Inhomogeneous Sparseness Leads to Dynamic Instability During Sequence Memory Recall in a Recurrent Neural Network Model

Abstract Theoretical models of associative memory generally assume most of their parameters to be homogeneous across the network. Conversely, biological neural networks exhibit high variability of structural as well as activity parameters. In this paper, we extend the classical clipped learning rule...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Medina, Daniel [verfasserIn]

Leibold, Christian [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2013

Schlagwörter:

Associative memory

Sequence memory

Memory capacity

Sparse coding

Übergeordnetes Werk:

Enthalten in: Journal of mathematical neuroscience - London : BioMed Central, 2011, 3(2013), 1 vom: 22. Juli

Übergeordnetes Werk:

volume:3 ; year:2013 ; number:1 ; day:22 ; month:07

Links:

Volltext

DOI / URN:

10.1186/2190-8567-3-8

Katalog-ID:

SPR031598684

Nicht das Richtige dabei?

Schreiben Sie uns!