Inhomogeneous Sparseness Leads to Dynamic Instability During Sequence Memory Recall in a Recurrent Neural Network Model
Abstract Theoretical models of associative memory generally assume most of their parameters to be homogeneous across the network. Conversely, biological neural networks exhibit high variability of structural as well as activity parameters. In this paper, we extend the classical clipped learning rule...
Ausführliche Beschreibung
Autor*in: |
Medina, Daniel [verfasserIn] Leibold, Christian [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of mathematical neuroscience - London : BioMed Central, 2011, 3(2013), 1 vom: 22. Juli |
---|---|
Übergeordnetes Werk: |
volume:3 ; year:2013 ; number:1 ; day:22 ; month:07 |
Links: |
---|
DOI / URN: |
10.1186/2190-8567-3-8 |
---|
Katalog-ID: |
SPR031598684 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR031598684 | ||
003 | DE-627 | ||
005 | 20220111192254.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/2190-8567-3-8 |2 doi | |
035 | |a (DE-627)SPR031598684 | ||
035 | |a (SPR)2190-8567-3-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q ASE |
100 | 1 | |a Medina, Daniel |e verfasserin |4 aut | |
245 | 1 | 0 | |a Inhomogeneous Sparseness Leads to Dynamic Instability During Sequence Memory Recall in a Recurrent Neural Network Model |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Theoretical models of associative memory generally assume most of their parameters to be homogeneous across the network. Conversely, biological neural networks exhibit high variability of structural as well as activity parameters. In this paper, we extend the classical clipped learning rule by Willshaw to networks with inhomogeneous sparseness, i.e., the number of active neurons may vary across memory items. We evaluate this learning rule for sequence memory networks with instantaneous feedback inhibition and show that little surprisingly, memory capacity degrades with increased variability in sparseness. The loss of capacity, however, is very small for short sequences of less than about 10 associations. Most interestingly, we further show that, due to feedback inhibition, too large patterns are much less detrimental for memory capacity than too small patterns. | ||
650 | 4 | |a Associative memory |7 (dpeaa)DE-He213 | |
650 | 4 | |a Sequence memory |7 (dpeaa)DE-He213 | |
650 | 4 | |a Memory capacity |7 (dpeaa)DE-He213 | |
650 | 4 | |a Sparse coding |7 (dpeaa)DE-He213 | |
700 | 1 | |a Leibold, Christian |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of mathematical neuroscience |d London : BioMed Central, 2011 |g 3(2013), 1 vom: 22. Juli |w (DE-627)670212709 |w (DE-600)2632002-2 |x 2190-8567 |7 nnns |
773 | 1 | 8 | |g volume:3 |g year:2013 |g number:1 |g day:22 |g month:07 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/2190-8567-3-8 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 3 |j 2013 |e 1 |b 22 |c 07 |
author_variant |
d m dm c l cl |
---|---|
matchkey_str |
article:21908567:2013----::nooeeusasnslasoyaiisaiiyuigeuneeoyealnr |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1186/2190-8567-3-8 doi (DE-627)SPR031598684 (SPR)2190-8567-3-8-e DE-627 ger DE-627 rakwb eng 510 ASE Medina, Daniel verfasserin aut Inhomogeneous Sparseness Leads to Dynamic Instability During Sequence Memory Recall in a Recurrent Neural Network Model 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Theoretical models of associative memory generally assume most of their parameters to be homogeneous across the network. Conversely, biological neural networks exhibit high variability of structural as well as activity parameters. In this paper, we extend the classical clipped learning rule by Willshaw to networks with inhomogeneous sparseness, i.e., the number of active neurons may vary across memory items. We evaluate this learning rule for sequence memory networks with instantaneous feedback inhibition and show that little surprisingly, memory capacity degrades with increased variability in sparseness. The loss of capacity, however, is very small for short sequences of less than about 10 associations. Most interestingly, we further show that, due to feedback inhibition, too large patterns are much less detrimental for memory capacity than too small patterns. Associative memory (dpeaa)DE-He213 Sequence memory (dpeaa)DE-He213 Memory capacity (dpeaa)DE-He213 Sparse coding (dpeaa)DE-He213 Leibold, Christian verfasserin aut Enthalten in Journal of mathematical neuroscience London : BioMed Central, 2011 3(2013), 1 vom: 22. Juli (DE-627)670212709 (DE-600)2632002-2 2190-8567 nnns volume:3 year:2013 number:1 day:22 month:07 https://dx.doi.org/10.1186/2190-8567-3-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2013 1 22 07 |
spelling |
10.1186/2190-8567-3-8 doi (DE-627)SPR031598684 (SPR)2190-8567-3-8-e DE-627 ger DE-627 rakwb eng 510 ASE Medina, Daniel verfasserin aut Inhomogeneous Sparseness Leads to Dynamic Instability During Sequence Memory Recall in a Recurrent Neural Network Model 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Theoretical models of associative memory generally assume most of their parameters to be homogeneous across the network. Conversely, biological neural networks exhibit high variability of structural as well as activity parameters. In this paper, we extend the classical clipped learning rule by Willshaw to networks with inhomogeneous sparseness, i.e., the number of active neurons may vary across memory items. We evaluate this learning rule for sequence memory networks with instantaneous feedback inhibition and show that little surprisingly, memory capacity degrades with increased variability in sparseness. The loss of capacity, however, is very small for short sequences of less than about 10 associations. Most interestingly, we further show that, due to feedback inhibition, too large patterns are much less detrimental for memory capacity than too small patterns. Associative memory (dpeaa)DE-He213 Sequence memory (dpeaa)DE-He213 Memory capacity (dpeaa)DE-He213 Sparse coding (dpeaa)DE-He213 Leibold, Christian verfasserin aut Enthalten in Journal of mathematical neuroscience London : BioMed Central, 2011 3(2013), 1 vom: 22. Juli (DE-627)670212709 (DE-600)2632002-2 2190-8567 nnns volume:3 year:2013 number:1 day:22 month:07 https://dx.doi.org/10.1186/2190-8567-3-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2013 1 22 07 |
allfields_unstemmed |
10.1186/2190-8567-3-8 doi (DE-627)SPR031598684 (SPR)2190-8567-3-8-e DE-627 ger DE-627 rakwb eng 510 ASE Medina, Daniel verfasserin aut Inhomogeneous Sparseness Leads to Dynamic Instability During Sequence Memory Recall in a Recurrent Neural Network Model 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Theoretical models of associative memory generally assume most of their parameters to be homogeneous across the network. Conversely, biological neural networks exhibit high variability of structural as well as activity parameters. In this paper, we extend the classical clipped learning rule by Willshaw to networks with inhomogeneous sparseness, i.e., the number of active neurons may vary across memory items. We evaluate this learning rule for sequence memory networks with instantaneous feedback inhibition and show that little surprisingly, memory capacity degrades with increased variability in sparseness. The loss of capacity, however, is very small for short sequences of less than about 10 associations. Most interestingly, we further show that, due to feedback inhibition, too large patterns are much less detrimental for memory capacity than too small patterns. Associative memory (dpeaa)DE-He213 Sequence memory (dpeaa)DE-He213 Memory capacity (dpeaa)DE-He213 Sparse coding (dpeaa)DE-He213 Leibold, Christian verfasserin aut Enthalten in Journal of mathematical neuroscience London : BioMed Central, 2011 3(2013), 1 vom: 22. Juli (DE-627)670212709 (DE-600)2632002-2 2190-8567 nnns volume:3 year:2013 number:1 day:22 month:07 https://dx.doi.org/10.1186/2190-8567-3-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2013 1 22 07 |
allfieldsGer |
10.1186/2190-8567-3-8 doi (DE-627)SPR031598684 (SPR)2190-8567-3-8-e DE-627 ger DE-627 rakwb eng 510 ASE Medina, Daniel verfasserin aut Inhomogeneous Sparseness Leads to Dynamic Instability During Sequence Memory Recall in a Recurrent Neural Network Model 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Theoretical models of associative memory generally assume most of their parameters to be homogeneous across the network. Conversely, biological neural networks exhibit high variability of structural as well as activity parameters. In this paper, we extend the classical clipped learning rule by Willshaw to networks with inhomogeneous sparseness, i.e., the number of active neurons may vary across memory items. We evaluate this learning rule for sequence memory networks with instantaneous feedback inhibition and show that little surprisingly, memory capacity degrades with increased variability in sparseness. The loss of capacity, however, is very small for short sequences of less than about 10 associations. Most interestingly, we further show that, due to feedback inhibition, too large patterns are much less detrimental for memory capacity than too small patterns. Associative memory (dpeaa)DE-He213 Sequence memory (dpeaa)DE-He213 Memory capacity (dpeaa)DE-He213 Sparse coding (dpeaa)DE-He213 Leibold, Christian verfasserin aut Enthalten in Journal of mathematical neuroscience London : BioMed Central, 2011 3(2013), 1 vom: 22. Juli (DE-627)670212709 (DE-600)2632002-2 2190-8567 nnns volume:3 year:2013 number:1 day:22 month:07 https://dx.doi.org/10.1186/2190-8567-3-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2013 1 22 07 |
allfieldsSound |
10.1186/2190-8567-3-8 doi (DE-627)SPR031598684 (SPR)2190-8567-3-8-e DE-627 ger DE-627 rakwb eng 510 ASE Medina, Daniel verfasserin aut Inhomogeneous Sparseness Leads to Dynamic Instability During Sequence Memory Recall in a Recurrent Neural Network Model 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Theoretical models of associative memory generally assume most of their parameters to be homogeneous across the network. Conversely, biological neural networks exhibit high variability of structural as well as activity parameters. In this paper, we extend the classical clipped learning rule by Willshaw to networks with inhomogeneous sparseness, i.e., the number of active neurons may vary across memory items. We evaluate this learning rule for sequence memory networks with instantaneous feedback inhibition and show that little surprisingly, memory capacity degrades with increased variability in sparseness. The loss of capacity, however, is very small for short sequences of less than about 10 associations. Most interestingly, we further show that, due to feedback inhibition, too large patterns are much less detrimental for memory capacity than too small patterns. Associative memory (dpeaa)DE-He213 Sequence memory (dpeaa)DE-He213 Memory capacity (dpeaa)DE-He213 Sparse coding (dpeaa)DE-He213 Leibold, Christian verfasserin aut Enthalten in Journal of mathematical neuroscience London : BioMed Central, 2011 3(2013), 1 vom: 22. Juli (DE-627)670212709 (DE-600)2632002-2 2190-8567 nnns volume:3 year:2013 number:1 day:22 month:07 https://dx.doi.org/10.1186/2190-8567-3-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2013 1 22 07 |
language |
English |
source |
Enthalten in Journal of mathematical neuroscience 3(2013), 1 vom: 22. Juli volume:3 year:2013 number:1 day:22 month:07 |
sourceStr |
Enthalten in Journal of mathematical neuroscience 3(2013), 1 vom: 22. Juli volume:3 year:2013 number:1 day:22 month:07 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Associative memory Sequence memory Memory capacity Sparse coding |
dewey-raw |
510 |
isfreeaccess_bool |
true |
container_title |
Journal of mathematical neuroscience |
authorswithroles_txt_mv |
Medina, Daniel @@aut@@ Leibold, Christian @@aut@@ |
publishDateDaySort_date |
2013-07-22T00:00:00Z |
hierarchy_top_id |
670212709 |
dewey-sort |
3510 |
id |
SPR031598684 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR031598684</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111192254.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/2190-8567-3-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR031598684</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)2190-8567-3-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Medina, Daniel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inhomogeneous Sparseness Leads to Dynamic Instability During Sequence Memory Recall in a Recurrent Neural Network Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Theoretical models of associative memory generally assume most of their parameters to be homogeneous across the network. Conversely, biological neural networks exhibit high variability of structural as well as activity parameters. In this paper, we extend the classical clipped learning rule by Willshaw to networks with inhomogeneous sparseness, i.e., the number of active neurons may vary across memory items. We evaluate this learning rule for sequence memory networks with instantaneous feedback inhibition and show that little surprisingly, memory capacity degrades with increased variability in sparseness. The loss of capacity, however, is very small for short sequences of less than about 10 associations. Most interestingly, we further show that, due to feedback inhibition, too large patterns are much less detrimental for memory capacity than too small patterns.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Associative memory</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sequence memory</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Memory capacity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sparse coding</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leibold, Christian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical neuroscience</subfield><subfield code="d">London : BioMed Central, 2011</subfield><subfield code="g">3(2013), 1 vom: 22. Juli</subfield><subfield code="w">(DE-627)670212709</subfield><subfield code="w">(DE-600)2632002-2</subfield><subfield code="x">2190-8567</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:22</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/2190-8567-3-8</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">22</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
author |
Medina, Daniel |
spellingShingle |
Medina, Daniel ddc 510 misc Associative memory misc Sequence memory misc Memory capacity misc Sparse coding Inhomogeneous Sparseness Leads to Dynamic Instability During Sequence Memory Recall in a Recurrent Neural Network Model |
authorStr |
Medina, Daniel |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)670212709 |
format |
electronic Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2190-8567 |
topic_title |
510 ASE Inhomogeneous Sparseness Leads to Dynamic Instability During Sequence Memory Recall in a Recurrent Neural Network Model Associative memory (dpeaa)DE-He213 Sequence memory (dpeaa)DE-He213 Memory capacity (dpeaa)DE-He213 Sparse coding (dpeaa)DE-He213 |
topic |
ddc 510 misc Associative memory misc Sequence memory misc Memory capacity misc Sparse coding |
topic_unstemmed |
ddc 510 misc Associative memory misc Sequence memory misc Memory capacity misc Sparse coding |
topic_browse |
ddc 510 misc Associative memory misc Sequence memory misc Memory capacity misc Sparse coding |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of mathematical neuroscience |
hierarchy_parent_id |
670212709 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of mathematical neuroscience |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)670212709 (DE-600)2632002-2 |
title |
Inhomogeneous Sparseness Leads to Dynamic Instability During Sequence Memory Recall in a Recurrent Neural Network Model |
ctrlnum |
(DE-627)SPR031598684 (SPR)2190-8567-3-8-e |
title_full |
Inhomogeneous Sparseness Leads to Dynamic Instability During Sequence Memory Recall in a Recurrent Neural Network Model |
author_sort |
Medina, Daniel |
journal |
Journal of mathematical neuroscience |
journalStr |
Journal of mathematical neuroscience |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
author_browse |
Medina, Daniel Leibold, Christian |
container_volume |
3 |
class |
510 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
Medina, Daniel |
doi_str_mv |
10.1186/2190-8567-3-8 |
dewey-full |
510 |
author2-role |
verfasserin |
title_sort |
inhomogeneous sparseness leads to dynamic instability during sequence memory recall in a recurrent neural network model |
title_auth |
Inhomogeneous Sparseness Leads to Dynamic Instability During Sequence Memory Recall in a Recurrent Neural Network Model |
abstract |
Abstract Theoretical models of associative memory generally assume most of their parameters to be homogeneous across the network. Conversely, biological neural networks exhibit high variability of structural as well as activity parameters. In this paper, we extend the classical clipped learning rule by Willshaw to networks with inhomogeneous sparseness, i.e., the number of active neurons may vary across memory items. We evaluate this learning rule for sequence memory networks with instantaneous feedback inhibition and show that little surprisingly, memory capacity degrades with increased variability in sparseness. The loss of capacity, however, is very small for short sequences of less than about 10 associations. Most interestingly, we further show that, due to feedback inhibition, too large patterns are much less detrimental for memory capacity than too small patterns. |
abstractGer |
Abstract Theoretical models of associative memory generally assume most of their parameters to be homogeneous across the network. Conversely, biological neural networks exhibit high variability of structural as well as activity parameters. In this paper, we extend the classical clipped learning rule by Willshaw to networks with inhomogeneous sparseness, i.e., the number of active neurons may vary across memory items. We evaluate this learning rule for sequence memory networks with instantaneous feedback inhibition and show that little surprisingly, memory capacity degrades with increased variability in sparseness. The loss of capacity, however, is very small for short sequences of less than about 10 associations. Most interestingly, we further show that, due to feedback inhibition, too large patterns are much less detrimental for memory capacity than too small patterns. |
abstract_unstemmed |
Abstract Theoretical models of associative memory generally assume most of their parameters to be homogeneous across the network. Conversely, biological neural networks exhibit high variability of structural as well as activity parameters. In this paper, we extend the classical clipped learning rule by Willshaw to networks with inhomogeneous sparseness, i.e., the number of active neurons may vary across memory items. We evaluate this learning rule for sequence memory networks with instantaneous feedback inhibition and show that little surprisingly, memory capacity degrades with increased variability in sparseness. The loss of capacity, however, is very small for short sequences of less than about 10 associations. Most interestingly, we further show that, due to feedback inhibition, too large patterns are much less detrimental for memory capacity than too small patterns. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Inhomogeneous Sparseness Leads to Dynamic Instability During Sequence Memory Recall in a Recurrent Neural Network Model |
url |
https://dx.doi.org/10.1186/2190-8567-3-8 |
remote_bool |
true |
author2 |
Leibold, Christian |
author2Str |
Leibold, Christian |
ppnlink |
670212709 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/2190-8567-3-8 |
up_date |
2024-07-04T00:27:57.813Z |
_version_ |
1803606166419275776 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR031598684</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111192254.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/2190-8567-3-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR031598684</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)2190-8567-3-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Medina, Daniel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inhomogeneous Sparseness Leads to Dynamic Instability During Sequence Memory Recall in a Recurrent Neural Network Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Theoretical models of associative memory generally assume most of their parameters to be homogeneous across the network. Conversely, biological neural networks exhibit high variability of structural as well as activity parameters. In this paper, we extend the classical clipped learning rule by Willshaw to networks with inhomogeneous sparseness, i.e., the number of active neurons may vary across memory items. We evaluate this learning rule for sequence memory networks with instantaneous feedback inhibition and show that little surprisingly, memory capacity degrades with increased variability in sparseness. The loss of capacity, however, is very small for short sequences of less than about 10 associations. Most interestingly, we further show that, due to feedback inhibition, too large patterns are much less detrimental for memory capacity than too small patterns.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Associative memory</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sequence memory</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Memory capacity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sparse coding</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leibold, Christian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical neuroscience</subfield><subfield code="d">London : BioMed Central, 2011</subfield><subfield code="g">3(2013), 1 vom: 22. Juli</subfield><subfield code="w">(DE-627)670212709</subfield><subfield code="w">(DE-600)2632002-2</subfield><subfield code="x">2190-8567</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:22</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/2190-8567-3-8</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">22</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
score |
7.4009666 |