)DE-He213 Relativistic Dilation (dpeaa)DE-He213 Proton Charge Radius (dpeaa)DE-He213 Yarman, T. aut Missevitch, O. V. aut Enthalten in The European physical journal Berlin : Springer, 2011 126(2011), 4 vom: 11. Apr. (DE-627)647653958 (DE-600)2595693-0 2190-5444 nnns volume:126 year:2011 number:4 day:11 month:04 https://dx.doi.org/10.1140/epjp/i2011-11035-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 126 2011 4 11 04 |
allfields_unstemmed |
10.1140/epjp/i2011-11035-7 doi (DE-627)SPR031448577 (SPR)i2011-11035-7-e DE-627 ger DE-627 rakwb eng Kholmetskii, A. L. verfasserin aut Going from classical to quantum description of bound charged particles II: Implications for the atomic physics 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Società Italiana di Fisica and Springer 2011 Abstract. This paper is the continuation of the analysis of bound quantum systems started in part I (A.L. Kholmetskii, T. Yarman and O.V. Missevitch, Going from classical to quantum description of bound charged particles. I: Basic concepts and assertions), which is based on a novel approach to the transition from classical to quantum description of electrically bound charges, involving the requirement of energy-momentum conservation for the bound electromagnetic (EM) field, when the EM radiation is forbidden. It has been shown that the modified expression for the energy levels of hydrogenic atoms within such a pure bound field theory (PBFT) provides the same gross and fine structure of energy levels, like in the standard theory. At the same time, at the scale of hyperfine interactions, our approach, in general, does evoke some important corrections to the energy levels. Part of such corrections, like the spin-spin splitting in the hydrogen atom, is less than the present theoretical/experimental uncertainties in the evaluation of hyperfine contributions into the atomic levels. But the most interesting result is the appearance of a number of significant corrections (the 1S -2S interval and 1S spin-spin interval in positronium, 1S and 2S -2P Lamb shift in light hydrogenic atoms), which improve considerably the convergence between theoretical predictions and experimental results. In particular, the corrected 1S -2S interval and 1S spin-spin splitting in positronium practically eliminate the existing up-to-date discrepancy between theoretical and experimental data. The re-estimated classic 2S -2P Lamb shift as well as ground-state Lamb shift in the hydrogen atom lead to the proton charge radius rp = 0.841(6) fm (from 2S -2P Lamb shift), and rp = 0.846(22) fm (from 1S Lamb shift), which perfectly agrees with the latest estimation of proton size via the measurement of 2S -2P Lamb shift in muonic hydrogen, i.e.rp = 0.84184(67) fm. Finally, we consider the decay of bound muons in meso-atoms and achieve a quantitative agreement between experimental data and the results obtained through our approach. Lamb Shift (dpeaa)DE-He213 Proton Charge (dpeaa)DE-He213 Muonic Hydrogen (dpeaa)DE-He213 Relativistic Dilation (dpeaa)DE-He213 Proton Charge Radius (dpeaa)DE-He213 Yarman, T. aut Missevitch, O. V. aut Enthalten in The European physical journal Berlin : Springer, 2011 126(2011), 4 vom: 11. Apr. (DE-627)647653958 (DE-600)2595693-0 2190-5444 nnns volume:126 year:2011 number:4 day:11 month:04 https://dx.doi.org/10.1140/epjp/i2011-11035-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 126 2011 4 11 04 |
allfieldsGer |
10.1140/epjp/i2011-11035-7 doi (DE-627)SPR031448577 (SPR)i2011-11035-7-e DE-627 ger DE-627 rakwb eng Kholmetskii, A. L. verfasserin aut Going from classical to quantum description of bound charged particles II: Implications for the atomic physics 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Società Italiana di Fisica and Springer 2011 Abstract. This paper is the continuation of the analysis of bound quantum systems started in part I (A.L. Kholmetskii, T. Yarman and O.V. Missevitch, Going from classical to quantum description of bound charged particles. I: Basic concepts and assertions), which is based on a novel approach to the transition from classical to quantum description of electrically bound charges, involving the requirement of energy-momentum conservation for the bound electromagnetic (EM) field, when the EM radiation is forbidden. It has been shown that the modified expression for the energy levels of hydrogenic atoms within such a pure bound field theory (PBFT) provides the same gross and fine structure of energy levels, like in the standard theory. At the same time, at the scale of hyperfine interactions, our approach, in general, does evoke some important corrections to the energy levels. Part of such corrections, like the spin-spin splitting in the hydrogen atom, is less than the present theoretical/experimental uncertainties in the evaluation of hyperfine contributions into the atomic levels. But the most interesting result is the appearance of a number of significant corrections (the 1S -2S interval and 1S spin-spin interval in positronium, 1S and 2S -2P Lamb shift in light hydrogenic atoms), which improve considerably the convergence between theoretical predictions and experimental results. In particular, the corrected 1S -2S interval and 1S spin-spin splitting in positronium practically eliminate the existing up-to-date discrepancy between theoretical and experimental data. The re-estimated classic 2S -2P Lamb shift as well as ground-state Lamb shift in the hydrogen atom lead to the proton charge radius rp = 0.841(6) fm (from 2S -2P Lamb shift), and rp = 0.846(22) fm (from 1S Lamb shift), which perfectly agrees with the latest estimation of proton size via the measurement of 2S -2P Lamb shift in muonic hydrogen, i.e.rp = 0.84184(67) fm. Finally, we consider the decay of bound muons in meso-atoms and achieve a quantitative agreement between experimental data and the results obtained through our approach. Lamb Shift (dpeaa)DE-He213 Proton Charge (dpeaa)DE-He213 Muonic Hydrogen (dpeaa)DE-He213 Relativistic Dilation (dpeaa)DE-He213 Proton Charge Radius (dpeaa)DE-He213 Yarman, T. aut Missevitch, O. V. aut Enthalten in The European physical journal Berlin : Springer, 2011 126(2011), 4 vom: 11. Apr. (DE-627)647653958 (DE-600)2595693-0 2190-5444 nnns volume:126 year:2011 number:4 day:11 month:04 https://dx.doi.org/10.1140/epjp/i2011-11035-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 126 2011 4 11 04 |
allfieldsSound |
10.1140/epjp/i2011-11035-7 doi (DE-627)SPR031448577 (SPR)i2011-11035-7-e DE-627 ger DE-627 rakwb eng Kholmetskii, A. L. verfasserin aut Going from classical to quantum description of bound charged particles II: Implications for the atomic physics 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Società Italiana di Fisica and Springer 2011 Abstract. This paper is the continuation of the analysis of bound quantum systems started in part I (A.L. Kholmetskii, T. Yarman and O.V. Missevitch, Going from classical to quantum description of bound charged particles. I: Basic concepts and assertions), which is based on a novel approach to the transition from classical to quantum description of electrically bound charges, involving the requirement of energy-momentum conservation for the bound electromagnetic (EM) field, when the EM radiation is forbidden. It has been shown that the modified expression for the energy levels of hydrogenic atoms within such a pure bound field theory (PBFT) provides the same gross and fine structure of energy levels, like in the standard theory. At the same time, at the scale of hyperfine interactions, our approach, in general, does evoke some important corrections to the energy levels. Part of such corrections, like the spin-spin splitting in the hydrogen atom, is less than the present theoretical/experimental uncertainties in the evaluation of hyperfine contributions into the atomic levels. But the most interesting result is the appearance of a number of significant corrections (the 1S -2S interval and 1S spin-spin interval in positronium, 1S and 2S -2P Lamb shift in light hydrogenic atoms), which improve considerably the convergence between theoretical predictions and experimental results. In particular, the corrected 1S -2S interval and 1S spin-spin splitting in positronium practically eliminate the existing up-to-date discrepancy between theoretical and experimental data. The re-estimated classic 2S -2P Lamb shift as well as ground-state Lamb shift in the hydrogen atom lead to the proton charge radius rp = 0.841(6) fm (from 2S -2P Lamb shift), and rp = 0.846(22) fm (from 1S Lamb shift), which perfectly agrees with the latest estimation of proton size via the measurement of 2S -2P Lamb shift in muonic hydrogen, i.e.rp = 0.84184(67) fm. Finally, we consider the decay of bound muons in meso-atoms and achieve a quantitative agreement between experimental data and the results obtained through our approach. Lamb Shift (dpeaa)DE-He213 Proton Charge (dpeaa)DE-He213 Muonic Hydrogen (dpeaa)DE-He213 Relativistic Dilation (dpeaa)DE-He213 Proton Charge Radius (dpeaa)DE-He213 Yarman, T. aut Missevitch, O. V. aut Enthalten in The European physical journal Berlin : Springer, 2011 126(2011), 4 vom: 11. Apr. (DE-627)647653958 (DE-600)2595693-0 2190-5444 nnns volume:126 year:2011 number:4 day:11 month:04 https://dx.doi.org/10.1140/epjp/i2011-11035-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 126 2011 4 11 04 |
language |
English |
source |
Enthalten in The European physical journal 126(2011), 4 vom: 11. Apr. volume:126 year:2011 number:4 day:11 month:04 |
sourceStr |
Enthalten in The European physical journal 126(2011), 4 vom: 11. Apr. volume:126 year:2011 number:4 day:11 month:04 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Lamb Shift Proton Charge Muonic Hydrogen Relativistic Dilation Proton Charge Radius |
isfreeaccess_bool |
false |
container_title |
The European physical journal |
authorswithroles_txt_mv |
Kholmetskii, A. L. @@aut@@ Yarman, T. @@aut@@ Missevitch, O. V. @@aut@@ |
publishDateDaySort_date |
2011-04-11T00:00:00Z |
hierarchy_top_id |
647653958 |
id |
SPR031448577 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR031448577</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331072706.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1140/epjp/i2011-11035-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR031448577</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)i2011-11035-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kholmetskii, A. L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Going from classical to quantum description of bound charged particles II: Implications for the atomic physics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Società Italiana di Fisica and Springer 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. This paper is the continuation of the analysis of bound quantum systems started in part I (A.L. Kholmetskii, T. Yarman and O.V. Missevitch, Going from classical to quantum description of bound charged particles. I: Basic concepts and assertions), which is based on a novel approach to the transition from classical to quantum description of electrically bound charges, involving the requirement of energy-momentum conservation for the bound electromagnetic (EM) field, when the EM radiation is forbidden. It has been shown that the modified expression for the energy levels of hydrogenic atoms within such a pure bound field theory (PBFT) provides the same gross and fine structure of energy levels, like in the standard theory. At the same time, at the scale of hyperfine interactions, our approach, in general, does evoke some important corrections to the energy levels. Part of such corrections, like the spin-spin splitting in the hydrogen atom, is less than the present theoretical/experimental uncertainties in the evaluation of hyperfine contributions into the atomic levels. But the most interesting result is the appearance of a number of significant corrections (the 1S -2S interval and 1S spin-spin interval in positronium, 1S and 2S -2P Lamb shift in light hydrogenic atoms), which improve considerably the convergence between theoretical predictions and experimental results. In particular, the corrected 1S -2S interval and 1S spin-spin splitting in positronium practically eliminate the existing up-to-date discrepancy between theoretical and experimental data. The re-estimated classic 2S -2P Lamb shift as well as ground-state Lamb shift in the hydrogen atom lead to the proton charge radius rp = 0.841(6) fm (from 2S -2P Lamb shift), and rp = 0.846(22) fm (from 1S Lamb shift), which perfectly agrees with the latest estimation of proton size via the measurement of 2S -2P Lamb shift in muonic hydrogen, i.e.rp = 0.84184(67) fm. Finally, we consider the decay of bound muons in meso-atoms and achieve a quantitative agreement between experimental data and the results obtained through our approach.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lamb Shift</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proton Charge</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Muonic Hydrogen</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relativistic Dilation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proton Charge Radius</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yarman, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Missevitch, O. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The European physical journal</subfield><subfield code="d">Berlin : Springer, 2011</subfield><subfield code="g">126(2011), 4 vom: 11. Apr.</subfield><subfield code="w">(DE-627)647653958</subfield><subfield code="w">(DE-600)2595693-0</subfield><subfield code="x">2190-5444</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:126</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:4</subfield><subfield code="g">day:11</subfield><subfield code="g">month:04</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1140/epjp/i2011-11035-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">126</subfield><subfield code="j">2011</subfield><subfield code="e">4</subfield><subfield code="b">11</subfield><subfield code="c">04</subfield></datafield></record></collection>
|
author |
Kholmetskii, A. L. |
spellingShingle |
Kholmetskii, A. L. misc Lamb Shift misc Proton Charge misc Muonic Hydrogen misc Relativistic Dilation misc Proton Charge Radius Going from classical to quantum description of bound charged particles II: Implications for the atomic physics |
authorStr |
Kholmetskii, A. L. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)647653958 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2190-5444 |
topic_title |
Going from classical to quantum description of bound charged particles II: Implications for the atomic physics Lamb Shift (dpeaa)DE-He213 Proton Charge (dpeaa)DE-He213 Muonic Hydrogen (dpeaa)DE-He213 Relativistic Dilation (dpeaa)DE-He213 Proton Charge Radius (dpeaa)DE-He213 |
topic |
misc Lamb Shift misc Proton Charge misc Muonic Hydrogen misc Relativistic Dilation misc Proton Charge Radius |
topic_unstemmed |
misc Lamb Shift misc Proton Charge misc Muonic Hydrogen misc Relativistic Dilation misc Proton Charge Radius |
topic_browse |
misc Lamb Shift misc Proton Charge misc Muonic Hydrogen misc Relativistic Dilation misc Proton Charge Radius |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The European physical journal |
hierarchy_parent_id |
647653958 |
hierarchy_top_title |
The European physical journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)647653958 (DE-600)2595693-0 |
title |
Going from classical to quantum description of bound charged particles II: Implications for the atomic physics |
ctrlnum |
(DE-627)SPR031448577 (SPR)i2011-11035-7-e |
title_full |
Going from classical to quantum description of bound charged particles II: Implications for the atomic physics |
author_sort |
Kholmetskii, A. L. |
journal |
The European physical journal |
journalStr |
The European physical journal |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
author_browse |
Kholmetskii, A. L. Yarman, T. Missevitch, O. V. |
container_volume |
126 |
format_se |
Elektronische Aufsätze |
author-letter |
Kholmetskii, A. L. |
doi_str_mv |
10.1140/epjp/i2011-11035-7 |
title_sort |
going from classical to quantum description of bound charged particles ii: implications for the atomic physics |
title_auth |
Going from classical to quantum description of bound charged particles II: Implications for the atomic physics |
abstract |
Abstract. This paper is the continuation of the analysis of bound quantum systems started in part I (A.L. Kholmetskii, T. Yarman and O.V. Missevitch, Going from classical to quantum description of bound charged particles. I: Basic concepts and assertions), which is based on a novel approach to the transition from classical to quantum description of electrically bound charges, involving the requirement of energy-momentum conservation for the bound electromagnetic (EM) field, when the EM radiation is forbidden. It has been shown that the modified expression for the energy levels of hydrogenic atoms within such a pure bound field theory (PBFT) provides the same gross and fine structure of energy levels, like in the standard theory. At the same time, at the scale of hyperfine interactions, our approach, in general, does evoke some important corrections to the energy levels. Part of such corrections, like the spin-spin splitting in the hydrogen atom, is less than the present theoretical/experimental uncertainties in the evaluation of hyperfine contributions into the atomic levels. But the most interesting result is the appearance of a number of significant corrections (the 1S -2S interval and 1S spin-spin interval in positronium, 1S and 2S -2P Lamb shift in light hydrogenic atoms), which improve considerably the convergence between theoretical predictions and experimental results. In particular, the corrected 1S -2S interval and 1S spin-spin splitting in positronium practically eliminate the existing up-to-date discrepancy between theoretical and experimental data. The re-estimated classic 2S -2P Lamb shift as well as ground-state Lamb shift in the hydrogen atom lead to the proton charge radius rp = 0.841(6) fm (from 2S -2P Lamb shift), and rp = 0.846(22) fm (from 1S Lamb shift), which perfectly agrees with the latest estimation of proton size via the measurement of 2S -2P Lamb shift in muonic hydrogen, i.e.rp = 0.84184(67) fm. Finally, we consider the decay of bound muons in meso-atoms and achieve a quantitative agreement between experimental data and the results obtained through our approach. © Società Italiana di Fisica and Springer 2011 |
abstractGer |
Abstract. This paper is the continuation of the analysis of bound quantum systems started in part I (A.L. Kholmetskii, T. Yarman and O.V. Missevitch, Going from classical to quantum description of bound charged particles. I: Basic concepts and assertions), which is based on a novel approach to the transition from classical to quantum description of electrically bound charges, involving the requirement of energy-momentum conservation for the bound electromagnetic (EM) field, when the EM radiation is forbidden. It has been shown that the modified expression for the energy levels of hydrogenic atoms within such a pure bound field theory (PBFT) provides the same gross and fine structure of energy levels, like in the standard theory. At the same time, at the scale of hyperfine interactions, our approach, in general, does evoke some important corrections to the energy levels. Part of such corrections, like the spin-spin splitting in the hydrogen atom, is less than the present theoretical/experimental uncertainties in the evaluation of hyperfine contributions into the atomic levels. But the most interesting result is the appearance of a number of significant corrections (the 1S -2S interval and 1S spin-spin interval in positronium, 1S and 2S -2P Lamb shift in light hydrogenic atoms), which improve considerably the convergence between theoretical predictions and experimental results. In particular, the corrected 1S -2S interval and 1S spin-spin splitting in positronium practically eliminate the existing up-to-date discrepancy between theoretical and experimental data. The re-estimated classic 2S -2P Lamb shift as well as ground-state Lamb shift in the hydrogen atom lead to the proton charge radius rp = 0.841(6) fm (from 2S -2P Lamb shift), and rp = 0.846(22) fm (from 1S Lamb shift), which perfectly agrees with the latest estimation of proton size via the measurement of 2S -2P Lamb shift in muonic hydrogen, i.e.rp = 0.84184(67) fm. Finally, we consider the decay of bound muons in meso-atoms and achieve a quantitative agreement between experimental data and the results obtained through our approach. © Società Italiana di Fisica and Springer 2011 |
abstract_unstemmed |
Abstract. This paper is the continuation of the analysis of bound quantum systems started in part I (A.L. Kholmetskii, T. Yarman and O.V. Missevitch, Going from classical to quantum description of bound charged particles. I: Basic concepts and assertions), which is based on a novel approach to the transition from classical to quantum description of electrically bound charges, involving the requirement of energy-momentum conservation for the bound electromagnetic (EM) field, when the EM radiation is forbidden. It has been shown that the modified expression for the energy levels of hydrogenic atoms within such a pure bound field theory (PBFT) provides the same gross and fine structure of energy levels, like in the standard theory. At the same time, at the scale of hyperfine interactions, our approach, in general, does evoke some important corrections to the energy levels. Part of such corrections, like the spin-spin splitting in the hydrogen atom, is less than the present theoretical/experimental uncertainties in the evaluation of hyperfine contributions into the atomic levels. But the most interesting result is the appearance of a number of significant corrections (the 1S -2S interval and 1S spin-spin interval in positronium, 1S and 2S -2P Lamb shift in light hydrogenic atoms), which improve considerably the convergence between theoretical predictions and experimental results. In particular, the corrected 1S -2S interval and 1S spin-spin splitting in positronium practically eliminate the existing up-to-date discrepancy between theoretical and experimental data. The re-estimated classic 2S -2P Lamb shift as well as ground-state Lamb shift in the hydrogen atom lead to the proton charge radius rp = 0.841(6) fm (from 2S -2P Lamb shift), and rp = 0.846(22) fm (from 1S Lamb shift), which perfectly agrees with the latest estimation of proton size via the measurement of 2S -2P Lamb shift in muonic hydrogen, i.e.rp = 0.84184(67) fm. Finally, we consider the decay of bound muons in meso-atoms and achieve a quantitative agreement between experimental data and the results obtained through our approach. © Società Italiana di Fisica and Springer 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Going from classical to quantum description of bound charged particles II: Implications for the atomic physics |
url |
https://dx.doi.org/10.1140/epjp/i2011-11035-7 |
remote_bool |
true |
author2 |
Yarman, T. Missevitch, O. V. |
author2Str |
Yarman, T. Missevitch, O. V. |
ppnlink |
647653958 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1140/epjp/i2011-11035-7 |
up_date |
2024-07-03T23:46:26.151Z |
_version_ |
1803603553709719552 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR031448577</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331072706.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1140/epjp/i2011-11035-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR031448577</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)i2011-11035-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kholmetskii, A. L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Going from classical to quantum description of bound charged particles II: Implications for the atomic physics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Società Italiana di Fisica and Springer 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. This paper is the continuation of the analysis of bound quantum systems started in part I (A.L. Kholmetskii, T. Yarman and O.V. Missevitch, Going from classical to quantum description of bound charged particles. I: Basic concepts and assertions), which is based on a novel approach to the transition from classical to quantum description of electrically bound charges, involving the requirement of energy-momentum conservation for the bound electromagnetic (EM) field, when the EM radiation is forbidden. It has been shown that the modified expression for the energy levels of hydrogenic atoms within such a pure bound field theory (PBFT) provides the same gross and fine structure of energy levels, like in the standard theory. At the same time, at the scale of hyperfine interactions, our approach, in general, does evoke some important corrections to the energy levels. Part of such corrections, like the spin-spin splitting in the hydrogen atom, is less than the present theoretical/experimental uncertainties in the evaluation of hyperfine contributions into the atomic levels. But the most interesting result is the appearance of a number of significant corrections (the 1S -2S interval and 1S spin-spin interval in positronium, 1S and 2S -2P Lamb shift in light hydrogenic atoms), which improve considerably the convergence between theoretical predictions and experimental results. In particular, the corrected 1S -2S interval and 1S spin-spin splitting in positronium practically eliminate the existing up-to-date discrepancy between theoretical and experimental data. The re-estimated classic 2S -2P Lamb shift as well as ground-state Lamb shift in the hydrogen atom lead to the proton charge radius rp = 0.841(6) fm (from 2S -2P Lamb shift), and rp = 0.846(22) fm (from 1S Lamb shift), which perfectly agrees with the latest estimation of proton size via the measurement of 2S -2P Lamb shift in muonic hydrogen, i.e.rp = 0.84184(67) fm. Finally, we consider the decay of bound muons in meso-atoms and achieve a quantitative agreement between experimental data and the results obtained through our approach.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lamb Shift</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proton Charge</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Muonic Hydrogen</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relativistic Dilation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proton Charge Radius</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yarman, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Missevitch, O. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The European physical journal</subfield><subfield code="d">Berlin : Springer, 2011</subfield><subfield code="g">126(2011), 4 vom: 11. Apr.</subfield><subfield code="w">(DE-627)647653958</subfield><subfield code="w">(DE-600)2595693-0</subfield><subfield code="x">2190-5444</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:126</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:4</subfield><subfield code="g">day:11</subfield><subfield code="g">month:04</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1140/epjp/i2011-11035-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">126</subfield><subfield code="j">2011</subfield><subfield code="e">4</subfield><subfield code="b">11</subfield><subfield code="c">04</subfield></datafield></record></collection>
|
score |
7.4013157 |