Detection limits of DNA copy number alterations in heterogeneous cell populations
Background Array Comparative Genomic Hybridization (aCGH) is a widely used technique to assess chromosomal copy number alterations. Chromosomal content, however, is often not uniform throughout cell populations. Here we evaluated to what extent aCGH can detect DNA copy number alterations in heteroge...
Ausführliche Beschreibung
Autor*in: |
Krijgsman, Oscar [verfasserIn] Israeli, Daniëlle [verfasserIn] van Essen, Hendrik F. [verfasserIn] Eijk, Paul P. [verfasserIn] Berens, Michel L. M. [verfasserIn] Mellink, Clemens H. M. [verfasserIn] Nieuwint, Aggie W. [verfasserIn] Weiss, Marjan M. [verfasserIn] Steenbergen, Renske D. M. [verfasserIn] Meijer, Gerrit A. [verfasserIn] Ylstra, Bauke [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Cellular oncology - Amsterdam [u.a.] : IOS Press, 2004, 36(2012), 1 vom: 02. Nov., Seite 27-36 |
---|---|
Übergeordnetes Werk: |
volume:36 ; year:2012 ; number:1 ; day:02 ; month:11 ; pages:27-36 |
Links: |
---|
DOI / URN: |
10.1007/s13402-012-0108-2 |
---|
Katalog-ID: |
SPR031591426 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR031591426 | ||
003 | DE-627 | ||
005 | 20230519192019.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2012 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s13402-012-0108-2 |2 doi | |
035 | |a (DE-627)SPR031591426 | ||
035 | |a (SPR)s13402-012-0108-2-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |a 570 |q ASE |
100 | 1 | |a Krijgsman, Oscar |e verfasserin |4 aut | |
245 | 1 | 0 | |a Detection limits of DNA copy number alterations in heterogeneous cell populations |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background Array Comparative Genomic Hybridization (aCGH) is a widely used technique to assess chromosomal copy number alterations. Chromosomal content, however, is often not uniform throughout cell populations. Here we evaluated to what extent aCGH can detect DNA copy number alterations in heterogeneous cell populations. A systematic evaluation is currently lacking, despite its importance in diagnostics and research. The detection limits reported are a compound of analytical software and laboratory techniques and do not account for the number of probes in relation to sample homogeneity. Methods Detection limits were explored with DNA isolated from a patient with intellectual disability (ID) and from tumor cell line BT474. Both were diluted with increasing amounts of normal DNA to simulate different levels of cellularity. Samples were hybridized on microarrays containing 180,880 oligonucleotides evenly distributed over the genome (spacing ~17 kb). Results Single copy number alterations, represented by down to 249 probes (4 Mb) and present in 10 % of a cell population, could be detected. Alterations encompassing as few as 14 probes (~238 Kb) could also be detected, but for this a 35 % mosaic level was required. Conclusions DNA copy number alterations can be detected in cell populations containing 10 % abnormal cells. Detection of sub-megabase alterations requires a higher percentage of abnormal cells or microarrays with a higher probe density. | ||
650 | 4 | |a aCGH |7 (dpeaa)DE-He213 | |
650 | 4 | |a Microarray |7 (dpeaa)DE-He213 | |
650 | 4 | |a Clinical genetics |7 (dpeaa)DE-He213 | |
650 | 4 | |a Tumor heterogeneity |7 (dpeaa)DE-He213 | |
650 | 4 | |a Mosaicism |7 (dpeaa)DE-He213 | |
700 | 1 | |a Israeli, Daniëlle |e verfasserin |4 aut | |
700 | 1 | |a van Essen, Hendrik F. |e verfasserin |4 aut | |
700 | 1 | |a Eijk, Paul P. |e verfasserin |4 aut | |
700 | 1 | |a Berens, Michel L. M. |e verfasserin |4 aut | |
700 | 1 | |a Mellink, Clemens H. M. |e verfasserin |4 aut | |
700 | 1 | |a Nieuwint, Aggie W. |e verfasserin |4 aut | |
700 | 1 | |a Weiss, Marjan M. |e verfasserin |4 aut | |
700 | 1 | |a Steenbergen, Renske D. M. |e verfasserin |4 aut | |
700 | 1 | |a Meijer, Gerrit A. |e verfasserin |4 aut | |
700 | 1 | |a Ylstra, Bauke |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Cellular oncology |d Amsterdam [u.a.] : IOS Press, 2004 |g 36(2012), 1 vom: 02. Nov., Seite 27-36 |w (DE-627)392964430 |w (DE-600)2158254-3 |x 1875-8606 |7 nnns |
773 | 1 | 8 | |g volume:36 |g year:2012 |g number:1 |g day:02 |g month:11 |g pages:27-36 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s13402-012-0108-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
951 | |a AR | ||
952 | |d 36 |j 2012 |e 1 |b 02 |c 11 |h 27-36 |
author_variant |
o k ok d i di e h f v ehf ehfv p p e pp ppe m l m b mlm mlmb c h m m chm chmm a w n aw awn m m w mm mmw r d m s rdm rdms g a m ga gam b y by |
---|---|
matchkey_str |
article:18758606:2012----::eetolmtodaoyubrleainihtrg |
hierarchy_sort_str |
2012 |
publishDate |
2012 |
allfields |
10.1007/s13402-012-0108-2 doi (DE-627)SPR031591426 (SPR)s13402-012-0108-2-e DE-627 ger DE-627 rakwb eng 610 570 ASE Krijgsman, Oscar verfasserin aut Detection limits of DNA copy number alterations in heterogeneous cell populations 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background Array Comparative Genomic Hybridization (aCGH) is a widely used technique to assess chromosomal copy number alterations. Chromosomal content, however, is often not uniform throughout cell populations. Here we evaluated to what extent aCGH can detect DNA copy number alterations in heterogeneous cell populations. A systematic evaluation is currently lacking, despite its importance in diagnostics and research. The detection limits reported are a compound of analytical software and laboratory techniques and do not account for the number of probes in relation to sample homogeneity. Methods Detection limits were explored with DNA isolated from a patient with intellectual disability (ID) and from tumor cell line BT474. Both were diluted with increasing amounts of normal DNA to simulate different levels of cellularity. Samples were hybridized on microarrays containing 180,880 oligonucleotides evenly distributed over the genome (spacing ~17 kb). Results Single copy number alterations, represented by down to 249 probes (4 Mb) and present in 10 % of a cell population, could be detected. Alterations encompassing as few as 14 probes (~238 Kb) could also be detected, but for this a 35 % mosaic level was required. Conclusions DNA copy number alterations can be detected in cell populations containing 10 % abnormal cells. Detection of sub-megabase alterations requires a higher percentage of abnormal cells or microarrays with a higher probe density. aCGH (dpeaa)DE-He213 Microarray (dpeaa)DE-He213 Clinical genetics (dpeaa)DE-He213 Tumor heterogeneity (dpeaa)DE-He213 Mosaicism (dpeaa)DE-He213 Israeli, Daniëlle verfasserin aut van Essen, Hendrik F. verfasserin aut Eijk, Paul P. verfasserin aut Berens, Michel L. M. verfasserin aut Mellink, Clemens H. M. verfasserin aut Nieuwint, Aggie W. verfasserin aut Weiss, Marjan M. verfasserin aut Steenbergen, Renske D. M. verfasserin aut Meijer, Gerrit A. verfasserin aut Ylstra, Bauke verfasserin aut Enthalten in Cellular oncology Amsterdam [u.a.] : IOS Press, 2004 36(2012), 1 vom: 02. Nov., Seite 27-36 (DE-627)392964430 (DE-600)2158254-3 1875-8606 nnns volume:36 year:2012 number:1 day:02 month:11 pages:27-36 https://dx.doi.org/10.1007/s13402-012-0108-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 AR 36 2012 1 02 11 27-36 |
spelling |
10.1007/s13402-012-0108-2 doi (DE-627)SPR031591426 (SPR)s13402-012-0108-2-e DE-627 ger DE-627 rakwb eng 610 570 ASE Krijgsman, Oscar verfasserin aut Detection limits of DNA copy number alterations in heterogeneous cell populations 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background Array Comparative Genomic Hybridization (aCGH) is a widely used technique to assess chromosomal copy number alterations. Chromosomal content, however, is often not uniform throughout cell populations. Here we evaluated to what extent aCGH can detect DNA copy number alterations in heterogeneous cell populations. A systematic evaluation is currently lacking, despite its importance in diagnostics and research. The detection limits reported are a compound of analytical software and laboratory techniques and do not account for the number of probes in relation to sample homogeneity. Methods Detection limits were explored with DNA isolated from a patient with intellectual disability (ID) and from tumor cell line BT474. Both were diluted with increasing amounts of normal DNA to simulate different levels of cellularity. Samples were hybridized on microarrays containing 180,880 oligonucleotides evenly distributed over the genome (spacing ~17 kb). Results Single copy number alterations, represented by down to 249 probes (4 Mb) and present in 10 % of a cell population, could be detected. Alterations encompassing as few as 14 probes (~238 Kb) could also be detected, but for this a 35 % mosaic level was required. Conclusions DNA copy number alterations can be detected in cell populations containing 10 % abnormal cells. Detection of sub-megabase alterations requires a higher percentage of abnormal cells or microarrays with a higher probe density. aCGH (dpeaa)DE-He213 Microarray (dpeaa)DE-He213 Clinical genetics (dpeaa)DE-He213 Tumor heterogeneity (dpeaa)DE-He213 Mosaicism (dpeaa)DE-He213 Israeli, Daniëlle verfasserin aut van Essen, Hendrik F. verfasserin aut Eijk, Paul P. verfasserin aut Berens, Michel L. M. verfasserin aut Mellink, Clemens H. M. verfasserin aut Nieuwint, Aggie W. verfasserin aut Weiss, Marjan M. verfasserin aut Steenbergen, Renske D. M. verfasserin aut Meijer, Gerrit A. verfasserin aut Ylstra, Bauke verfasserin aut Enthalten in Cellular oncology Amsterdam [u.a.] : IOS Press, 2004 36(2012), 1 vom: 02. Nov., Seite 27-36 (DE-627)392964430 (DE-600)2158254-3 1875-8606 nnns volume:36 year:2012 number:1 day:02 month:11 pages:27-36 https://dx.doi.org/10.1007/s13402-012-0108-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 AR 36 2012 1 02 11 27-36 |
allfields_unstemmed |
10.1007/s13402-012-0108-2 doi (DE-627)SPR031591426 (SPR)s13402-012-0108-2-e DE-627 ger DE-627 rakwb eng 610 570 ASE Krijgsman, Oscar verfasserin aut Detection limits of DNA copy number alterations in heterogeneous cell populations 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background Array Comparative Genomic Hybridization (aCGH) is a widely used technique to assess chromosomal copy number alterations. Chromosomal content, however, is often not uniform throughout cell populations. Here we evaluated to what extent aCGH can detect DNA copy number alterations in heterogeneous cell populations. A systematic evaluation is currently lacking, despite its importance in diagnostics and research. The detection limits reported are a compound of analytical software and laboratory techniques and do not account for the number of probes in relation to sample homogeneity. Methods Detection limits were explored with DNA isolated from a patient with intellectual disability (ID) and from tumor cell line BT474. Both were diluted with increasing amounts of normal DNA to simulate different levels of cellularity. Samples were hybridized on microarrays containing 180,880 oligonucleotides evenly distributed over the genome (spacing ~17 kb). Results Single copy number alterations, represented by down to 249 probes (4 Mb) and present in 10 % of a cell population, could be detected. Alterations encompassing as few as 14 probes (~238 Kb) could also be detected, but for this a 35 % mosaic level was required. Conclusions DNA copy number alterations can be detected in cell populations containing 10 % abnormal cells. Detection of sub-megabase alterations requires a higher percentage of abnormal cells or microarrays with a higher probe density. aCGH (dpeaa)DE-He213 Microarray (dpeaa)DE-He213 Clinical genetics (dpeaa)DE-He213 Tumor heterogeneity (dpeaa)DE-He213 Mosaicism (dpeaa)DE-He213 Israeli, Daniëlle verfasserin aut van Essen, Hendrik F. verfasserin aut Eijk, Paul P. verfasserin aut Berens, Michel L. M. verfasserin aut Mellink, Clemens H. M. verfasserin aut Nieuwint, Aggie W. verfasserin aut Weiss, Marjan M. verfasserin aut Steenbergen, Renske D. M. verfasserin aut Meijer, Gerrit A. verfasserin aut Ylstra, Bauke verfasserin aut Enthalten in Cellular oncology Amsterdam [u.a.] : IOS Press, 2004 36(2012), 1 vom: 02. Nov., Seite 27-36 (DE-627)392964430 (DE-600)2158254-3 1875-8606 nnns volume:36 year:2012 number:1 day:02 month:11 pages:27-36 https://dx.doi.org/10.1007/s13402-012-0108-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 AR 36 2012 1 02 11 27-36 |
allfieldsGer |
10.1007/s13402-012-0108-2 doi (DE-627)SPR031591426 (SPR)s13402-012-0108-2-e DE-627 ger DE-627 rakwb eng 610 570 ASE Krijgsman, Oscar verfasserin aut Detection limits of DNA copy number alterations in heterogeneous cell populations 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background Array Comparative Genomic Hybridization (aCGH) is a widely used technique to assess chromosomal copy number alterations. Chromosomal content, however, is often not uniform throughout cell populations. Here we evaluated to what extent aCGH can detect DNA copy number alterations in heterogeneous cell populations. A systematic evaluation is currently lacking, despite its importance in diagnostics and research. The detection limits reported are a compound of analytical software and laboratory techniques and do not account for the number of probes in relation to sample homogeneity. Methods Detection limits were explored with DNA isolated from a patient with intellectual disability (ID) and from tumor cell line BT474. Both were diluted with increasing amounts of normal DNA to simulate different levels of cellularity. Samples were hybridized on microarrays containing 180,880 oligonucleotides evenly distributed over the genome (spacing ~17 kb). Results Single copy number alterations, represented by down to 249 probes (4 Mb) and present in 10 % of a cell population, could be detected. Alterations encompassing as few as 14 probes (~238 Kb) could also be detected, but for this a 35 % mosaic level was required. Conclusions DNA copy number alterations can be detected in cell populations containing 10 % abnormal cells. Detection of sub-megabase alterations requires a higher percentage of abnormal cells or microarrays with a higher probe density. aCGH (dpeaa)DE-He213 Microarray (dpeaa)DE-He213 Clinical genetics (dpeaa)DE-He213 Tumor heterogeneity (dpeaa)DE-He213 Mosaicism (dpeaa)DE-He213 Israeli, Daniëlle verfasserin aut van Essen, Hendrik F. verfasserin aut Eijk, Paul P. verfasserin aut Berens, Michel L. M. verfasserin aut Mellink, Clemens H. M. verfasserin aut Nieuwint, Aggie W. verfasserin aut Weiss, Marjan M. verfasserin aut Steenbergen, Renske D. M. verfasserin aut Meijer, Gerrit A. verfasserin aut Ylstra, Bauke verfasserin aut Enthalten in Cellular oncology Amsterdam [u.a.] : IOS Press, 2004 36(2012), 1 vom: 02. Nov., Seite 27-36 (DE-627)392964430 (DE-600)2158254-3 1875-8606 nnns volume:36 year:2012 number:1 day:02 month:11 pages:27-36 https://dx.doi.org/10.1007/s13402-012-0108-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 AR 36 2012 1 02 11 27-36 |
allfieldsSound |
10.1007/s13402-012-0108-2 doi (DE-627)SPR031591426 (SPR)s13402-012-0108-2-e DE-627 ger DE-627 rakwb eng 610 570 ASE Krijgsman, Oscar verfasserin aut Detection limits of DNA copy number alterations in heterogeneous cell populations 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background Array Comparative Genomic Hybridization (aCGH) is a widely used technique to assess chromosomal copy number alterations. Chromosomal content, however, is often not uniform throughout cell populations. Here we evaluated to what extent aCGH can detect DNA copy number alterations in heterogeneous cell populations. A systematic evaluation is currently lacking, despite its importance in diagnostics and research. The detection limits reported are a compound of analytical software and laboratory techniques and do not account for the number of probes in relation to sample homogeneity. Methods Detection limits were explored with DNA isolated from a patient with intellectual disability (ID) and from tumor cell line BT474. Both were diluted with increasing amounts of normal DNA to simulate different levels of cellularity. Samples were hybridized on microarrays containing 180,880 oligonucleotides evenly distributed over the genome (spacing ~17 kb). Results Single copy number alterations, represented by down to 249 probes (4 Mb) and present in 10 % of a cell population, could be detected. Alterations encompassing as few as 14 probes (~238 Kb) could also be detected, but for this a 35 % mosaic level was required. Conclusions DNA copy number alterations can be detected in cell populations containing 10 % abnormal cells. Detection of sub-megabase alterations requires a higher percentage of abnormal cells or microarrays with a higher probe density. aCGH (dpeaa)DE-He213 Microarray (dpeaa)DE-He213 Clinical genetics (dpeaa)DE-He213 Tumor heterogeneity (dpeaa)DE-He213 Mosaicism (dpeaa)DE-He213 Israeli, Daniëlle verfasserin aut van Essen, Hendrik F. verfasserin aut Eijk, Paul P. verfasserin aut Berens, Michel L. M. verfasserin aut Mellink, Clemens H. M. verfasserin aut Nieuwint, Aggie W. verfasserin aut Weiss, Marjan M. verfasserin aut Steenbergen, Renske D. M. verfasserin aut Meijer, Gerrit A. verfasserin aut Ylstra, Bauke verfasserin aut Enthalten in Cellular oncology Amsterdam [u.a.] : IOS Press, 2004 36(2012), 1 vom: 02. Nov., Seite 27-36 (DE-627)392964430 (DE-600)2158254-3 1875-8606 nnns volume:36 year:2012 number:1 day:02 month:11 pages:27-36 https://dx.doi.org/10.1007/s13402-012-0108-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 AR 36 2012 1 02 11 27-36 |
language |
English |
source |
Enthalten in Cellular oncology 36(2012), 1 vom: 02. Nov., Seite 27-36 volume:36 year:2012 number:1 day:02 month:11 pages:27-36 |
sourceStr |
Enthalten in Cellular oncology 36(2012), 1 vom: 02. Nov., Seite 27-36 volume:36 year:2012 number:1 day:02 month:11 pages:27-36 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
aCGH Microarray Clinical genetics Tumor heterogeneity Mosaicism |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Cellular oncology |
authorswithroles_txt_mv |
Krijgsman, Oscar @@aut@@ Israeli, Daniëlle @@aut@@ van Essen, Hendrik F. @@aut@@ Eijk, Paul P. @@aut@@ Berens, Michel L. M. @@aut@@ Mellink, Clemens H. M. @@aut@@ Nieuwint, Aggie W. @@aut@@ Weiss, Marjan M. @@aut@@ Steenbergen, Renske D. M. @@aut@@ Meijer, Gerrit A. @@aut@@ Ylstra, Bauke @@aut@@ |
publishDateDaySort_date |
2012-11-02T00:00:00Z |
hierarchy_top_id |
392964430 |
dewey-sort |
3610 |
id |
SPR031591426 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR031591426</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519192019.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13402-012-0108-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR031591426</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13402-012-0108-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">570</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krijgsman, Oscar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Detection limits of DNA copy number alterations in heterogeneous cell populations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Array Comparative Genomic Hybridization (aCGH) is a widely used technique to assess chromosomal copy number alterations. Chromosomal content, however, is often not uniform throughout cell populations. Here we evaluated to what extent aCGH can detect DNA copy number alterations in heterogeneous cell populations. A systematic evaluation is currently lacking, despite its importance in diagnostics and research. The detection limits reported are a compound of analytical software and laboratory techniques and do not account for the number of probes in relation to sample homogeneity. Methods Detection limits were explored with DNA isolated from a patient with intellectual disability (ID) and from tumor cell line BT474. Both were diluted with increasing amounts of normal DNA to simulate different levels of cellularity. Samples were hybridized on microarrays containing 180,880 oligonucleotides evenly distributed over the genome (spacing ~17 kb). Results Single copy number alterations, represented by down to 249 probes (4 Mb) and present in 10 % of a cell population, could be detected. Alterations encompassing as few as 14 probes (~238 Kb) could also be detected, but for this a 35 % mosaic level was required. Conclusions DNA copy number alterations can be detected in cell populations containing 10 % abnormal cells. Detection of sub-megabase alterations requires a higher percentage of abnormal cells or microarrays with a higher probe density.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aCGH</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microarray</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clinical genetics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tumor heterogeneity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mosaicism</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Israeli, Daniëlle</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van Essen, Hendrik F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eijk, Paul P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Berens, Michel L. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mellink, Clemens H. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nieuwint, Aggie W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weiss, Marjan M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Steenbergen, Renske D. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meijer, Gerrit A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ylstra, Bauke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Cellular oncology</subfield><subfield code="d">Amsterdam [u.a.] : IOS Press, 2004</subfield><subfield code="g">36(2012), 1 vom: 02. Nov., Seite 27-36</subfield><subfield code="w">(DE-627)392964430</subfield><subfield code="w">(DE-600)2158254-3</subfield><subfield code="x">1875-8606</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:36</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1</subfield><subfield code="g">day:02</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:27-36</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13402-012-0108-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">36</subfield><subfield code="j">2012</subfield><subfield code="e">1</subfield><subfield code="b">02</subfield><subfield code="c">11</subfield><subfield code="h">27-36</subfield></datafield></record></collection>
|
author |
Krijgsman, Oscar |
spellingShingle |
Krijgsman, Oscar ddc 610 misc aCGH misc Microarray misc Clinical genetics misc Tumor heterogeneity misc Mosaicism Detection limits of DNA copy number alterations in heterogeneous cell populations |
authorStr |
Krijgsman, Oscar |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)392964430 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1875-8606 |
topic_title |
610 570 ASE Detection limits of DNA copy number alterations in heterogeneous cell populations aCGH (dpeaa)DE-He213 Microarray (dpeaa)DE-He213 Clinical genetics (dpeaa)DE-He213 Tumor heterogeneity (dpeaa)DE-He213 Mosaicism (dpeaa)DE-He213 |
topic |
ddc 610 misc aCGH misc Microarray misc Clinical genetics misc Tumor heterogeneity misc Mosaicism |
topic_unstemmed |
ddc 610 misc aCGH misc Microarray misc Clinical genetics misc Tumor heterogeneity misc Mosaicism |
topic_browse |
ddc 610 misc aCGH misc Microarray misc Clinical genetics misc Tumor heterogeneity misc Mosaicism |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Cellular oncology |
hierarchy_parent_id |
392964430 |
dewey-tens |
610 - Medicine & health 570 - Life sciences; biology |
hierarchy_top_title |
Cellular oncology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)392964430 (DE-600)2158254-3 |
title |
Detection limits of DNA copy number alterations in heterogeneous cell populations |
ctrlnum |
(DE-627)SPR031591426 (SPR)s13402-012-0108-2-e |
title_full |
Detection limits of DNA copy number alterations in heterogeneous cell populations |
author_sort |
Krijgsman, Oscar |
journal |
Cellular oncology |
journalStr |
Cellular oncology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
27 |
author_browse |
Krijgsman, Oscar Israeli, Daniëlle van Essen, Hendrik F. Eijk, Paul P. Berens, Michel L. M. Mellink, Clemens H. M. Nieuwint, Aggie W. Weiss, Marjan M. Steenbergen, Renske D. M. Meijer, Gerrit A. Ylstra, Bauke |
container_volume |
36 |
class |
610 570 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
Krijgsman, Oscar |
doi_str_mv |
10.1007/s13402-012-0108-2 |
dewey-full |
610 570 |
author2-role |
verfasserin |
title_sort |
detection limits of dna copy number alterations in heterogeneous cell populations |
title_auth |
Detection limits of DNA copy number alterations in heterogeneous cell populations |
abstract |
Background Array Comparative Genomic Hybridization (aCGH) is a widely used technique to assess chromosomal copy number alterations. Chromosomal content, however, is often not uniform throughout cell populations. Here we evaluated to what extent aCGH can detect DNA copy number alterations in heterogeneous cell populations. A systematic evaluation is currently lacking, despite its importance in diagnostics and research. The detection limits reported are a compound of analytical software and laboratory techniques and do not account for the number of probes in relation to sample homogeneity. Methods Detection limits were explored with DNA isolated from a patient with intellectual disability (ID) and from tumor cell line BT474. Both were diluted with increasing amounts of normal DNA to simulate different levels of cellularity. Samples were hybridized on microarrays containing 180,880 oligonucleotides evenly distributed over the genome (spacing ~17 kb). Results Single copy number alterations, represented by down to 249 probes (4 Mb) and present in 10 % of a cell population, could be detected. Alterations encompassing as few as 14 probes (~238 Kb) could also be detected, but for this a 35 % mosaic level was required. Conclusions DNA copy number alterations can be detected in cell populations containing 10 % abnormal cells. Detection of sub-megabase alterations requires a higher percentage of abnormal cells or microarrays with a higher probe density. |
abstractGer |
Background Array Comparative Genomic Hybridization (aCGH) is a widely used technique to assess chromosomal copy number alterations. Chromosomal content, however, is often not uniform throughout cell populations. Here we evaluated to what extent aCGH can detect DNA copy number alterations in heterogeneous cell populations. A systematic evaluation is currently lacking, despite its importance in diagnostics and research. The detection limits reported are a compound of analytical software and laboratory techniques and do not account for the number of probes in relation to sample homogeneity. Methods Detection limits were explored with DNA isolated from a patient with intellectual disability (ID) and from tumor cell line BT474. Both were diluted with increasing amounts of normal DNA to simulate different levels of cellularity. Samples were hybridized on microarrays containing 180,880 oligonucleotides evenly distributed over the genome (spacing ~17 kb). Results Single copy number alterations, represented by down to 249 probes (4 Mb) and present in 10 % of a cell population, could be detected. Alterations encompassing as few as 14 probes (~238 Kb) could also be detected, but for this a 35 % mosaic level was required. Conclusions DNA copy number alterations can be detected in cell populations containing 10 % abnormal cells. Detection of sub-megabase alterations requires a higher percentage of abnormal cells or microarrays with a higher probe density. |
abstract_unstemmed |
Background Array Comparative Genomic Hybridization (aCGH) is a widely used technique to assess chromosomal copy number alterations. Chromosomal content, however, is often not uniform throughout cell populations. Here we evaluated to what extent aCGH can detect DNA copy number alterations in heterogeneous cell populations. A systematic evaluation is currently lacking, despite its importance in diagnostics and research. The detection limits reported are a compound of analytical software and laboratory techniques and do not account for the number of probes in relation to sample homogeneity. Methods Detection limits were explored with DNA isolated from a patient with intellectual disability (ID) and from tumor cell line BT474. Both were diluted with increasing amounts of normal DNA to simulate different levels of cellularity. Samples were hybridized on microarrays containing 180,880 oligonucleotides evenly distributed over the genome (spacing ~17 kb). Results Single copy number alterations, represented by down to 249 probes (4 Mb) and present in 10 % of a cell population, could be detected. Alterations encompassing as few as 14 probes (~238 Kb) could also be detected, but for this a 35 % mosaic level was required. Conclusions DNA copy number alterations can be detected in cell populations containing 10 % abnormal cells. Detection of sub-megabase alterations requires a higher percentage of abnormal cells or microarrays with a higher probe density. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 |
container_issue |
1 |
title_short |
Detection limits of DNA copy number alterations in heterogeneous cell populations |
url |
https://dx.doi.org/10.1007/s13402-012-0108-2 |
remote_bool |
true |
author2 |
Israeli, Daniëlle van Essen, Hendrik F. Eijk, Paul P. Berens, Michel L. M. Mellink, Clemens H. M. Nieuwint, Aggie W. Weiss, Marjan M. Steenbergen, Renske D. M. Meijer, Gerrit A. Ylstra, Bauke |
author2Str |
Israeli, Daniëlle van Essen, Hendrik F. Eijk, Paul P. Berens, Michel L. M. Mellink, Clemens H. M. Nieuwint, Aggie W. Weiss, Marjan M. Steenbergen, Renske D. M. Meijer, Gerrit A. Ylstra, Bauke |
ppnlink |
392964430 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s13402-012-0108-2 |
up_date |
2024-07-04T00:26:00.073Z |
_version_ |
1803606042948403200 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR031591426</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519192019.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13402-012-0108-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR031591426</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13402-012-0108-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">570</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krijgsman, Oscar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Detection limits of DNA copy number alterations in heterogeneous cell populations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Array Comparative Genomic Hybridization (aCGH) is a widely used technique to assess chromosomal copy number alterations. Chromosomal content, however, is often not uniform throughout cell populations. Here we evaluated to what extent aCGH can detect DNA copy number alterations in heterogeneous cell populations. A systematic evaluation is currently lacking, despite its importance in diagnostics and research. The detection limits reported are a compound of analytical software and laboratory techniques and do not account for the number of probes in relation to sample homogeneity. Methods Detection limits were explored with DNA isolated from a patient with intellectual disability (ID) and from tumor cell line BT474. Both were diluted with increasing amounts of normal DNA to simulate different levels of cellularity. Samples were hybridized on microarrays containing 180,880 oligonucleotides evenly distributed over the genome (spacing ~17 kb). Results Single copy number alterations, represented by down to 249 probes (4 Mb) and present in 10 % of a cell population, could be detected. Alterations encompassing as few as 14 probes (~238 Kb) could also be detected, but for this a 35 % mosaic level was required. Conclusions DNA copy number alterations can be detected in cell populations containing 10 % abnormal cells. Detection of sub-megabase alterations requires a higher percentage of abnormal cells or microarrays with a higher probe density.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aCGH</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microarray</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clinical genetics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tumor heterogeneity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mosaicism</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Israeli, Daniëlle</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van Essen, Hendrik F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eijk, Paul P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Berens, Michel L. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mellink, Clemens H. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nieuwint, Aggie W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weiss, Marjan M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Steenbergen, Renske D. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meijer, Gerrit A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ylstra, Bauke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Cellular oncology</subfield><subfield code="d">Amsterdam [u.a.] : IOS Press, 2004</subfield><subfield code="g">36(2012), 1 vom: 02. Nov., Seite 27-36</subfield><subfield code="w">(DE-627)392964430</subfield><subfield code="w">(DE-600)2158254-3</subfield><subfield code="x">1875-8606</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:36</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1</subfield><subfield code="g">day:02</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:27-36</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13402-012-0108-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">36</subfield><subfield code="j">2012</subfield><subfield code="e">1</subfield><subfield code="b">02</subfield><subfield code="c">11</subfield><subfield code="h">27-36</subfield></datafield></record></collection>
|
score |
7.4004602 |