Radiomics of the primary tumour as a tool to improve 18F-FDG-PET sensitivity in detecting nodal metastases in endometrial cancer
Background A radiomic approach was applied in 18F-FDG PET endometrial cancer, to investigate if imaging features computed on the primary tumour could improve sensitivity in nodal metastases detection. One hundred fifteen women with histologically proven endometrial cancer who underwent preoperative...
Ausführliche Beschreibung
Autor*in: |
De Bernardi, Elisabetta [verfasserIn] Buda, Alessandro [verfasserIn] Guerra, Luca [verfasserIn] Vicini, Debora [verfasserIn] Elisei, Federica [verfasserIn] Landoni, Claudio [verfasserIn] Fruscio, Robert [verfasserIn] Messa, Cristina [verfasserIn] Crivellaro, Cinzia [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: EJNMMI Research - Berlin : Springer, 2011, 8(2018), 1 vom: 22. Aug. |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2018 ; number:1 ; day:22 ; month:08 |
Links: |
---|
DOI / URN: |
10.1186/s13550-018-0441-1 |
---|
Katalog-ID: |
SPR031783929 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR031783929 | ||
003 | DE-627 | ||
005 | 20230519184255.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13550-018-0441-1 |2 doi | |
035 | |a (DE-627)SPR031783929 | ||
035 | |a (SPR)s13550-018-0441-1-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q ASE |
100 | 1 | |a De Bernardi, Elisabetta |e verfasserin |4 aut | |
245 | 1 | 0 | |a Radiomics of the primary tumour as a tool to improve 18F-FDG-PET sensitivity in detecting nodal metastases in endometrial cancer |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background A radiomic approach was applied in 18F-FDG PET endometrial cancer, to investigate if imaging features computed on the primary tumour could improve sensitivity in nodal metastases detection. One hundred fifteen women with histologically proven endometrial cancer who underwent preoperative 18F-FDG PET/CT were retrospectively considered. SUV, MTV, TLG, geometrical shape, histograms and texture features were computed inside tumour contours. On a first group of 86 patients (DB1), univariate association with LN metastases was computed by Mann-Whitney test and a neural network multivariate model was developed. Univariate and multivariate models were assessed with leave one out on 20 training sessions and on a second group of 29 patients (DB2). A unified framework combining LN metastases visual detection results and radiomic analysis was also assessed. Results Sensitivity and specificity of LN visual detection were 50% and 99% on DB1 and 33% and 95% on DB2, respectively. A unique heterogeneity feature computed on the primary tumour (the zone percentage of the grey level size zone matrix, GLSZM ZP) was able to predict LN metastases better than any other feature or multivariate model (sensitivity and specificity of 75% and 81% on DB1 and of 89% and 80% on DB2). Tumours with LN metastases are in fact generally characterized by a lower GLSZM ZP value, i.e. by the co-presence of high-uptake and low-uptake areas. The combination of visual detection and GLSZM ZP values in a unified framework obtained sensitivity and specificity of 94% and 67% on DB1 and of 89% and 75% on DB2, respectively. Conclusions The computation of imaging features on the primary tumour increases nodal staging detection sensitivity in 18F-FDG PET and can be considered for a better patient stratification for treatment selection. Results need a confirmation on larger cohort studies. | ||
650 | 4 | |a 18F-FDG PET |7 (dpeaa)DE-He213 | |
650 | 4 | |a Endometrial cancer |7 (dpeaa)DE-He213 | |
650 | 4 | |a PET radiomics |7 (dpeaa)DE-He213 | |
650 | 4 | |a Nodal stage assessment |7 (dpeaa)DE-He213 | |
650 | 4 | |a Texture analysis |7 (dpeaa)DE-He213 | |
700 | 1 | |a Buda, Alessandro |e verfasserin |4 aut | |
700 | 1 | |a Guerra, Luca |e verfasserin |4 aut | |
700 | 1 | |a Vicini, Debora |e verfasserin |4 aut | |
700 | 1 | |a Elisei, Federica |e verfasserin |4 aut | |
700 | 1 | |a Landoni, Claudio |e verfasserin |4 aut | |
700 | 1 | |a Fruscio, Robert |e verfasserin |4 aut | |
700 | 1 | |a Messa, Cristina |e verfasserin |4 aut | |
700 | 1 | |a Crivellaro, Cinzia |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t EJNMMI Research |d Berlin : Springer, 2011 |g 8(2018), 1 vom: 22. Aug. |w (DE-627)664970265 |w (DE-600)2619892-7 |x 2191-219X |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2018 |g number:1 |g day:22 |g month:08 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13550-018-0441-1 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2018 |e 1 |b 22 |c 08 |
author_variant |
b e d be bed a b ab l g lg d v dv f e fe c l cl r f rf c m cm c c cc |
---|---|
matchkey_str |
article:2191219X:2018----::aimcotermrtmuaaolomrv1fdptestvtidtcigoam |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1186/s13550-018-0441-1 doi (DE-627)SPR031783929 (SPR)s13550-018-0441-1-e DE-627 ger DE-627 rakwb eng 610 ASE De Bernardi, Elisabetta verfasserin aut Radiomics of the primary tumour as a tool to improve 18F-FDG-PET sensitivity in detecting nodal metastases in endometrial cancer 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background A radiomic approach was applied in 18F-FDG PET endometrial cancer, to investigate if imaging features computed on the primary tumour could improve sensitivity in nodal metastases detection. One hundred fifteen women with histologically proven endometrial cancer who underwent preoperative 18F-FDG PET/CT were retrospectively considered. SUV, MTV, TLG, geometrical shape, histograms and texture features were computed inside tumour contours. On a first group of 86 patients (DB1), univariate association with LN metastases was computed by Mann-Whitney test and a neural network multivariate model was developed. Univariate and multivariate models were assessed with leave one out on 20 training sessions and on a second group of 29 patients (DB2). A unified framework combining LN metastases visual detection results and radiomic analysis was also assessed. Results Sensitivity and specificity of LN visual detection were 50% and 99% on DB1 and 33% and 95% on DB2, respectively. A unique heterogeneity feature computed on the primary tumour (the zone percentage of the grey level size zone matrix, GLSZM ZP) was able to predict LN metastases better than any other feature or multivariate model (sensitivity and specificity of 75% and 81% on DB1 and of 89% and 80% on DB2). Tumours with LN metastases are in fact generally characterized by a lower GLSZM ZP value, i.e. by the co-presence of high-uptake and low-uptake areas. The combination of visual detection and GLSZM ZP values in a unified framework obtained sensitivity and specificity of 94% and 67% on DB1 and of 89% and 75% on DB2, respectively. Conclusions The computation of imaging features on the primary tumour increases nodal staging detection sensitivity in 18F-FDG PET and can be considered for a better patient stratification for treatment selection. Results need a confirmation on larger cohort studies. 18F-FDG PET (dpeaa)DE-He213 Endometrial cancer (dpeaa)DE-He213 PET radiomics (dpeaa)DE-He213 Nodal stage assessment (dpeaa)DE-He213 Texture analysis (dpeaa)DE-He213 Buda, Alessandro verfasserin aut Guerra, Luca verfasserin aut Vicini, Debora verfasserin aut Elisei, Federica verfasserin aut Landoni, Claudio verfasserin aut Fruscio, Robert verfasserin aut Messa, Cristina verfasserin aut Crivellaro, Cinzia verfasserin aut Enthalten in EJNMMI Research Berlin : Springer, 2011 8(2018), 1 vom: 22. Aug. (DE-627)664970265 (DE-600)2619892-7 2191-219X nnns volume:8 year:2018 number:1 day:22 month:08 https://dx.doi.org/10.1186/s13550-018-0441-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2018 1 22 08 |
spelling |
10.1186/s13550-018-0441-1 doi (DE-627)SPR031783929 (SPR)s13550-018-0441-1-e DE-627 ger DE-627 rakwb eng 610 ASE De Bernardi, Elisabetta verfasserin aut Radiomics of the primary tumour as a tool to improve 18F-FDG-PET sensitivity in detecting nodal metastases in endometrial cancer 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background A radiomic approach was applied in 18F-FDG PET endometrial cancer, to investigate if imaging features computed on the primary tumour could improve sensitivity in nodal metastases detection. One hundred fifteen women with histologically proven endometrial cancer who underwent preoperative 18F-FDG PET/CT were retrospectively considered. SUV, MTV, TLG, geometrical shape, histograms and texture features were computed inside tumour contours. On a first group of 86 patients (DB1), univariate association with LN metastases was computed by Mann-Whitney test and a neural network multivariate model was developed. Univariate and multivariate models were assessed with leave one out on 20 training sessions and on a second group of 29 patients (DB2). A unified framework combining LN metastases visual detection results and radiomic analysis was also assessed. Results Sensitivity and specificity of LN visual detection were 50% and 99% on DB1 and 33% and 95% on DB2, respectively. A unique heterogeneity feature computed on the primary tumour (the zone percentage of the grey level size zone matrix, GLSZM ZP) was able to predict LN metastases better than any other feature or multivariate model (sensitivity and specificity of 75% and 81% on DB1 and of 89% and 80% on DB2). Tumours with LN metastases are in fact generally characterized by a lower GLSZM ZP value, i.e. by the co-presence of high-uptake and low-uptake areas. The combination of visual detection and GLSZM ZP values in a unified framework obtained sensitivity and specificity of 94% and 67% on DB1 and of 89% and 75% on DB2, respectively. Conclusions The computation of imaging features on the primary tumour increases nodal staging detection sensitivity in 18F-FDG PET and can be considered for a better patient stratification for treatment selection. Results need a confirmation on larger cohort studies. 18F-FDG PET (dpeaa)DE-He213 Endometrial cancer (dpeaa)DE-He213 PET radiomics (dpeaa)DE-He213 Nodal stage assessment (dpeaa)DE-He213 Texture analysis (dpeaa)DE-He213 Buda, Alessandro verfasserin aut Guerra, Luca verfasserin aut Vicini, Debora verfasserin aut Elisei, Federica verfasserin aut Landoni, Claudio verfasserin aut Fruscio, Robert verfasserin aut Messa, Cristina verfasserin aut Crivellaro, Cinzia verfasserin aut Enthalten in EJNMMI Research Berlin : Springer, 2011 8(2018), 1 vom: 22. Aug. (DE-627)664970265 (DE-600)2619892-7 2191-219X nnns volume:8 year:2018 number:1 day:22 month:08 https://dx.doi.org/10.1186/s13550-018-0441-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2018 1 22 08 |
allfields_unstemmed |
10.1186/s13550-018-0441-1 doi (DE-627)SPR031783929 (SPR)s13550-018-0441-1-e DE-627 ger DE-627 rakwb eng 610 ASE De Bernardi, Elisabetta verfasserin aut Radiomics of the primary tumour as a tool to improve 18F-FDG-PET sensitivity in detecting nodal metastases in endometrial cancer 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background A radiomic approach was applied in 18F-FDG PET endometrial cancer, to investigate if imaging features computed on the primary tumour could improve sensitivity in nodal metastases detection. One hundred fifteen women with histologically proven endometrial cancer who underwent preoperative 18F-FDG PET/CT were retrospectively considered. SUV, MTV, TLG, geometrical shape, histograms and texture features were computed inside tumour contours. On a first group of 86 patients (DB1), univariate association with LN metastases was computed by Mann-Whitney test and a neural network multivariate model was developed. Univariate and multivariate models were assessed with leave one out on 20 training sessions and on a second group of 29 patients (DB2). A unified framework combining LN metastases visual detection results and radiomic analysis was also assessed. Results Sensitivity and specificity of LN visual detection were 50% and 99% on DB1 and 33% and 95% on DB2, respectively. A unique heterogeneity feature computed on the primary tumour (the zone percentage of the grey level size zone matrix, GLSZM ZP) was able to predict LN metastases better than any other feature or multivariate model (sensitivity and specificity of 75% and 81% on DB1 and of 89% and 80% on DB2). Tumours with LN metastases are in fact generally characterized by a lower GLSZM ZP value, i.e. by the co-presence of high-uptake and low-uptake areas. The combination of visual detection and GLSZM ZP values in a unified framework obtained sensitivity and specificity of 94% and 67% on DB1 and of 89% and 75% on DB2, respectively. Conclusions The computation of imaging features on the primary tumour increases nodal staging detection sensitivity in 18F-FDG PET and can be considered for a better patient stratification for treatment selection. Results need a confirmation on larger cohort studies. 18F-FDG PET (dpeaa)DE-He213 Endometrial cancer (dpeaa)DE-He213 PET radiomics (dpeaa)DE-He213 Nodal stage assessment (dpeaa)DE-He213 Texture analysis (dpeaa)DE-He213 Buda, Alessandro verfasserin aut Guerra, Luca verfasserin aut Vicini, Debora verfasserin aut Elisei, Federica verfasserin aut Landoni, Claudio verfasserin aut Fruscio, Robert verfasserin aut Messa, Cristina verfasserin aut Crivellaro, Cinzia verfasserin aut Enthalten in EJNMMI Research Berlin : Springer, 2011 8(2018), 1 vom: 22. Aug. (DE-627)664970265 (DE-600)2619892-7 2191-219X nnns volume:8 year:2018 number:1 day:22 month:08 https://dx.doi.org/10.1186/s13550-018-0441-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2018 1 22 08 |
allfieldsGer |
10.1186/s13550-018-0441-1 doi (DE-627)SPR031783929 (SPR)s13550-018-0441-1-e DE-627 ger DE-627 rakwb eng 610 ASE De Bernardi, Elisabetta verfasserin aut Radiomics of the primary tumour as a tool to improve 18F-FDG-PET sensitivity in detecting nodal metastases in endometrial cancer 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background A radiomic approach was applied in 18F-FDG PET endometrial cancer, to investigate if imaging features computed on the primary tumour could improve sensitivity in nodal metastases detection. One hundred fifteen women with histologically proven endometrial cancer who underwent preoperative 18F-FDG PET/CT were retrospectively considered. SUV, MTV, TLG, geometrical shape, histograms and texture features were computed inside tumour contours. On a first group of 86 patients (DB1), univariate association with LN metastases was computed by Mann-Whitney test and a neural network multivariate model was developed. Univariate and multivariate models were assessed with leave one out on 20 training sessions and on a second group of 29 patients (DB2). A unified framework combining LN metastases visual detection results and radiomic analysis was also assessed. Results Sensitivity and specificity of LN visual detection were 50% and 99% on DB1 and 33% and 95% on DB2, respectively. A unique heterogeneity feature computed on the primary tumour (the zone percentage of the grey level size zone matrix, GLSZM ZP) was able to predict LN metastases better than any other feature or multivariate model (sensitivity and specificity of 75% and 81% on DB1 and of 89% and 80% on DB2). Tumours with LN metastases are in fact generally characterized by a lower GLSZM ZP value, i.e. by the co-presence of high-uptake and low-uptake areas. The combination of visual detection and GLSZM ZP values in a unified framework obtained sensitivity and specificity of 94% and 67% on DB1 and of 89% and 75% on DB2, respectively. Conclusions The computation of imaging features on the primary tumour increases nodal staging detection sensitivity in 18F-FDG PET and can be considered for a better patient stratification for treatment selection. Results need a confirmation on larger cohort studies. 18F-FDG PET (dpeaa)DE-He213 Endometrial cancer (dpeaa)DE-He213 PET radiomics (dpeaa)DE-He213 Nodal stage assessment (dpeaa)DE-He213 Texture analysis (dpeaa)DE-He213 Buda, Alessandro verfasserin aut Guerra, Luca verfasserin aut Vicini, Debora verfasserin aut Elisei, Federica verfasserin aut Landoni, Claudio verfasserin aut Fruscio, Robert verfasserin aut Messa, Cristina verfasserin aut Crivellaro, Cinzia verfasserin aut Enthalten in EJNMMI Research Berlin : Springer, 2011 8(2018), 1 vom: 22. Aug. (DE-627)664970265 (DE-600)2619892-7 2191-219X nnns volume:8 year:2018 number:1 day:22 month:08 https://dx.doi.org/10.1186/s13550-018-0441-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2018 1 22 08 |
allfieldsSound |
10.1186/s13550-018-0441-1 doi (DE-627)SPR031783929 (SPR)s13550-018-0441-1-e DE-627 ger DE-627 rakwb eng 610 ASE De Bernardi, Elisabetta verfasserin aut Radiomics of the primary tumour as a tool to improve 18F-FDG-PET sensitivity in detecting nodal metastases in endometrial cancer 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background A radiomic approach was applied in 18F-FDG PET endometrial cancer, to investigate if imaging features computed on the primary tumour could improve sensitivity in nodal metastases detection. One hundred fifteen women with histologically proven endometrial cancer who underwent preoperative 18F-FDG PET/CT were retrospectively considered. SUV, MTV, TLG, geometrical shape, histograms and texture features were computed inside tumour contours. On a first group of 86 patients (DB1), univariate association with LN metastases was computed by Mann-Whitney test and a neural network multivariate model was developed. Univariate and multivariate models were assessed with leave one out on 20 training sessions and on a second group of 29 patients (DB2). A unified framework combining LN metastases visual detection results and radiomic analysis was also assessed. Results Sensitivity and specificity of LN visual detection were 50% and 99% on DB1 and 33% and 95% on DB2, respectively. A unique heterogeneity feature computed on the primary tumour (the zone percentage of the grey level size zone matrix, GLSZM ZP) was able to predict LN metastases better than any other feature or multivariate model (sensitivity and specificity of 75% and 81% on DB1 and of 89% and 80% on DB2). Tumours with LN metastases are in fact generally characterized by a lower GLSZM ZP value, i.e. by the co-presence of high-uptake and low-uptake areas. The combination of visual detection and GLSZM ZP values in a unified framework obtained sensitivity and specificity of 94% and 67% on DB1 and of 89% and 75% on DB2, respectively. Conclusions The computation of imaging features on the primary tumour increases nodal staging detection sensitivity in 18F-FDG PET and can be considered for a better patient stratification for treatment selection. Results need a confirmation on larger cohort studies. 18F-FDG PET (dpeaa)DE-He213 Endometrial cancer (dpeaa)DE-He213 PET radiomics (dpeaa)DE-He213 Nodal stage assessment (dpeaa)DE-He213 Texture analysis (dpeaa)DE-He213 Buda, Alessandro verfasserin aut Guerra, Luca verfasserin aut Vicini, Debora verfasserin aut Elisei, Federica verfasserin aut Landoni, Claudio verfasserin aut Fruscio, Robert verfasserin aut Messa, Cristina verfasserin aut Crivellaro, Cinzia verfasserin aut Enthalten in EJNMMI Research Berlin : Springer, 2011 8(2018), 1 vom: 22. Aug. (DE-627)664970265 (DE-600)2619892-7 2191-219X nnns volume:8 year:2018 number:1 day:22 month:08 https://dx.doi.org/10.1186/s13550-018-0441-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2018 1 22 08 |
language |
English |
source |
Enthalten in EJNMMI Research 8(2018), 1 vom: 22. Aug. volume:8 year:2018 number:1 day:22 month:08 |
sourceStr |
Enthalten in EJNMMI Research 8(2018), 1 vom: 22. Aug. volume:8 year:2018 number:1 day:22 month:08 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
18F-FDG PET Endometrial cancer PET radiomics Nodal stage assessment Texture analysis |
dewey-raw |
610 |
isfreeaccess_bool |
true |
container_title |
EJNMMI Research |
authorswithroles_txt_mv |
De Bernardi, Elisabetta @@aut@@ Buda, Alessandro @@aut@@ Guerra, Luca @@aut@@ Vicini, Debora @@aut@@ Elisei, Federica @@aut@@ Landoni, Claudio @@aut@@ Fruscio, Robert @@aut@@ Messa, Cristina @@aut@@ Crivellaro, Cinzia @@aut@@ |
publishDateDaySort_date |
2018-08-22T00:00:00Z |
hierarchy_top_id |
664970265 |
dewey-sort |
3610 |
id |
SPR031783929 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR031783929</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519184255.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13550-018-0441-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR031783929</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13550-018-0441-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">De Bernardi, Elisabetta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Radiomics of the primary tumour as a tool to improve 18F-FDG-PET sensitivity in detecting nodal metastases in endometrial cancer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background A radiomic approach was applied in 18F-FDG PET endometrial cancer, to investigate if imaging features computed on the primary tumour could improve sensitivity in nodal metastases detection. One hundred fifteen women with histologically proven endometrial cancer who underwent preoperative 18F-FDG PET/CT were retrospectively considered. SUV, MTV, TLG, geometrical shape, histograms and texture features were computed inside tumour contours. On a first group of 86 patients (DB1), univariate association with LN metastases was computed by Mann-Whitney test and a neural network multivariate model was developed. Univariate and multivariate models were assessed with leave one out on 20 training sessions and on a second group of 29 patients (DB2). A unified framework combining LN metastases visual detection results and radiomic analysis was also assessed. Results Sensitivity and specificity of LN visual detection were 50% and 99% on DB1 and 33% and 95% on DB2, respectively. A unique heterogeneity feature computed on the primary tumour (the zone percentage of the grey level size zone matrix, GLSZM ZP) was able to predict LN metastases better than any other feature or multivariate model (sensitivity and specificity of 75% and 81% on DB1 and of 89% and 80% on DB2). Tumours with LN metastases are in fact generally characterized by a lower GLSZM ZP value, i.e. by the co-presence of high-uptake and low-uptake areas. The combination of visual detection and GLSZM ZP values in a unified framework obtained sensitivity and specificity of 94% and 67% on DB1 and of 89% and 75% on DB2, respectively. Conclusions The computation of imaging features on the primary tumour increases nodal staging detection sensitivity in 18F-FDG PET and can be considered for a better patient stratification for treatment selection. Results need a confirmation on larger cohort studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">18F-FDG PET</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Endometrial cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PET radiomics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nodal stage assessment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Texture analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buda, Alessandro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guerra, Luca</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vicini, Debora</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Elisei, Federica</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Landoni, Claudio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fruscio, Robert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Messa, Cristina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Crivellaro, Cinzia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">EJNMMI Research</subfield><subfield code="d">Berlin : Springer, 2011</subfield><subfield code="g">8(2018), 1 vom: 22. Aug.</subfield><subfield code="w">(DE-627)664970265</subfield><subfield code="w">(DE-600)2619892-7</subfield><subfield code="x">2191-219X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:22</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13550-018-0441-1</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">22</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
author |
De Bernardi, Elisabetta |
spellingShingle |
De Bernardi, Elisabetta ddc 610 misc 18F-FDG PET misc Endometrial cancer misc PET radiomics misc Nodal stage assessment misc Texture analysis Radiomics of the primary tumour as a tool to improve 18F-FDG-PET sensitivity in detecting nodal metastases in endometrial cancer |
authorStr |
De Bernardi, Elisabetta |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)664970265 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2191-219X |
topic_title |
610 ASE Radiomics of the primary tumour as a tool to improve 18F-FDG-PET sensitivity in detecting nodal metastases in endometrial cancer 18F-FDG PET (dpeaa)DE-He213 Endometrial cancer (dpeaa)DE-He213 PET radiomics (dpeaa)DE-He213 Nodal stage assessment (dpeaa)DE-He213 Texture analysis (dpeaa)DE-He213 |
topic |
ddc 610 misc 18F-FDG PET misc Endometrial cancer misc PET radiomics misc Nodal stage assessment misc Texture analysis |
topic_unstemmed |
ddc 610 misc 18F-FDG PET misc Endometrial cancer misc PET radiomics misc Nodal stage assessment misc Texture analysis |
topic_browse |
ddc 610 misc 18F-FDG PET misc Endometrial cancer misc PET radiomics misc Nodal stage assessment misc Texture analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
EJNMMI Research |
hierarchy_parent_id |
664970265 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
EJNMMI Research |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)664970265 (DE-600)2619892-7 |
title |
Radiomics of the primary tumour as a tool to improve 18F-FDG-PET sensitivity in detecting nodal metastases in endometrial cancer |
ctrlnum |
(DE-627)SPR031783929 (SPR)s13550-018-0441-1-e |
title_full |
Radiomics of the primary tumour as a tool to improve 18F-FDG-PET sensitivity in detecting nodal metastases in endometrial cancer |
author_sort |
De Bernardi, Elisabetta |
journal |
EJNMMI Research |
journalStr |
EJNMMI Research |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
De Bernardi, Elisabetta Buda, Alessandro Guerra, Luca Vicini, Debora Elisei, Federica Landoni, Claudio Fruscio, Robert Messa, Cristina Crivellaro, Cinzia |
container_volume |
8 |
class |
610 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
De Bernardi, Elisabetta |
doi_str_mv |
10.1186/s13550-018-0441-1 |
dewey-full |
610 |
author2-role |
verfasserin |
title_sort |
radiomics of the primary tumour as a tool to improve 18f-fdg-pet sensitivity in detecting nodal metastases in endometrial cancer |
title_auth |
Radiomics of the primary tumour as a tool to improve 18F-FDG-PET sensitivity in detecting nodal metastases in endometrial cancer |
abstract |
Background A radiomic approach was applied in 18F-FDG PET endometrial cancer, to investigate if imaging features computed on the primary tumour could improve sensitivity in nodal metastases detection. One hundred fifteen women with histologically proven endometrial cancer who underwent preoperative 18F-FDG PET/CT were retrospectively considered. SUV, MTV, TLG, geometrical shape, histograms and texture features were computed inside tumour contours. On a first group of 86 patients (DB1), univariate association with LN metastases was computed by Mann-Whitney test and a neural network multivariate model was developed. Univariate and multivariate models were assessed with leave one out on 20 training sessions and on a second group of 29 patients (DB2). A unified framework combining LN metastases visual detection results and radiomic analysis was also assessed. Results Sensitivity and specificity of LN visual detection were 50% and 99% on DB1 and 33% and 95% on DB2, respectively. A unique heterogeneity feature computed on the primary tumour (the zone percentage of the grey level size zone matrix, GLSZM ZP) was able to predict LN metastases better than any other feature or multivariate model (sensitivity and specificity of 75% and 81% on DB1 and of 89% and 80% on DB2). Tumours with LN metastases are in fact generally characterized by a lower GLSZM ZP value, i.e. by the co-presence of high-uptake and low-uptake areas. The combination of visual detection and GLSZM ZP values in a unified framework obtained sensitivity and specificity of 94% and 67% on DB1 and of 89% and 75% on DB2, respectively. Conclusions The computation of imaging features on the primary tumour increases nodal staging detection sensitivity in 18F-FDG PET and can be considered for a better patient stratification for treatment selection. Results need a confirmation on larger cohort studies. |
abstractGer |
Background A radiomic approach was applied in 18F-FDG PET endometrial cancer, to investigate if imaging features computed on the primary tumour could improve sensitivity in nodal metastases detection. One hundred fifteen women with histologically proven endometrial cancer who underwent preoperative 18F-FDG PET/CT were retrospectively considered. SUV, MTV, TLG, geometrical shape, histograms and texture features were computed inside tumour contours. On a first group of 86 patients (DB1), univariate association with LN metastases was computed by Mann-Whitney test and a neural network multivariate model was developed. Univariate and multivariate models were assessed with leave one out on 20 training sessions and on a second group of 29 patients (DB2). A unified framework combining LN metastases visual detection results and radiomic analysis was also assessed. Results Sensitivity and specificity of LN visual detection were 50% and 99% on DB1 and 33% and 95% on DB2, respectively. A unique heterogeneity feature computed on the primary tumour (the zone percentage of the grey level size zone matrix, GLSZM ZP) was able to predict LN metastases better than any other feature or multivariate model (sensitivity and specificity of 75% and 81% on DB1 and of 89% and 80% on DB2). Tumours with LN metastases are in fact generally characterized by a lower GLSZM ZP value, i.e. by the co-presence of high-uptake and low-uptake areas. The combination of visual detection and GLSZM ZP values in a unified framework obtained sensitivity and specificity of 94% and 67% on DB1 and of 89% and 75% on DB2, respectively. Conclusions The computation of imaging features on the primary tumour increases nodal staging detection sensitivity in 18F-FDG PET and can be considered for a better patient stratification for treatment selection. Results need a confirmation on larger cohort studies. |
abstract_unstemmed |
Background A radiomic approach was applied in 18F-FDG PET endometrial cancer, to investigate if imaging features computed on the primary tumour could improve sensitivity in nodal metastases detection. One hundred fifteen women with histologically proven endometrial cancer who underwent preoperative 18F-FDG PET/CT were retrospectively considered. SUV, MTV, TLG, geometrical shape, histograms and texture features were computed inside tumour contours. On a first group of 86 patients (DB1), univariate association with LN metastases was computed by Mann-Whitney test and a neural network multivariate model was developed. Univariate and multivariate models were assessed with leave one out on 20 training sessions and on a second group of 29 patients (DB2). A unified framework combining LN metastases visual detection results and radiomic analysis was also assessed. Results Sensitivity and specificity of LN visual detection were 50% and 99% on DB1 and 33% and 95% on DB2, respectively. A unique heterogeneity feature computed on the primary tumour (the zone percentage of the grey level size zone matrix, GLSZM ZP) was able to predict LN metastases better than any other feature or multivariate model (sensitivity and specificity of 75% and 81% on DB1 and of 89% and 80% on DB2). Tumours with LN metastases are in fact generally characterized by a lower GLSZM ZP value, i.e. by the co-presence of high-uptake and low-uptake areas. The combination of visual detection and GLSZM ZP values in a unified framework obtained sensitivity and specificity of 94% and 67% on DB1 and of 89% and 75% on DB2, respectively. Conclusions The computation of imaging features on the primary tumour increases nodal staging detection sensitivity in 18F-FDG PET and can be considered for a better patient stratification for treatment selection. Results need a confirmation on larger cohort studies. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Radiomics of the primary tumour as a tool to improve 18F-FDG-PET sensitivity in detecting nodal metastases in endometrial cancer |
url |
https://dx.doi.org/10.1186/s13550-018-0441-1 |
remote_bool |
true |
author2 |
Buda, Alessandro Guerra, Luca Vicini, Debora Elisei, Federica Landoni, Claudio Fruscio, Robert Messa, Cristina Crivellaro, Cinzia |
author2Str |
Buda, Alessandro Guerra, Luca Vicini, Debora Elisei, Federica Landoni, Claudio Fruscio, Robert Messa, Cristina Crivellaro, Cinzia |
ppnlink |
664970265 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13550-018-0441-1 |
up_date |
2024-07-04T01:13:32.269Z |
_version_ |
1803609033693724672 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR031783929</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519184255.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13550-018-0441-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR031783929</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13550-018-0441-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">De Bernardi, Elisabetta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Radiomics of the primary tumour as a tool to improve 18F-FDG-PET sensitivity in detecting nodal metastases in endometrial cancer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background A radiomic approach was applied in 18F-FDG PET endometrial cancer, to investigate if imaging features computed on the primary tumour could improve sensitivity in nodal metastases detection. One hundred fifteen women with histologically proven endometrial cancer who underwent preoperative 18F-FDG PET/CT were retrospectively considered. SUV, MTV, TLG, geometrical shape, histograms and texture features were computed inside tumour contours. On a first group of 86 patients (DB1), univariate association with LN metastases was computed by Mann-Whitney test and a neural network multivariate model was developed. Univariate and multivariate models were assessed with leave one out on 20 training sessions and on a second group of 29 patients (DB2). A unified framework combining LN metastases visual detection results and radiomic analysis was also assessed. Results Sensitivity and specificity of LN visual detection were 50% and 99% on DB1 and 33% and 95% on DB2, respectively. A unique heterogeneity feature computed on the primary tumour (the zone percentage of the grey level size zone matrix, GLSZM ZP) was able to predict LN metastases better than any other feature or multivariate model (sensitivity and specificity of 75% and 81% on DB1 and of 89% and 80% on DB2). Tumours with LN metastases are in fact generally characterized by a lower GLSZM ZP value, i.e. by the co-presence of high-uptake and low-uptake areas. The combination of visual detection and GLSZM ZP values in a unified framework obtained sensitivity and specificity of 94% and 67% on DB1 and of 89% and 75% on DB2, respectively. Conclusions The computation of imaging features on the primary tumour increases nodal staging detection sensitivity in 18F-FDG PET and can be considered for a better patient stratification for treatment selection. Results need a confirmation on larger cohort studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">18F-FDG PET</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Endometrial cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PET radiomics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nodal stage assessment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Texture analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buda, Alessandro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guerra, Luca</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vicini, Debora</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Elisei, Federica</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Landoni, Claudio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fruscio, Robert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Messa, Cristina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Crivellaro, Cinzia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">EJNMMI Research</subfield><subfield code="d">Berlin : Springer, 2011</subfield><subfield code="g">8(2018), 1 vom: 22. Aug.</subfield><subfield code="w">(DE-627)664970265</subfield><subfield code="w">(DE-600)2619892-7</subfield><subfield code="x">2191-219X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:22</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13550-018-0441-1</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">22</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
score |
7.4013834 |