Deliverability equation in pseudo-steady state for fractured vertical well in tight gas
Abstract Based on non-Darcy flow theory in tight gas reservoirs, a new deliverability equation of fractured vertical gas well in pseudo-steady state is presented with the consideration of the stress-sensitive effect, and the open flow capacity calculation formula of gas well has been also derived. W...
Ausführliche Beschreibung
Autor*in: |
Mo, Shaoyuan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of petroleum exploration and production technology - Berlin : Springer, 2011, 6(2015), 1 vom: 09. Apr., Seite 33-38 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2015 ; number:1 ; day:09 ; month:04 ; pages:33-38 |
Links: |
---|
DOI / URN: |
10.1007/s13202-015-0164-z |
---|
Katalog-ID: |
SPR031486231 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR031486231 | ||
003 | DE-627 | ||
005 | 20230519170702.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s13202-015-0164-z |2 doi | |
035 | |a (DE-627)SPR031486231 | ||
035 | |a (SPR)s13202-015-0164-z-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Mo, Shaoyuan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Deliverability equation in pseudo-steady state for fractured vertical well in tight gas |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2015 | ||
520 | |a Abstract Based on non-Darcy flow theory in tight gas reservoirs, a new deliverability equation of fractured vertical gas well in pseudo-steady state is presented with the consideration of the stress-sensitive effect, and the open flow capacity calculation formula of gas well has been also derived. With the new deliverability equation, the effects of stress-sensitive coefficient, fracture parameters and matrix permeability on the productivity of gas well have been analyzed. The computation across an instance shows that due to the stress-sensitive effect, the IPR curves bend over to the pressure axis and the productivity of gas well is lower than that derived from the equation without consideration of stress-sensitive effect under the same pressure drop. As the stress-sensitive coefficient increasing, the well productivity becomes lower, the decline rate of production is higher and the IPR curve bends over in earlier stage with a greater bending. Besides, the productivity is affected by and has a positive correlation with the length and conductivity of fracture, namely that it becomes lower as the length and conductivity of fracture decreasing. Matrix permeability has an apparent impact on the productivity. If matrix permeability is extremely low, gas well cannot achieve the industrial production even after fracturing. As the matrix permeability increasing, stimulation results are significant. | ||
650 | 4 | |a Tight gas |7 (dpeaa)DE-He213 | |
650 | 4 | |a Pseudo-steady state |7 (dpeaa)DE-He213 | |
650 | 4 | |a Non-Darcy flow |7 (dpeaa)DE-He213 | |
650 | 4 | |a Stress-sensitive effect |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fractured vertical well |7 (dpeaa)DE-He213 | |
700 | 1 | |a He, Shunli |4 aut | |
700 | 1 | |a Lei, Gang |4 aut | |
700 | 1 | |a Gai, Shaohua |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of petroleum exploration and production technology |d Berlin : Springer, 2011 |g 6(2015), 1 vom: 09. Apr., Seite 33-38 |w (DE-627)647654148 |w (DE-600)2595714-4 |x 2190-0566 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2015 |g number:1 |g day:09 |g month:04 |g pages:33-38 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s13202-015-0164-z |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2015 |e 1 |b 09 |c 04 |h 33-38 |
author_variant |
s m sm s h sh g l gl s g sg |
---|---|
matchkey_str |
article:21900566:2015----::eieaiiyqainnsuotayttfrrcuev |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s13202-015-0164-z doi (DE-627)SPR031486231 (SPR)s13202-015-0164-z-e DE-627 ger DE-627 rakwb eng Mo, Shaoyuan verfasserin aut Deliverability equation in pseudo-steady state for fractured vertical well in tight gas 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2015 Abstract Based on non-Darcy flow theory in tight gas reservoirs, a new deliverability equation of fractured vertical gas well in pseudo-steady state is presented with the consideration of the stress-sensitive effect, and the open flow capacity calculation formula of gas well has been also derived. With the new deliverability equation, the effects of stress-sensitive coefficient, fracture parameters and matrix permeability on the productivity of gas well have been analyzed. The computation across an instance shows that due to the stress-sensitive effect, the IPR curves bend over to the pressure axis and the productivity of gas well is lower than that derived from the equation without consideration of stress-sensitive effect under the same pressure drop. As the stress-sensitive coefficient increasing, the well productivity becomes lower, the decline rate of production is higher and the IPR curve bends over in earlier stage with a greater bending. Besides, the productivity is affected by and has a positive correlation with the length and conductivity of fracture, namely that it becomes lower as the length and conductivity of fracture decreasing. Matrix permeability has an apparent impact on the productivity. If matrix permeability is extremely low, gas well cannot achieve the industrial production even after fracturing. As the matrix permeability increasing, stimulation results are significant. Tight gas (dpeaa)DE-He213 Pseudo-steady state (dpeaa)DE-He213 Non-Darcy flow (dpeaa)DE-He213 Stress-sensitive effect (dpeaa)DE-He213 Fractured vertical well (dpeaa)DE-He213 He, Shunli aut Lei, Gang aut Gai, Shaohua aut Enthalten in Journal of petroleum exploration and production technology Berlin : Springer, 2011 6(2015), 1 vom: 09. Apr., Seite 33-38 (DE-627)647654148 (DE-600)2595714-4 2190-0566 nnns volume:6 year:2015 number:1 day:09 month:04 pages:33-38 https://dx.doi.org/10.1007/s13202-015-0164-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2015 1 09 04 33-38 |
spelling |
10.1007/s13202-015-0164-z doi (DE-627)SPR031486231 (SPR)s13202-015-0164-z-e DE-627 ger DE-627 rakwb eng Mo, Shaoyuan verfasserin aut Deliverability equation in pseudo-steady state for fractured vertical well in tight gas 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2015 Abstract Based on non-Darcy flow theory in tight gas reservoirs, a new deliverability equation of fractured vertical gas well in pseudo-steady state is presented with the consideration of the stress-sensitive effect, and the open flow capacity calculation formula of gas well has been also derived. With the new deliverability equation, the effects of stress-sensitive coefficient, fracture parameters and matrix permeability on the productivity of gas well have been analyzed. The computation across an instance shows that due to the stress-sensitive effect, the IPR curves bend over to the pressure axis and the productivity of gas well is lower than that derived from the equation without consideration of stress-sensitive effect under the same pressure drop. As the stress-sensitive coefficient increasing, the well productivity becomes lower, the decline rate of production is higher and the IPR curve bends over in earlier stage with a greater bending. Besides, the productivity is affected by and has a positive correlation with the length and conductivity of fracture, namely that it becomes lower as the length and conductivity of fracture decreasing. Matrix permeability has an apparent impact on the productivity. If matrix permeability is extremely low, gas well cannot achieve the industrial production even after fracturing. As the matrix permeability increasing, stimulation results are significant. Tight gas (dpeaa)DE-He213 Pseudo-steady state (dpeaa)DE-He213 Non-Darcy flow (dpeaa)DE-He213 Stress-sensitive effect (dpeaa)DE-He213 Fractured vertical well (dpeaa)DE-He213 He, Shunli aut Lei, Gang aut Gai, Shaohua aut Enthalten in Journal of petroleum exploration and production technology Berlin : Springer, 2011 6(2015), 1 vom: 09. Apr., Seite 33-38 (DE-627)647654148 (DE-600)2595714-4 2190-0566 nnns volume:6 year:2015 number:1 day:09 month:04 pages:33-38 https://dx.doi.org/10.1007/s13202-015-0164-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2015 1 09 04 33-38 |
allfields_unstemmed |
10.1007/s13202-015-0164-z doi (DE-627)SPR031486231 (SPR)s13202-015-0164-z-e DE-627 ger DE-627 rakwb eng Mo, Shaoyuan verfasserin aut Deliverability equation in pseudo-steady state for fractured vertical well in tight gas 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2015 Abstract Based on non-Darcy flow theory in tight gas reservoirs, a new deliverability equation of fractured vertical gas well in pseudo-steady state is presented with the consideration of the stress-sensitive effect, and the open flow capacity calculation formula of gas well has been also derived. With the new deliverability equation, the effects of stress-sensitive coefficient, fracture parameters and matrix permeability on the productivity of gas well have been analyzed. The computation across an instance shows that due to the stress-sensitive effect, the IPR curves bend over to the pressure axis and the productivity of gas well is lower than that derived from the equation without consideration of stress-sensitive effect under the same pressure drop. As the stress-sensitive coefficient increasing, the well productivity becomes lower, the decline rate of production is higher and the IPR curve bends over in earlier stage with a greater bending. Besides, the productivity is affected by and has a positive correlation with the length and conductivity of fracture, namely that it becomes lower as the length and conductivity of fracture decreasing. Matrix permeability has an apparent impact on the productivity. If matrix permeability is extremely low, gas well cannot achieve the industrial production even after fracturing. As the matrix permeability increasing, stimulation results are significant. Tight gas (dpeaa)DE-He213 Pseudo-steady state (dpeaa)DE-He213 Non-Darcy flow (dpeaa)DE-He213 Stress-sensitive effect (dpeaa)DE-He213 Fractured vertical well (dpeaa)DE-He213 He, Shunli aut Lei, Gang aut Gai, Shaohua aut Enthalten in Journal of petroleum exploration and production technology Berlin : Springer, 2011 6(2015), 1 vom: 09. Apr., Seite 33-38 (DE-627)647654148 (DE-600)2595714-4 2190-0566 nnns volume:6 year:2015 number:1 day:09 month:04 pages:33-38 https://dx.doi.org/10.1007/s13202-015-0164-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2015 1 09 04 33-38 |
allfieldsGer |
10.1007/s13202-015-0164-z doi (DE-627)SPR031486231 (SPR)s13202-015-0164-z-e DE-627 ger DE-627 rakwb eng Mo, Shaoyuan verfasserin aut Deliverability equation in pseudo-steady state for fractured vertical well in tight gas 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2015 Abstract Based on non-Darcy flow theory in tight gas reservoirs, a new deliverability equation of fractured vertical gas well in pseudo-steady state is presented with the consideration of the stress-sensitive effect, and the open flow capacity calculation formula of gas well has been also derived. With the new deliverability equation, the effects of stress-sensitive coefficient, fracture parameters and matrix permeability on the productivity of gas well have been analyzed. The computation across an instance shows that due to the stress-sensitive effect, the IPR curves bend over to the pressure axis and the productivity of gas well is lower than that derived from the equation without consideration of stress-sensitive effect under the same pressure drop. As the stress-sensitive coefficient increasing, the well productivity becomes lower, the decline rate of production is higher and the IPR curve bends over in earlier stage with a greater bending. Besides, the productivity is affected by and has a positive correlation with the length and conductivity of fracture, namely that it becomes lower as the length and conductivity of fracture decreasing. Matrix permeability has an apparent impact on the productivity. If matrix permeability is extremely low, gas well cannot achieve the industrial production even after fracturing. As the matrix permeability increasing, stimulation results are significant. Tight gas (dpeaa)DE-He213 Pseudo-steady state (dpeaa)DE-He213 Non-Darcy flow (dpeaa)DE-He213 Stress-sensitive effect (dpeaa)DE-He213 Fractured vertical well (dpeaa)DE-He213 He, Shunli aut Lei, Gang aut Gai, Shaohua aut Enthalten in Journal of petroleum exploration and production technology Berlin : Springer, 2011 6(2015), 1 vom: 09. Apr., Seite 33-38 (DE-627)647654148 (DE-600)2595714-4 2190-0566 nnns volume:6 year:2015 number:1 day:09 month:04 pages:33-38 https://dx.doi.org/10.1007/s13202-015-0164-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2015 1 09 04 33-38 |
allfieldsSound |
10.1007/s13202-015-0164-z doi (DE-627)SPR031486231 (SPR)s13202-015-0164-z-e DE-627 ger DE-627 rakwb eng Mo, Shaoyuan verfasserin aut Deliverability equation in pseudo-steady state for fractured vertical well in tight gas 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2015 Abstract Based on non-Darcy flow theory in tight gas reservoirs, a new deliverability equation of fractured vertical gas well in pseudo-steady state is presented with the consideration of the stress-sensitive effect, and the open flow capacity calculation formula of gas well has been also derived. With the new deliverability equation, the effects of stress-sensitive coefficient, fracture parameters and matrix permeability on the productivity of gas well have been analyzed. The computation across an instance shows that due to the stress-sensitive effect, the IPR curves bend over to the pressure axis and the productivity of gas well is lower than that derived from the equation without consideration of stress-sensitive effect under the same pressure drop. As the stress-sensitive coefficient increasing, the well productivity becomes lower, the decline rate of production is higher and the IPR curve bends over in earlier stage with a greater bending. Besides, the productivity is affected by and has a positive correlation with the length and conductivity of fracture, namely that it becomes lower as the length and conductivity of fracture decreasing. Matrix permeability has an apparent impact on the productivity. If matrix permeability is extremely low, gas well cannot achieve the industrial production even after fracturing. As the matrix permeability increasing, stimulation results are significant. Tight gas (dpeaa)DE-He213 Pseudo-steady state (dpeaa)DE-He213 Non-Darcy flow (dpeaa)DE-He213 Stress-sensitive effect (dpeaa)DE-He213 Fractured vertical well (dpeaa)DE-He213 He, Shunli aut Lei, Gang aut Gai, Shaohua aut Enthalten in Journal of petroleum exploration and production technology Berlin : Springer, 2011 6(2015), 1 vom: 09. Apr., Seite 33-38 (DE-627)647654148 (DE-600)2595714-4 2190-0566 nnns volume:6 year:2015 number:1 day:09 month:04 pages:33-38 https://dx.doi.org/10.1007/s13202-015-0164-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2015 1 09 04 33-38 |
language |
English |
source |
Enthalten in Journal of petroleum exploration and production technology 6(2015), 1 vom: 09. Apr., Seite 33-38 volume:6 year:2015 number:1 day:09 month:04 pages:33-38 |
sourceStr |
Enthalten in Journal of petroleum exploration and production technology 6(2015), 1 vom: 09. Apr., Seite 33-38 volume:6 year:2015 number:1 day:09 month:04 pages:33-38 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Tight gas Pseudo-steady state Non-Darcy flow Stress-sensitive effect Fractured vertical well |
isfreeaccess_bool |
true |
container_title |
Journal of petroleum exploration and production technology |
authorswithroles_txt_mv |
Mo, Shaoyuan @@aut@@ He, Shunli @@aut@@ Lei, Gang @@aut@@ Gai, Shaohua @@aut@@ |
publishDateDaySort_date |
2015-04-09T00:00:00Z |
hierarchy_top_id |
647654148 |
id |
SPR031486231 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR031486231</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519170702.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13202-015-0164-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR031486231</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13202-015-0164-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mo, Shaoyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deliverability equation in pseudo-steady state for fractured vertical well in tight gas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Based on non-Darcy flow theory in tight gas reservoirs, a new deliverability equation of fractured vertical gas well in pseudo-steady state is presented with the consideration of the stress-sensitive effect, and the open flow capacity calculation formula of gas well has been also derived. With the new deliverability equation, the effects of stress-sensitive coefficient, fracture parameters and matrix permeability on the productivity of gas well have been analyzed. The computation across an instance shows that due to the stress-sensitive effect, the IPR curves bend over to the pressure axis and the productivity of gas well is lower than that derived from the equation without consideration of stress-sensitive effect under the same pressure drop. As the stress-sensitive coefficient increasing, the well productivity becomes lower, the decline rate of production is higher and the IPR curve bends over in earlier stage with a greater bending. Besides, the productivity is affected by and has a positive correlation with the length and conductivity of fracture, namely that it becomes lower as the length and conductivity of fracture decreasing. Matrix permeability has an apparent impact on the productivity. If matrix permeability is extremely low, gas well cannot achieve the industrial production even after fracturing. As the matrix permeability increasing, stimulation results are significant.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tight gas</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pseudo-steady state</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-Darcy flow</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress-sensitive effect</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractured vertical well</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Shunli</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lei, Gang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gai, Shaohua</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of petroleum exploration and production technology</subfield><subfield code="d">Berlin : Springer, 2011</subfield><subfield code="g">6(2015), 1 vom: 09. Apr., Seite 33-38</subfield><subfield code="w">(DE-627)647654148</subfield><subfield code="w">(DE-600)2595714-4</subfield><subfield code="x">2190-0566</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:09</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:33-38</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13202-015-0164-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">09</subfield><subfield code="c">04</subfield><subfield code="h">33-38</subfield></datafield></record></collection>
|
author |
Mo, Shaoyuan |
spellingShingle |
Mo, Shaoyuan misc Tight gas misc Pseudo-steady state misc Non-Darcy flow misc Stress-sensitive effect misc Fractured vertical well Deliverability equation in pseudo-steady state for fractured vertical well in tight gas |
authorStr |
Mo, Shaoyuan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)647654148 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2190-0566 |
topic_title |
Deliverability equation in pseudo-steady state for fractured vertical well in tight gas Tight gas (dpeaa)DE-He213 Pseudo-steady state (dpeaa)DE-He213 Non-Darcy flow (dpeaa)DE-He213 Stress-sensitive effect (dpeaa)DE-He213 Fractured vertical well (dpeaa)DE-He213 |
topic |
misc Tight gas misc Pseudo-steady state misc Non-Darcy flow misc Stress-sensitive effect misc Fractured vertical well |
topic_unstemmed |
misc Tight gas misc Pseudo-steady state misc Non-Darcy flow misc Stress-sensitive effect misc Fractured vertical well |
topic_browse |
misc Tight gas misc Pseudo-steady state misc Non-Darcy flow misc Stress-sensitive effect misc Fractured vertical well |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of petroleum exploration and production technology |
hierarchy_parent_id |
647654148 |
hierarchy_top_title |
Journal of petroleum exploration and production technology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)647654148 (DE-600)2595714-4 |
title |
Deliverability equation in pseudo-steady state for fractured vertical well in tight gas |
ctrlnum |
(DE-627)SPR031486231 (SPR)s13202-015-0164-z-e |
title_full |
Deliverability equation in pseudo-steady state for fractured vertical well in tight gas |
author_sort |
Mo, Shaoyuan |
journal |
Journal of petroleum exploration and production technology |
journalStr |
Journal of petroleum exploration and production technology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
33 |
author_browse |
Mo, Shaoyuan He, Shunli Lei, Gang Gai, Shaohua |
container_volume |
6 |
format_se |
Elektronische Aufsätze |
author-letter |
Mo, Shaoyuan |
doi_str_mv |
10.1007/s13202-015-0164-z |
title_sort |
deliverability equation in pseudo-steady state for fractured vertical well in tight gas |
title_auth |
Deliverability equation in pseudo-steady state for fractured vertical well in tight gas |
abstract |
Abstract Based on non-Darcy flow theory in tight gas reservoirs, a new deliverability equation of fractured vertical gas well in pseudo-steady state is presented with the consideration of the stress-sensitive effect, and the open flow capacity calculation formula of gas well has been also derived. With the new deliverability equation, the effects of stress-sensitive coefficient, fracture parameters and matrix permeability on the productivity of gas well have been analyzed. The computation across an instance shows that due to the stress-sensitive effect, the IPR curves bend over to the pressure axis and the productivity of gas well is lower than that derived from the equation without consideration of stress-sensitive effect under the same pressure drop. As the stress-sensitive coefficient increasing, the well productivity becomes lower, the decline rate of production is higher and the IPR curve bends over in earlier stage with a greater bending. Besides, the productivity is affected by and has a positive correlation with the length and conductivity of fracture, namely that it becomes lower as the length and conductivity of fracture decreasing. Matrix permeability has an apparent impact on the productivity. If matrix permeability is extremely low, gas well cannot achieve the industrial production even after fracturing. As the matrix permeability increasing, stimulation results are significant. © The Author(s) 2015 |
abstractGer |
Abstract Based on non-Darcy flow theory in tight gas reservoirs, a new deliverability equation of fractured vertical gas well in pseudo-steady state is presented with the consideration of the stress-sensitive effect, and the open flow capacity calculation formula of gas well has been also derived. With the new deliverability equation, the effects of stress-sensitive coefficient, fracture parameters and matrix permeability on the productivity of gas well have been analyzed. The computation across an instance shows that due to the stress-sensitive effect, the IPR curves bend over to the pressure axis and the productivity of gas well is lower than that derived from the equation without consideration of stress-sensitive effect under the same pressure drop. As the stress-sensitive coefficient increasing, the well productivity becomes lower, the decline rate of production is higher and the IPR curve bends over in earlier stage with a greater bending. Besides, the productivity is affected by and has a positive correlation with the length and conductivity of fracture, namely that it becomes lower as the length and conductivity of fracture decreasing. Matrix permeability has an apparent impact on the productivity. If matrix permeability is extremely low, gas well cannot achieve the industrial production even after fracturing. As the matrix permeability increasing, stimulation results are significant. © The Author(s) 2015 |
abstract_unstemmed |
Abstract Based on non-Darcy flow theory in tight gas reservoirs, a new deliverability equation of fractured vertical gas well in pseudo-steady state is presented with the consideration of the stress-sensitive effect, and the open flow capacity calculation formula of gas well has been also derived. With the new deliverability equation, the effects of stress-sensitive coefficient, fracture parameters and matrix permeability on the productivity of gas well have been analyzed. The computation across an instance shows that due to the stress-sensitive effect, the IPR curves bend over to the pressure axis and the productivity of gas well is lower than that derived from the equation without consideration of stress-sensitive effect under the same pressure drop. As the stress-sensitive coefficient increasing, the well productivity becomes lower, the decline rate of production is higher and the IPR curve bends over in earlier stage with a greater bending. Besides, the productivity is affected by and has a positive correlation with the length and conductivity of fracture, namely that it becomes lower as the length and conductivity of fracture decreasing. Matrix permeability has an apparent impact on the productivity. If matrix permeability is extremely low, gas well cannot achieve the industrial production even after fracturing. As the matrix permeability increasing, stimulation results are significant. © The Author(s) 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Deliverability equation in pseudo-steady state for fractured vertical well in tight gas |
url |
https://dx.doi.org/10.1007/s13202-015-0164-z |
remote_bool |
true |
author2 |
He, Shunli Lei, Gang Gai, Shaohua |
author2Str |
He, Shunli Lei, Gang Gai, Shaohua |
ppnlink |
647654148 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s13202-015-0164-z |
up_date |
2024-07-03T23:57:05.223Z |
_version_ |
1803604223825281024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR031486231</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519170702.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13202-015-0164-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR031486231</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13202-015-0164-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mo, Shaoyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deliverability equation in pseudo-steady state for fractured vertical well in tight gas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Based on non-Darcy flow theory in tight gas reservoirs, a new deliverability equation of fractured vertical gas well in pseudo-steady state is presented with the consideration of the stress-sensitive effect, and the open flow capacity calculation formula of gas well has been also derived. With the new deliverability equation, the effects of stress-sensitive coefficient, fracture parameters and matrix permeability on the productivity of gas well have been analyzed. The computation across an instance shows that due to the stress-sensitive effect, the IPR curves bend over to the pressure axis and the productivity of gas well is lower than that derived from the equation without consideration of stress-sensitive effect under the same pressure drop. As the stress-sensitive coefficient increasing, the well productivity becomes lower, the decline rate of production is higher and the IPR curve bends over in earlier stage with a greater bending. Besides, the productivity is affected by and has a positive correlation with the length and conductivity of fracture, namely that it becomes lower as the length and conductivity of fracture decreasing. Matrix permeability has an apparent impact on the productivity. If matrix permeability is extremely low, gas well cannot achieve the industrial production even after fracturing. As the matrix permeability increasing, stimulation results are significant.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tight gas</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pseudo-steady state</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-Darcy flow</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress-sensitive effect</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractured vertical well</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Shunli</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lei, Gang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gai, Shaohua</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of petroleum exploration and production technology</subfield><subfield code="d">Berlin : Springer, 2011</subfield><subfield code="g">6(2015), 1 vom: 09. Apr., Seite 33-38</subfield><subfield code="w">(DE-627)647654148</subfield><subfield code="w">(DE-600)2595714-4</subfield><subfield code="x">2190-0566</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:09</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:33-38</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13202-015-0164-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">09</subfield><subfield code="c">04</subfield><subfield code="h">33-38</subfield></datafield></record></collection>
|
score |
7.402545 |