Low-temperature oxidative asphaltenes liquefaction for petrochemicals: fact or fiction?
Abstract Asphaltene is the heavy and heteroatom-rich fraction of petroleum that is rejected during a solvent deasphalting process. In patent literature there are claims that state that this material can be converted into an aromatic petrochemical feedstock by oxidative liquefaction at low temperatur...
Ausführliche Beschreibung
Autor*in: |
Sánchez, Natalia Montoya [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Applied petrochemical research - Berlin : Springer, 2012, 6(2016), 2 vom: 12. Feb., Seite 97-106 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2016 ; number:2 ; day:12 ; month:02 ; pages:97-106 |
Links: |
---|
DOI / URN: |
10.1007/s13203-016-0147-0 |
---|
Katalog-ID: |
SPR031518583 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR031518583 | ||
003 | DE-627 | ||
005 | 20230519163053.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s13203-016-0147-0 |2 doi | |
035 | |a (DE-627)SPR031518583 | ||
035 | |a (SPR)s13203-016-0147-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Sánchez, Natalia Montoya |e verfasserin |4 aut | |
245 | 1 | 0 | |a Low-temperature oxidative asphaltenes liquefaction for petrochemicals: fact or fiction? |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2016 | ||
520 | |a Abstract Asphaltene is the heavy and heteroatom-rich fraction of petroleum that is rejected during a solvent deasphalting process. In patent literature there are claims that state that this material can be converted into an aromatic petrochemical feedstock by oxidative liquefaction at low temperature. To evaluate the validity of these claims, asphaltenes from an industrial solvent deasphalting process were oxidized with dry and water-saturated air at temperatures in the range 45–100 °C. Infrared spectroscopy of the oxidized product confirmed that oxygen was incorporated as C=O and C–O. Under all experimental conditions studied little oxidative degradation was observed that would lead to the production of a petrochemical feedstock. Nevertheless, some observations of scientific value were made about the low-temperature conversion of asphaltenes. During autoxidation with dry air, the n-pentane-insoluble fraction increased. On the contrary, when oxidation was conducted with water-saturated air, the formation of additional n-pentane-insoluble material was suppressed. Mild heating of asphaltenes under nitrogen atmosphere also caused the n-pentane-insoluble content to increase. Spectroscopic evidence showed that esters are formed during oxidation at ~100 °C. The temperature dependence of this reaction was explained and a possible reaction pathway for cycloalkane to ester conversion was presented. Ester selectivity was determined by the competition between hydrogen abstraction and β-scission of the alkoxy radical. | ||
650 | 4 | |a Asphaltenes autoxidation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Wet oxidation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Heating of asphaltenes |7 (dpeaa)DE-He213 | |
700 | 1 | |a de Klerk, Arno |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied petrochemical research |d Berlin : Springer, 2012 |g 6(2016), 2 vom: 12. Feb., Seite 97-106 |w (DE-627)663367549 |w (DE-600)2615344-0 |x 2190-5533 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2016 |g number:2 |g day:12 |g month:02 |g pages:97-106 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s13203-016-0147-0 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2016 |e 2 |b 12 |c 02 |h 97-106 |
author_variant |
n m s nm nms k a d ka kad |
---|---|
matchkey_str |
article:21905533:2016----::otmeauexdtvapatnsiufcinoptoh |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s13203-016-0147-0 doi (DE-627)SPR031518583 (SPR)s13203-016-0147-0-e DE-627 ger DE-627 rakwb eng Sánchez, Natalia Montoya verfasserin aut Low-temperature oxidative asphaltenes liquefaction for petrochemicals: fact or fiction? 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2016 Abstract Asphaltene is the heavy and heteroatom-rich fraction of petroleum that is rejected during a solvent deasphalting process. In patent literature there are claims that state that this material can be converted into an aromatic petrochemical feedstock by oxidative liquefaction at low temperature. To evaluate the validity of these claims, asphaltenes from an industrial solvent deasphalting process were oxidized with dry and water-saturated air at temperatures in the range 45–100 °C. Infrared spectroscopy of the oxidized product confirmed that oxygen was incorporated as C=O and C–O. Under all experimental conditions studied little oxidative degradation was observed that would lead to the production of a petrochemical feedstock. Nevertheless, some observations of scientific value were made about the low-temperature conversion of asphaltenes. During autoxidation with dry air, the n-pentane-insoluble fraction increased. On the contrary, when oxidation was conducted with water-saturated air, the formation of additional n-pentane-insoluble material was suppressed. Mild heating of asphaltenes under nitrogen atmosphere also caused the n-pentane-insoluble content to increase. Spectroscopic evidence showed that esters are formed during oxidation at ~100 °C. The temperature dependence of this reaction was explained and a possible reaction pathway for cycloalkane to ester conversion was presented. Ester selectivity was determined by the competition between hydrogen abstraction and β-scission of the alkoxy radical. Asphaltenes autoxidation (dpeaa)DE-He213 Wet oxidation (dpeaa)DE-He213 Heating of asphaltenes (dpeaa)DE-He213 de Klerk, Arno aut Enthalten in Applied petrochemical research Berlin : Springer, 2012 6(2016), 2 vom: 12. Feb., Seite 97-106 (DE-627)663367549 (DE-600)2615344-0 2190-5533 nnns volume:6 year:2016 number:2 day:12 month:02 pages:97-106 https://dx.doi.org/10.1007/s13203-016-0147-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2016 2 12 02 97-106 |
spelling |
10.1007/s13203-016-0147-0 doi (DE-627)SPR031518583 (SPR)s13203-016-0147-0-e DE-627 ger DE-627 rakwb eng Sánchez, Natalia Montoya verfasserin aut Low-temperature oxidative asphaltenes liquefaction for petrochemicals: fact or fiction? 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2016 Abstract Asphaltene is the heavy and heteroatom-rich fraction of petroleum that is rejected during a solvent deasphalting process. In patent literature there are claims that state that this material can be converted into an aromatic petrochemical feedstock by oxidative liquefaction at low temperature. To evaluate the validity of these claims, asphaltenes from an industrial solvent deasphalting process were oxidized with dry and water-saturated air at temperatures in the range 45–100 °C. Infrared spectroscopy of the oxidized product confirmed that oxygen was incorporated as C=O and C–O. Under all experimental conditions studied little oxidative degradation was observed that would lead to the production of a petrochemical feedstock. Nevertheless, some observations of scientific value were made about the low-temperature conversion of asphaltenes. During autoxidation with dry air, the n-pentane-insoluble fraction increased. On the contrary, when oxidation was conducted with water-saturated air, the formation of additional n-pentane-insoluble material was suppressed. Mild heating of asphaltenes under nitrogen atmosphere also caused the n-pentane-insoluble content to increase. Spectroscopic evidence showed that esters are formed during oxidation at ~100 °C. The temperature dependence of this reaction was explained and a possible reaction pathway for cycloalkane to ester conversion was presented. Ester selectivity was determined by the competition between hydrogen abstraction and β-scission of the alkoxy radical. Asphaltenes autoxidation (dpeaa)DE-He213 Wet oxidation (dpeaa)DE-He213 Heating of asphaltenes (dpeaa)DE-He213 de Klerk, Arno aut Enthalten in Applied petrochemical research Berlin : Springer, 2012 6(2016), 2 vom: 12. Feb., Seite 97-106 (DE-627)663367549 (DE-600)2615344-0 2190-5533 nnns volume:6 year:2016 number:2 day:12 month:02 pages:97-106 https://dx.doi.org/10.1007/s13203-016-0147-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2016 2 12 02 97-106 |
allfields_unstemmed |
10.1007/s13203-016-0147-0 doi (DE-627)SPR031518583 (SPR)s13203-016-0147-0-e DE-627 ger DE-627 rakwb eng Sánchez, Natalia Montoya verfasserin aut Low-temperature oxidative asphaltenes liquefaction for petrochemicals: fact or fiction? 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2016 Abstract Asphaltene is the heavy and heteroatom-rich fraction of petroleum that is rejected during a solvent deasphalting process. In patent literature there are claims that state that this material can be converted into an aromatic petrochemical feedstock by oxidative liquefaction at low temperature. To evaluate the validity of these claims, asphaltenes from an industrial solvent deasphalting process were oxidized with dry and water-saturated air at temperatures in the range 45–100 °C. Infrared spectroscopy of the oxidized product confirmed that oxygen was incorporated as C=O and C–O. Under all experimental conditions studied little oxidative degradation was observed that would lead to the production of a petrochemical feedstock. Nevertheless, some observations of scientific value were made about the low-temperature conversion of asphaltenes. During autoxidation with dry air, the n-pentane-insoluble fraction increased. On the contrary, when oxidation was conducted with water-saturated air, the formation of additional n-pentane-insoluble material was suppressed. Mild heating of asphaltenes under nitrogen atmosphere also caused the n-pentane-insoluble content to increase. Spectroscopic evidence showed that esters are formed during oxidation at ~100 °C. The temperature dependence of this reaction was explained and a possible reaction pathway for cycloalkane to ester conversion was presented. Ester selectivity was determined by the competition between hydrogen abstraction and β-scission of the alkoxy radical. Asphaltenes autoxidation (dpeaa)DE-He213 Wet oxidation (dpeaa)DE-He213 Heating of asphaltenes (dpeaa)DE-He213 de Klerk, Arno aut Enthalten in Applied petrochemical research Berlin : Springer, 2012 6(2016), 2 vom: 12. Feb., Seite 97-106 (DE-627)663367549 (DE-600)2615344-0 2190-5533 nnns volume:6 year:2016 number:2 day:12 month:02 pages:97-106 https://dx.doi.org/10.1007/s13203-016-0147-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2016 2 12 02 97-106 |
allfieldsGer |
10.1007/s13203-016-0147-0 doi (DE-627)SPR031518583 (SPR)s13203-016-0147-0-e DE-627 ger DE-627 rakwb eng Sánchez, Natalia Montoya verfasserin aut Low-temperature oxidative asphaltenes liquefaction for petrochemicals: fact or fiction? 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2016 Abstract Asphaltene is the heavy and heteroatom-rich fraction of petroleum that is rejected during a solvent deasphalting process. In patent literature there are claims that state that this material can be converted into an aromatic petrochemical feedstock by oxidative liquefaction at low temperature. To evaluate the validity of these claims, asphaltenes from an industrial solvent deasphalting process were oxidized with dry and water-saturated air at temperatures in the range 45–100 °C. Infrared spectroscopy of the oxidized product confirmed that oxygen was incorporated as C=O and C–O. Under all experimental conditions studied little oxidative degradation was observed that would lead to the production of a petrochemical feedstock. Nevertheless, some observations of scientific value were made about the low-temperature conversion of asphaltenes. During autoxidation with dry air, the n-pentane-insoluble fraction increased. On the contrary, when oxidation was conducted with water-saturated air, the formation of additional n-pentane-insoluble material was suppressed. Mild heating of asphaltenes under nitrogen atmosphere also caused the n-pentane-insoluble content to increase. Spectroscopic evidence showed that esters are formed during oxidation at ~100 °C. The temperature dependence of this reaction was explained and a possible reaction pathway for cycloalkane to ester conversion was presented. Ester selectivity was determined by the competition between hydrogen abstraction and β-scission of the alkoxy radical. Asphaltenes autoxidation (dpeaa)DE-He213 Wet oxidation (dpeaa)DE-He213 Heating of asphaltenes (dpeaa)DE-He213 de Klerk, Arno aut Enthalten in Applied petrochemical research Berlin : Springer, 2012 6(2016), 2 vom: 12. Feb., Seite 97-106 (DE-627)663367549 (DE-600)2615344-0 2190-5533 nnns volume:6 year:2016 number:2 day:12 month:02 pages:97-106 https://dx.doi.org/10.1007/s13203-016-0147-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2016 2 12 02 97-106 |
allfieldsSound |
10.1007/s13203-016-0147-0 doi (DE-627)SPR031518583 (SPR)s13203-016-0147-0-e DE-627 ger DE-627 rakwb eng Sánchez, Natalia Montoya verfasserin aut Low-temperature oxidative asphaltenes liquefaction for petrochemicals: fact or fiction? 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2016 Abstract Asphaltene is the heavy and heteroatom-rich fraction of petroleum that is rejected during a solvent deasphalting process. In patent literature there are claims that state that this material can be converted into an aromatic petrochemical feedstock by oxidative liquefaction at low temperature. To evaluate the validity of these claims, asphaltenes from an industrial solvent deasphalting process were oxidized with dry and water-saturated air at temperatures in the range 45–100 °C. Infrared spectroscopy of the oxidized product confirmed that oxygen was incorporated as C=O and C–O. Under all experimental conditions studied little oxidative degradation was observed that would lead to the production of a petrochemical feedstock. Nevertheless, some observations of scientific value were made about the low-temperature conversion of asphaltenes. During autoxidation with dry air, the n-pentane-insoluble fraction increased. On the contrary, when oxidation was conducted with water-saturated air, the formation of additional n-pentane-insoluble material was suppressed. Mild heating of asphaltenes under nitrogen atmosphere also caused the n-pentane-insoluble content to increase. Spectroscopic evidence showed that esters are formed during oxidation at ~100 °C. The temperature dependence of this reaction was explained and a possible reaction pathway for cycloalkane to ester conversion was presented. Ester selectivity was determined by the competition between hydrogen abstraction and β-scission of the alkoxy radical. Asphaltenes autoxidation (dpeaa)DE-He213 Wet oxidation (dpeaa)DE-He213 Heating of asphaltenes (dpeaa)DE-He213 de Klerk, Arno aut Enthalten in Applied petrochemical research Berlin : Springer, 2012 6(2016), 2 vom: 12. Feb., Seite 97-106 (DE-627)663367549 (DE-600)2615344-0 2190-5533 nnns volume:6 year:2016 number:2 day:12 month:02 pages:97-106 https://dx.doi.org/10.1007/s13203-016-0147-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2016 2 12 02 97-106 |
language |
English |
source |
Enthalten in Applied petrochemical research 6(2016), 2 vom: 12. Feb., Seite 97-106 volume:6 year:2016 number:2 day:12 month:02 pages:97-106 |
sourceStr |
Enthalten in Applied petrochemical research 6(2016), 2 vom: 12. Feb., Seite 97-106 volume:6 year:2016 number:2 day:12 month:02 pages:97-106 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Asphaltenes autoxidation Wet oxidation Heating of asphaltenes |
isfreeaccess_bool |
true |
container_title |
Applied petrochemical research |
authorswithroles_txt_mv |
Sánchez, Natalia Montoya @@aut@@ de Klerk, Arno @@aut@@ |
publishDateDaySort_date |
2016-02-12T00:00:00Z |
hierarchy_top_id |
663367549 |
id |
SPR031518583 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR031518583</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519163053.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13203-016-0147-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR031518583</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13203-016-0147-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sánchez, Natalia Montoya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Low-temperature oxidative asphaltenes liquefaction for petrochemicals: fact or fiction?</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Asphaltene is the heavy and heteroatom-rich fraction of petroleum that is rejected during a solvent deasphalting process. In patent literature there are claims that state that this material can be converted into an aromatic petrochemical feedstock by oxidative liquefaction at low temperature. To evaluate the validity of these claims, asphaltenes from an industrial solvent deasphalting process were oxidized with dry and water-saturated air at temperatures in the range 45–100 °C. Infrared spectroscopy of the oxidized product confirmed that oxygen was incorporated as C=O and C–O. Under all experimental conditions studied little oxidative degradation was observed that would lead to the production of a petrochemical feedstock. Nevertheless, some observations of scientific value were made about the low-temperature conversion of asphaltenes. During autoxidation with dry air, the n-pentane-insoluble fraction increased. On the contrary, when oxidation was conducted with water-saturated air, the formation of additional n-pentane-insoluble material was suppressed. Mild heating of asphaltenes under nitrogen atmosphere also caused the n-pentane-insoluble content to increase. Spectroscopic evidence showed that esters are formed during oxidation at ~100 °C. The temperature dependence of this reaction was explained and a possible reaction pathway for cycloalkane to ester conversion was presented. Ester selectivity was determined by the competition between hydrogen abstraction and β-scission of the alkoxy radical.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asphaltenes autoxidation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wet oxidation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heating of asphaltenes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Klerk, Arno</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied petrochemical research</subfield><subfield code="d">Berlin : Springer, 2012</subfield><subfield code="g">6(2016), 2 vom: 12. Feb., Seite 97-106</subfield><subfield code="w">(DE-627)663367549</subfield><subfield code="w">(DE-600)2615344-0</subfield><subfield code="x">2190-5533</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:2</subfield><subfield code="g">day:12</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:97-106</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13203-016-0147-0</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2016</subfield><subfield code="e">2</subfield><subfield code="b">12</subfield><subfield code="c">02</subfield><subfield code="h">97-106</subfield></datafield></record></collection>
|
author |
Sánchez, Natalia Montoya |
spellingShingle |
Sánchez, Natalia Montoya misc Asphaltenes autoxidation misc Wet oxidation misc Heating of asphaltenes Low-temperature oxidative asphaltenes liquefaction for petrochemicals: fact or fiction? |
authorStr |
Sánchez, Natalia Montoya |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)663367549 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2190-5533 |
topic_title |
Low-temperature oxidative asphaltenes liquefaction for petrochemicals: fact or fiction? Asphaltenes autoxidation (dpeaa)DE-He213 Wet oxidation (dpeaa)DE-He213 Heating of asphaltenes (dpeaa)DE-He213 |
topic |
misc Asphaltenes autoxidation misc Wet oxidation misc Heating of asphaltenes |
topic_unstemmed |
misc Asphaltenes autoxidation misc Wet oxidation misc Heating of asphaltenes |
topic_browse |
misc Asphaltenes autoxidation misc Wet oxidation misc Heating of asphaltenes |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied petrochemical research |
hierarchy_parent_id |
663367549 |
hierarchy_top_title |
Applied petrochemical research |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)663367549 (DE-600)2615344-0 |
title |
Low-temperature oxidative asphaltenes liquefaction for petrochemicals: fact or fiction? |
ctrlnum |
(DE-627)SPR031518583 (SPR)s13203-016-0147-0-e |
title_full |
Low-temperature oxidative asphaltenes liquefaction for petrochemicals: fact or fiction? |
author_sort |
Sánchez, Natalia Montoya |
journal |
Applied petrochemical research |
journalStr |
Applied petrochemical research |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
97 |
author_browse |
Sánchez, Natalia Montoya de Klerk, Arno |
container_volume |
6 |
format_se |
Elektronische Aufsätze |
author-letter |
Sánchez, Natalia Montoya |
doi_str_mv |
10.1007/s13203-016-0147-0 |
title_sort |
low-temperature oxidative asphaltenes liquefaction for petrochemicals: fact or fiction? |
title_auth |
Low-temperature oxidative asphaltenes liquefaction for petrochemicals: fact or fiction? |
abstract |
Abstract Asphaltene is the heavy and heteroatom-rich fraction of petroleum that is rejected during a solvent deasphalting process. In patent literature there are claims that state that this material can be converted into an aromatic petrochemical feedstock by oxidative liquefaction at low temperature. To evaluate the validity of these claims, asphaltenes from an industrial solvent deasphalting process were oxidized with dry and water-saturated air at temperatures in the range 45–100 °C. Infrared spectroscopy of the oxidized product confirmed that oxygen was incorporated as C=O and C–O. Under all experimental conditions studied little oxidative degradation was observed that would lead to the production of a petrochemical feedstock. Nevertheless, some observations of scientific value were made about the low-temperature conversion of asphaltenes. During autoxidation with dry air, the n-pentane-insoluble fraction increased. On the contrary, when oxidation was conducted with water-saturated air, the formation of additional n-pentane-insoluble material was suppressed. Mild heating of asphaltenes under nitrogen atmosphere also caused the n-pentane-insoluble content to increase. Spectroscopic evidence showed that esters are formed during oxidation at ~100 °C. The temperature dependence of this reaction was explained and a possible reaction pathway for cycloalkane to ester conversion was presented. Ester selectivity was determined by the competition between hydrogen abstraction and β-scission of the alkoxy radical. © The Author(s) 2016 |
abstractGer |
Abstract Asphaltene is the heavy and heteroatom-rich fraction of petroleum that is rejected during a solvent deasphalting process. In patent literature there are claims that state that this material can be converted into an aromatic petrochemical feedstock by oxidative liquefaction at low temperature. To evaluate the validity of these claims, asphaltenes from an industrial solvent deasphalting process were oxidized with dry and water-saturated air at temperatures in the range 45–100 °C. Infrared spectroscopy of the oxidized product confirmed that oxygen was incorporated as C=O and C–O. Under all experimental conditions studied little oxidative degradation was observed that would lead to the production of a petrochemical feedstock. Nevertheless, some observations of scientific value were made about the low-temperature conversion of asphaltenes. During autoxidation with dry air, the n-pentane-insoluble fraction increased. On the contrary, when oxidation was conducted with water-saturated air, the formation of additional n-pentane-insoluble material was suppressed. Mild heating of asphaltenes under nitrogen atmosphere also caused the n-pentane-insoluble content to increase. Spectroscopic evidence showed that esters are formed during oxidation at ~100 °C. The temperature dependence of this reaction was explained and a possible reaction pathway for cycloalkane to ester conversion was presented. Ester selectivity was determined by the competition between hydrogen abstraction and β-scission of the alkoxy radical. © The Author(s) 2016 |
abstract_unstemmed |
Abstract Asphaltene is the heavy and heteroatom-rich fraction of petroleum that is rejected during a solvent deasphalting process. In patent literature there are claims that state that this material can be converted into an aromatic petrochemical feedstock by oxidative liquefaction at low temperature. To evaluate the validity of these claims, asphaltenes from an industrial solvent deasphalting process were oxidized with dry and water-saturated air at temperatures in the range 45–100 °C. Infrared spectroscopy of the oxidized product confirmed that oxygen was incorporated as C=O and C–O. Under all experimental conditions studied little oxidative degradation was observed that would lead to the production of a petrochemical feedstock. Nevertheless, some observations of scientific value were made about the low-temperature conversion of asphaltenes. During autoxidation with dry air, the n-pentane-insoluble fraction increased. On the contrary, when oxidation was conducted with water-saturated air, the formation of additional n-pentane-insoluble material was suppressed. Mild heating of asphaltenes under nitrogen atmosphere also caused the n-pentane-insoluble content to increase. Spectroscopic evidence showed that esters are formed during oxidation at ~100 °C. The temperature dependence of this reaction was explained and a possible reaction pathway for cycloalkane to ester conversion was presented. Ester selectivity was determined by the competition between hydrogen abstraction and β-scission of the alkoxy radical. © The Author(s) 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Low-temperature oxidative asphaltenes liquefaction for petrochemicals: fact or fiction? |
url |
https://dx.doi.org/10.1007/s13203-016-0147-0 |
remote_bool |
true |
author2 |
de Klerk, Arno |
author2Str |
de Klerk, Arno |
ppnlink |
663367549 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s13203-016-0147-0 |
up_date |
2024-07-04T00:05:55.090Z |
_version_ |
1803604779431100416 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR031518583</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519163053.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13203-016-0147-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR031518583</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13203-016-0147-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sánchez, Natalia Montoya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Low-temperature oxidative asphaltenes liquefaction for petrochemicals: fact or fiction?</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Asphaltene is the heavy and heteroatom-rich fraction of petroleum that is rejected during a solvent deasphalting process. In patent literature there are claims that state that this material can be converted into an aromatic petrochemical feedstock by oxidative liquefaction at low temperature. To evaluate the validity of these claims, asphaltenes from an industrial solvent deasphalting process were oxidized with dry and water-saturated air at temperatures in the range 45–100 °C. Infrared spectroscopy of the oxidized product confirmed that oxygen was incorporated as C=O and C–O. Under all experimental conditions studied little oxidative degradation was observed that would lead to the production of a petrochemical feedstock. Nevertheless, some observations of scientific value were made about the low-temperature conversion of asphaltenes. During autoxidation with dry air, the n-pentane-insoluble fraction increased. On the contrary, when oxidation was conducted with water-saturated air, the formation of additional n-pentane-insoluble material was suppressed. Mild heating of asphaltenes under nitrogen atmosphere also caused the n-pentane-insoluble content to increase. Spectroscopic evidence showed that esters are formed during oxidation at ~100 °C. The temperature dependence of this reaction was explained and a possible reaction pathway for cycloalkane to ester conversion was presented. Ester selectivity was determined by the competition between hydrogen abstraction and β-scission of the alkoxy radical.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asphaltenes autoxidation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wet oxidation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heating of asphaltenes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Klerk, Arno</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied petrochemical research</subfield><subfield code="d">Berlin : Springer, 2012</subfield><subfield code="g">6(2016), 2 vom: 12. Feb., Seite 97-106</subfield><subfield code="w">(DE-627)663367549</subfield><subfield code="w">(DE-600)2615344-0</subfield><subfield code="x">2190-5533</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:2</subfield><subfield code="g">day:12</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:97-106</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13203-016-0147-0</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2016</subfield><subfield code="e">2</subfield><subfield code="b">12</subfield><subfield code="c">02</subfield><subfield code="h">97-106</subfield></datafield></record></collection>
|
score |
7.4019375 |