Strategies for reducing the carbon footprint of field crops for semiarid areas. A review
Abstract The Earth’s climate is rapidly changing largely due to increasing anthropogenic greenhouse gas (GHG) emissions. Agricultural practices during crop production, food processing, and product marketing all generate GHG, contributing to the global climate change. The general public and farmers a...
Ausführliche Beschreibung
Autor*in: |
Gan, Yantai [verfasserIn] Liang, Chang [verfasserIn] Hamel, Chantal [verfasserIn] Cutforth, Herb [verfasserIn] Wang, Hong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Agronomy for sustainable development - Berlin : Springer, 1981, 31(2011), 4 vom: 08. März, Seite 643-656 |
---|---|
Übergeordnetes Werk: |
volume:31 ; year:2011 ; number:4 ; day:08 ; month:03 ; pages:643-656 |
Links: |
---|
DOI / URN: |
10.1007/s13593-011-0011-7 |
---|
Katalog-ID: |
SPR031882420 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR031882420 | ||
003 | DE-627 | ||
005 | 20230519140544.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2011 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s13593-011-0011-7 |2 doi | |
035 | |a (DE-627)SPR031882420 | ||
035 | |a (SPR)s13593-011-0011-7-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 580 |a 630 |a 640 |q ASE |
084 | |a 48.16 |2 bkl | ||
100 | 1 | |a Gan, Yantai |e verfasserin |4 aut | |
245 | 1 | 0 | |a Strategies for reducing the carbon footprint of field crops for semiarid areas. A review |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The Earth’s climate is rapidly changing largely due to increasing anthropogenic greenhouse gas (GHG) emissions. Agricultural practices during crop production, food processing, and product marketing all generate GHG, contributing to the global climate change. The general public and farmers are urging the development and adoption of effective measures to reduce GHG emissions from all agricultural activities and sectors. However, quantitative information is not available in regard to what strategies and practices should be adopted to reduce emission from agriculture and how crop productivity would affect the intensity of GHG emission. To provide the potential solution, we estimated the carbon footprint [i.e., the total amount of GHG associated with the production and distribution of a given food product expressed in carbon dioxide equivalence ($ CO_{2} $e)] for some of the major field crops grown on the Canadian prairie and assessed the effect of crop sequences on the carbon footprint of durum wheat. Key strategies for reducing the carbon footprint of various field crops grown in semiarid areas were identified. Carbon footprints were estimated using emissions from (1) the decomposition of crop straw and roots; (2) the manufacture of N and P fertilizers and their rates of application; (3) the production of herbicides and fungicides; and (4) miscellaneous farm field operations. Production and application of N fertilizers accounted for 57% to 65% of the total footprint, those from crop residue decomposition 16% to 30%, and the remaining portion of the footprint included $ CO_{2} $e from the production of P fertilizer and pesticides, and from miscellaneous field operations. Crops grown in the Brown soil zone had the lowest carbon footprint, averaging 0.46 kg $ CO_{2} $e $ kg^{−1} $ of grain, whereas crops grown in the Black soil zone had a larger average carbon footprint of 0.83 kg $ CO_{2} $e $ kg^{−1} $ of grain. The average carbon footprint for crops grown in the Dark Brown soil zone was intermediate to the other two at 0.61 kg $ CO_{2} $e $ kg^{−1} $ of grain. One kilogram of grain product emitted 0.80 kg $ CO_{2} $e for canola (Brassica napus L.), 0.59 for mustard (Brassica juncea L.) and flaxseed (Linum usitatissimum L.), 0.46 for spring wheat (Triticum aestivum L.), and 0.20 to 0.33 kg $ CO_{2} $e for chickpea (Cicer arietinum L.), dry pea (Pisum sativum L.), and lentil (Lens culinaris Medik.). Durum wheat (T. aestivum L.) preceded by an N-fixing crop (i.e., pulses) emitted total greenhouse gases of 673 kg $ CO_{2} $e, 20% lower than when the crop was preceded by a cereal crop. Similarly, durum wheat preceded by an oilseed emitted 744 kg $ CO_{2} $e, 11% lower than when preceded by a cereal. The carbon footprint for durum grown after a pulse was 0.25 kg $ CO_{2} $e per kg of the grain and 0.28 kg $ CO_{2} $e per kg of the grain when grown after an oilseed: a reduction in the carbon footprint of 24% to 32% than when grown after a cereal. The average carbon footprint can be lowered by as much as 24% for crops grown in the Black, 28% in the Dark Brown, and 37% in the Brown soil zones, through improved agronomic practices, increased N use efficiency, use of diversified cropping systems, adoption of crop cultivars with high harvest index, and the use of soil bioresources such as P-solublizers and arbuscular mycorrhizal fungi in crop production. | ||
650 | 4 | |a Carbon footprint |7 (dpeaa)DE-He213 | |
650 | 4 | |a Legumes |7 (dpeaa)DE-He213 | |
650 | 4 | |a Oilseeds |7 (dpeaa)DE-He213 | |
650 | 4 | |a Broadleaf crops |7 (dpeaa)DE-He213 | |
650 | 4 | |a Biochar |7 (dpeaa)DE-He213 | |
650 | 4 | |a Crop diversification |7 (dpeaa)DE-He213 | |
650 | 4 | |a Carbon sequestration |7 (dpeaa)DE-He213 | |
650 | 4 | |a Straw management |7 (dpeaa)DE-He213 | |
650 | 4 | |a Input |7 (dpeaa)DE-He213 | |
650 | 4 | |a N-fixation |7 (dpeaa)DE-He213 | |
700 | 1 | |a Liang, Chang |e verfasserin |4 aut | |
700 | 1 | |a Hamel, Chantal |e verfasserin |4 aut | |
700 | 1 | |a Cutforth, Herb |e verfasserin |4 aut | |
700 | 1 | |a Wang, Hong |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Agronomy for sustainable development |d Berlin : Springer, 1981 |g 31(2011), 4 vom: 08. März, Seite 643-656 |w (DE-627)312838921 |w (DE-600)2012314-0 |x 1773-0155 |7 nnns |
773 | 1 | 8 | |g volume:31 |g year:2011 |g number:4 |g day:08 |g month:03 |g pages:643-656 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s13593-011-0011-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 48.16 |q ASE |
951 | |a AR | ||
952 | |d 31 |j 2011 |e 4 |b 08 |c 03 |h 643-656 |
author_variant |
y g yg c l cl c h ch h c hc h w hw |
---|---|
matchkey_str |
article:17730155:2011----::taeisordcnteabnotrnofedrpfr |
hierarchy_sort_str |
2011 |
bklnumber |
48.16 |
publishDate |
2011 |
allfields |
10.1007/s13593-011-0011-7 doi (DE-627)SPR031882420 (SPR)s13593-011-0011-7-e DE-627 ger DE-627 rakwb eng 580 630 640 ASE 48.16 bkl Gan, Yantai verfasserin aut Strategies for reducing the carbon footprint of field crops for semiarid areas. A review 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The Earth’s climate is rapidly changing largely due to increasing anthropogenic greenhouse gas (GHG) emissions. Agricultural practices during crop production, food processing, and product marketing all generate GHG, contributing to the global climate change. The general public and farmers are urging the development and adoption of effective measures to reduce GHG emissions from all agricultural activities and sectors. However, quantitative information is not available in regard to what strategies and practices should be adopted to reduce emission from agriculture and how crop productivity would affect the intensity of GHG emission. To provide the potential solution, we estimated the carbon footprint [i.e., the total amount of GHG associated with the production and distribution of a given food product expressed in carbon dioxide equivalence ($ CO_{2} $e)] for some of the major field crops grown on the Canadian prairie and assessed the effect of crop sequences on the carbon footprint of durum wheat. Key strategies for reducing the carbon footprint of various field crops grown in semiarid areas were identified. Carbon footprints were estimated using emissions from (1) the decomposition of crop straw and roots; (2) the manufacture of N and P fertilizers and their rates of application; (3) the production of herbicides and fungicides; and (4) miscellaneous farm field operations. Production and application of N fertilizers accounted for 57% to 65% of the total footprint, those from crop residue decomposition 16% to 30%, and the remaining portion of the footprint included $ CO_{2} $e from the production of P fertilizer and pesticides, and from miscellaneous field operations. Crops grown in the Brown soil zone had the lowest carbon footprint, averaging 0.46 kg $ CO_{2} $e $ kg^{−1} $ of grain, whereas crops grown in the Black soil zone had a larger average carbon footprint of 0.83 kg $ CO_{2} $e $ kg^{−1} $ of grain. The average carbon footprint for crops grown in the Dark Brown soil zone was intermediate to the other two at 0.61 kg $ CO_{2} $e $ kg^{−1} $ of grain. One kilogram of grain product emitted 0.80 kg $ CO_{2} $e for canola (Brassica napus L.), 0.59 for mustard (Brassica juncea L.) and flaxseed (Linum usitatissimum L.), 0.46 for spring wheat (Triticum aestivum L.), and 0.20 to 0.33 kg $ CO_{2} $e for chickpea (Cicer arietinum L.), dry pea (Pisum sativum L.), and lentil (Lens culinaris Medik.). Durum wheat (T. aestivum L.) preceded by an N-fixing crop (i.e., pulses) emitted total greenhouse gases of 673 kg $ CO_{2} $e, 20% lower than when the crop was preceded by a cereal crop. Similarly, durum wheat preceded by an oilseed emitted 744 kg $ CO_{2} $e, 11% lower than when preceded by a cereal. The carbon footprint for durum grown after a pulse was 0.25 kg $ CO_{2} $e per kg of the grain and 0.28 kg $ CO_{2} $e per kg of the grain when grown after an oilseed: a reduction in the carbon footprint of 24% to 32% than when grown after a cereal. The average carbon footprint can be lowered by as much as 24% for crops grown in the Black, 28% in the Dark Brown, and 37% in the Brown soil zones, through improved agronomic practices, increased N use efficiency, use of diversified cropping systems, adoption of crop cultivars with high harvest index, and the use of soil bioresources such as P-solublizers and arbuscular mycorrhizal fungi in crop production. Carbon footprint (dpeaa)DE-He213 Legumes (dpeaa)DE-He213 Oilseeds (dpeaa)DE-He213 Broadleaf crops (dpeaa)DE-He213 Biochar (dpeaa)DE-He213 Crop diversification (dpeaa)DE-He213 Carbon sequestration (dpeaa)DE-He213 Straw management (dpeaa)DE-He213 Input (dpeaa)DE-He213 N-fixation (dpeaa)DE-He213 Liang, Chang verfasserin aut Hamel, Chantal verfasserin aut Cutforth, Herb verfasserin aut Wang, Hong verfasserin aut Enthalten in Agronomy for sustainable development Berlin : Springer, 1981 31(2011), 4 vom: 08. März, Seite 643-656 (DE-627)312838921 (DE-600)2012314-0 1773-0155 nnns volume:31 year:2011 number:4 day:08 month:03 pages:643-656 https://dx.doi.org/10.1007/s13593-011-0011-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.16 ASE AR 31 2011 4 08 03 643-656 |
spelling |
10.1007/s13593-011-0011-7 doi (DE-627)SPR031882420 (SPR)s13593-011-0011-7-e DE-627 ger DE-627 rakwb eng 580 630 640 ASE 48.16 bkl Gan, Yantai verfasserin aut Strategies for reducing the carbon footprint of field crops for semiarid areas. A review 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The Earth’s climate is rapidly changing largely due to increasing anthropogenic greenhouse gas (GHG) emissions. Agricultural practices during crop production, food processing, and product marketing all generate GHG, contributing to the global climate change. The general public and farmers are urging the development and adoption of effective measures to reduce GHG emissions from all agricultural activities and sectors. However, quantitative information is not available in regard to what strategies and practices should be adopted to reduce emission from agriculture and how crop productivity would affect the intensity of GHG emission. To provide the potential solution, we estimated the carbon footprint [i.e., the total amount of GHG associated with the production and distribution of a given food product expressed in carbon dioxide equivalence ($ CO_{2} $e)] for some of the major field crops grown on the Canadian prairie and assessed the effect of crop sequences on the carbon footprint of durum wheat. Key strategies for reducing the carbon footprint of various field crops grown in semiarid areas were identified. Carbon footprints were estimated using emissions from (1) the decomposition of crop straw and roots; (2) the manufacture of N and P fertilizers and their rates of application; (3) the production of herbicides and fungicides; and (4) miscellaneous farm field operations. Production and application of N fertilizers accounted for 57% to 65% of the total footprint, those from crop residue decomposition 16% to 30%, and the remaining portion of the footprint included $ CO_{2} $e from the production of P fertilizer and pesticides, and from miscellaneous field operations. Crops grown in the Brown soil zone had the lowest carbon footprint, averaging 0.46 kg $ CO_{2} $e $ kg^{−1} $ of grain, whereas crops grown in the Black soil zone had a larger average carbon footprint of 0.83 kg $ CO_{2} $e $ kg^{−1} $ of grain. The average carbon footprint for crops grown in the Dark Brown soil zone was intermediate to the other two at 0.61 kg $ CO_{2} $e $ kg^{−1} $ of grain. One kilogram of grain product emitted 0.80 kg $ CO_{2} $e for canola (Brassica napus L.), 0.59 for mustard (Brassica juncea L.) and flaxseed (Linum usitatissimum L.), 0.46 for spring wheat (Triticum aestivum L.), and 0.20 to 0.33 kg $ CO_{2} $e for chickpea (Cicer arietinum L.), dry pea (Pisum sativum L.), and lentil (Lens culinaris Medik.). Durum wheat (T. aestivum L.) preceded by an N-fixing crop (i.e., pulses) emitted total greenhouse gases of 673 kg $ CO_{2} $e, 20% lower than when the crop was preceded by a cereal crop. Similarly, durum wheat preceded by an oilseed emitted 744 kg $ CO_{2} $e, 11% lower than when preceded by a cereal. The carbon footprint for durum grown after a pulse was 0.25 kg $ CO_{2} $e per kg of the grain and 0.28 kg $ CO_{2} $e per kg of the grain when grown after an oilseed: a reduction in the carbon footprint of 24% to 32% than when grown after a cereal. The average carbon footprint can be lowered by as much as 24% for crops grown in the Black, 28% in the Dark Brown, and 37% in the Brown soil zones, through improved agronomic practices, increased N use efficiency, use of diversified cropping systems, adoption of crop cultivars with high harvest index, and the use of soil bioresources such as P-solublizers and arbuscular mycorrhizal fungi in crop production. Carbon footprint (dpeaa)DE-He213 Legumes (dpeaa)DE-He213 Oilseeds (dpeaa)DE-He213 Broadleaf crops (dpeaa)DE-He213 Biochar (dpeaa)DE-He213 Crop diversification (dpeaa)DE-He213 Carbon sequestration (dpeaa)DE-He213 Straw management (dpeaa)DE-He213 Input (dpeaa)DE-He213 N-fixation (dpeaa)DE-He213 Liang, Chang verfasserin aut Hamel, Chantal verfasserin aut Cutforth, Herb verfasserin aut Wang, Hong verfasserin aut Enthalten in Agronomy for sustainable development Berlin : Springer, 1981 31(2011), 4 vom: 08. März, Seite 643-656 (DE-627)312838921 (DE-600)2012314-0 1773-0155 nnns volume:31 year:2011 number:4 day:08 month:03 pages:643-656 https://dx.doi.org/10.1007/s13593-011-0011-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.16 ASE AR 31 2011 4 08 03 643-656 |
allfields_unstemmed |
10.1007/s13593-011-0011-7 doi (DE-627)SPR031882420 (SPR)s13593-011-0011-7-e DE-627 ger DE-627 rakwb eng 580 630 640 ASE 48.16 bkl Gan, Yantai verfasserin aut Strategies for reducing the carbon footprint of field crops for semiarid areas. A review 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The Earth’s climate is rapidly changing largely due to increasing anthropogenic greenhouse gas (GHG) emissions. Agricultural practices during crop production, food processing, and product marketing all generate GHG, contributing to the global climate change. The general public and farmers are urging the development and adoption of effective measures to reduce GHG emissions from all agricultural activities and sectors. However, quantitative information is not available in regard to what strategies and practices should be adopted to reduce emission from agriculture and how crop productivity would affect the intensity of GHG emission. To provide the potential solution, we estimated the carbon footprint [i.e., the total amount of GHG associated with the production and distribution of a given food product expressed in carbon dioxide equivalence ($ CO_{2} $e)] for some of the major field crops grown on the Canadian prairie and assessed the effect of crop sequences on the carbon footprint of durum wheat. Key strategies for reducing the carbon footprint of various field crops grown in semiarid areas were identified. Carbon footprints were estimated using emissions from (1) the decomposition of crop straw and roots; (2) the manufacture of N and P fertilizers and their rates of application; (3) the production of herbicides and fungicides; and (4) miscellaneous farm field operations. Production and application of N fertilizers accounted for 57% to 65% of the total footprint, those from crop residue decomposition 16% to 30%, and the remaining portion of the footprint included $ CO_{2} $e from the production of P fertilizer and pesticides, and from miscellaneous field operations. Crops grown in the Brown soil zone had the lowest carbon footprint, averaging 0.46 kg $ CO_{2} $e $ kg^{−1} $ of grain, whereas crops grown in the Black soil zone had a larger average carbon footprint of 0.83 kg $ CO_{2} $e $ kg^{−1} $ of grain. The average carbon footprint for crops grown in the Dark Brown soil zone was intermediate to the other two at 0.61 kg $ CO_{2} $e $ kg^{−1} $ of grain. One kilogram of grain product emitted 0.80 kg $ CO_{2} $e for canola (Brassica napus L.), 0.59 for mustard (Brassica juncea L.) and flaxseed (Linum usitatissimum L.), 0.46 for spring wheat (Triticum aestivum L.), and 0.20 to 0.33 kg $ CO_{2} $e for chickpea (Cicer arietinum L.), dry pea (Pisum sativum L.), and lentil (Lens culinaris Medik.). Durum wheat (T. aestivum L.) preceded by an N-fixing crop (i.e., pulses) emitted total greenhouse gases of 673 kg $ CO_{2} $e, 20% lower than when the crop was preceded by a cereal crop. Similarly, durum wheat preceded by an oilseed emitted 744 kg $ CO_{2} $e, 11% lower than when preceded by a cereal. The carbon footprint for durum grown after a pulse was 0.25 kg $ CO_{2} $e per kg of the grain and 0.28 kg $ CO_{2} $e per kg of the grain when grown after an oilseed: a reduction in the carbon footprint of 24% to 32% than when grown after a cereal. The average carbon footprint can be lowered by as much as 24% for crops grown in the Black, 28% in the Dark Brown, and 37% in the Brown soil zones, through improved agronomic practices, increased N use efficiency, use of diversified cropping systems, adoption of crop cultivars with high harvest index, and the use of soil bioresources such as P-solublizers and arbuscular mycorrhizal fungi in crop production. Carbon footprint (dpeaa)DE-He213 Legumes (dpeaa)DE-He213 Oilseeds (dpeaa)DE-He213 Broadleaf crops (dpeaa)DE-He213 Biochar (dpeaa)DE-He213 Crop diversification (dpeaa)DE-He213 Carbon sequestration (dpeaa)DE-He213 Straw management (dpeaa)DE-He213 Input (dpeaa)DE-He213 N-fixation (dpeaa)DE-He213 Liang, Chang verfasserin aut Hamel, Chantal verfasserin aut Cutforth, Herb verfasserin aut Wang, Hong verfasserin aut Enthalten in Agronomy for sustainable development Berlin : Springer, 1981 31(2011), 4 vom: 08. März, Seite 643-656 (DE-627)312838921 (DE-600)2012314-0 1773-0155 nnns volume:31 year:2011 number:4 day:08 month:03 pages:643-656 https://dx.doi.org/10.1007/s13593-011-0011-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.16 ASE AR 31 2011 4 08 03 643-656 |
allfieldsGer |
10.1007/s13593-011-0011-7 doi (DE-627)SPR031882420 (SPR)s13593-011-0011-7-e DE-627 ger DE-627 rakwb eng 580 630 640 ASE 48.16 bkl Gan, Yantai verfasserin aut Strategies for reducing the carbon footprint of field crops for semiarid areas. A review 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The Earth’s climate is rapidly changing largely due to increasing anthropogenic greenhouse gas (GHG) emissions. Agricultural practices during crop production, food processing, and product marketing all generate GHG, contributing to the global climate change. The general public and farmers are urging the development and adoption of effective measures to reduce GHG emissions from all agricultural activities and sectors. However, quantitative information is not available in regard to what strategies and practices should be adopted to reduce emission from agriculture and how crop productivity would affect the intensity of GHG emission. To provide the potential solution, we estimated the carbon footprint [i.e., the total amount of GHG associated with the production and distribution of a given food product expressed in carbon dioxide equivalence ($ CO_{2} $e)] for some of the major field crops grown on the Canadian prairie and assessed the effect of crop sequences on the carbon footprint of durum wheat. Key strategies for reducing the carbon footprint of various field crops grown in semiarid areas were identified. Carbon footprints were estimated using emissions from (1) the decomposition of crop straw and roots; (2) the manufacture of N and P fertilizers and their rates of application; (3) the production of herbicides and fungicides; and (4) miscellaneous farm field operations. Production and application of N fertilizers accounted for 57% to 65% of the total footprint, those from crop residue decomposition 16% to 30%, and the remaining portion of the footprint included $ CO_{2} $e from the production of P fertilizer and pesticides, and from miscellaneous field operations. Crops grown in the Brown soil zone had the lowest carbon footprint, averaging 0.46 kg $ CO_{2} $e $ kg^{−1} $ of grain, whereas crops grown in the Black soil zone had a larger average carbon footprint of 0.83 kg $ CO_{2} $e $ kg^{−1} $ of grain. The average carbon footprint for crops grown in the Dark Brown soil zone was intermediate to the other two at 0.61 kg $ CO_{2} $e $ kg^{−1} $ of grain. One kilogram of grain product emitted 0.80 kg $ CO_{2} $e for canola (Brassica napus L.), 0.59 for mustard (Brassica juncea L.) and flaxseed (Linum usitatissimum L.), 0.46 for spring wheat (Triticum aestivum L.), and 0.20 to 0.33 kg $ CO_{2} $e for chickpea (Cicer arietinum L.), dry pea (Pisum sativum L.), and lentil (Lens culinaris Medik.). Durum wheat (T. aestivum L.) preceded by an N-fixing crop (i.e., pulses) emitted total greenhouse gases of 673 kg $ CO_{2} $e, 20% lower than when the crop was preceded by a cereal crop. Similarly, durum wheat preceded by an oilseed emitted 744 kg $ CO_{2} $e, 11% lower than when preceded by a cereal. The carbon footprint for durum grown after a pulse was 0.25 kg $ CO_{2} $e per kg of the grain and 0.28 kg $ CO_{2} $e per kg of the grain when grown after an oilseed: a reduction in the carbon footprint of 24% to 32% than when grown after a cereal. The average carbon footprint can be lowered by as much as 24% for crops grown in the Black, 28% in the Dark Brown, and 37% in the Brown soil zones, through improved agronomic practices, increased N use efficiency, use of diversified cropping systems, adoption of crop cultivars with high harvest index, and the use of soil bioresources such as P-solublizers and arbuscular mycorrhizal fungi in crop production. Carbon footprint (dpeaa)DE-He213 Legumes (dpeaa)DE-He213 Oilseeds (dpeaa)DE-He213 Broadleaf crops (dpeaa)DE-He213 Biochar (dpeaa)DE-He213 Crop diversification (dpeaa)DE-He213 Carbon sequestration (dpeaa)DE-He213 Straw management (dpeaa)DE-He213 Input (dpeaa)DE-He213 N-fixation (dpeaa)DE-He213 Liang, Chang verfasserin aut Hamel, Chantal verfasserin aut Cutforth, Herb verfasserin aut Wang, Hong verfasserin aut Enthalten in Agronomy for sustainable development Berlin : Springer, 1981 31(2011), 4 vom: 08. März, Seite 643-656 (DE-627)312838921 (DE-600)2012314-0 1773-0155 nnns volume:31 year:2011 number:4 day:08 month:03 pages:643-656 https://dx.doi.org/10.1007/s13593-011-0011-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.16 ASE AR 31 2011 4 08 03 643-656 |
allfieldsSound |
10.1007/s13593-011-0011-7 doi (DE-627)SPR031882420 (SPR)s13593-011-0011-7-e DE-627 ger DE-627 rakwb eng 580 630 640 ASE 48.16 bkl Gan, Yantai verfasserin aut Strategies for reducing the carbon footprint of field crops for semiarid areas. A review 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The Earth’s climate is rapidly changing largely due to increasing anthropogenic greenhouse gas (GHG) emissions. Agricultural practices during crop production, food processing, and product marketing all generate GHG, contributing to the global climate change. The general public and farmers are urging the development and adoption of effective measures to reduce GHG emissions from all agricultural activities and sectors. However, quantitative information is not available in regard to what strategies and practices should be adopted to reduce emission from agriculture and how crop productivity would affect the intensity of GHG emission. To provide the potential solution, we estimated the carbon footprint [i.e., the total amount of GHG associated with the production and distribution of a given food product expressed in carbon dioxide equivalence ($ CO_{2} $e)] for some of the major field crops grown on the Canadian prairie and assessed the effect of crop sequences on the carbon footprint of durum wheat. Key strategies for reducing the carbon footprint of various field crops grown in semiarid areas were identified. Carbon footprints were estimated using emissions from (1) the decomposition of crop straw and roots; (2) the manufacture of N and P fertilizers and their rates of application; (3) the production of herbicides and fungicides; and (4) miscellaneous farm field operations. Production and application of N fertilizers accounted for 57% to 65% of the total footprint, those from crop residue decomposition 16% to 30%, and the remaining portion of the footprint included $ CO_{2} $e from the production of P fertilizer and pesticides, and from miscellaneous field operations. Crops grown in the Brown soil zone had the lowest carbon footprint, averaging 0.46 kg $ CO_{2} $e $ kg^{−1} $ of grain, whereas crops grown in the Black soil zone had a larger average carbon footprint of 0.83 kg $ CO_{2} $e $ kg^{−1} $ of grain. The average carbon footprint for crops grown in the Dark Brown soil zone was intermediate to the other two at 0.61 kg $ CO_{2} $e $ kg^{−1} $ of grain. One kilogram of grain product emitted 0.80 kg $ CO_{2} $e for canola (Brassica napus L.), 0.59 for mustard (Brassica juncea L.) and flaxseed (Linum usitatissimum L.), 0.46 for spring wheat (Triticum aestivum L.), and 0.20 to 0.33 kg $ CO_{2} $e for chickpea (Cicer arietinum L.), dry pea (Pisum sativum L.), and lentil (Lens culinaris Medik.). Durum wheat (T. aestivum L.) preceded by an N-fixing crop (i.e., pulses) emitted total greenhouse gases of 673 kg $ CO_{2} $e, 20% lower than when the crop was preceded by a cereal crop. Similarly, durum wheat preceded by an oilseed emitted 744 kg $ CO_{2} $e, 11% lower than when preceded by a cereal. The carbon footprint for durum grown after a pulse was 0.25 kg $ CO_{2} $e per kg of the grain and 0.28 kg $ CO_{2} $e per kg of the grain when grown after an oilseed: a reduction in the carbon footprint of 24% to 32% than when grown after a cereal. The average carbon footprint can be lowered by as much as 24% for crops grown in the Black, 28% in the Dark Brown, and 37% in the Brown soil zones, through improved agronomic practices, increased N use efficiency, use of diversified cropping systems, adoption of crop cultivars with high harvest index, and the use of soil bioresources such as P-solublizers and arbuscular mycorrhizal fungi in crop production. Carbon footprint (dpeaa)DE-He213 Legumes (dpeaa)DE-He213 Oilseeds (dpeaa)DE-He213 Broadleaf crops (dpeaa)DE-He213 Biochar (dpeaa)DE-He213 Crop diversification (dpeaa)DE-He213 Carbon sequestration (dpeaa)DE-He213 Straw management (dpeaa)DE-He213 Input (dpeaa)DE-He213 N-fixation (dpeaa)DE-He213 Liang, Chang verfasserin aut Hamel, Chantal verfasserin aut Cutforth, Herb verfasserin aut Wang, Hong verfasserin aut Enthalten in Agronomy for sustainable development Berlin : Springer, 1981 31(2011), 4 vom: 08. März, Seite 643-656 (DE-627)312838921 (DE-600)2012314-0 1773-0155 nnns volume:31 year:2011 number:4 day:08 month:03 pages:643-656 https://dx.doi.org/10.1007/s13593-011-0011-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.16 ASE AR 31 2011 4 08 03 643-656 |
language |
English |
source |
Enthalten in Agronomy for sustainable development 31(2011), 4 vom: 08. März, Seite 643-656 volume:31 year:2011 number:4 day:08 month:03 pages:643-656 |
sourceStr |
Enthalten in Agronomy for sustainable development 31(2011), 4 vom: 08. März, Seite 643-656 volume:31 year:2011 number:4 day:08 month:03 pages:643-656 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Carbon footprint Legumes Oilseeds Broadleaf crops Biochar Crop diversification Carbon sequestration Straw management Input N-fixation |
dewey-raw |
580 |
isfreeaccess_bool |
false |
container_title |
Agronomy for sustainable development |
authorswithroles_txt_mv |
Gan, Yantai @@aut@@ Liang, Chang @@aut@@ Hamel, Chantal @@aut@@ Cutforth, Herb @@aut@@ Wang, Hong @@aut@@ |
publishDateDaySort_date |
2011-03-08T00:00:00Z |
hierarchy_top_id |
312838921 |
dewey-sort |
3580 |
id |
SPR031882420 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR031882420</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519140544.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13593-011-0011-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR031882420</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13593-011-0011-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">580</subfield><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gan, Yantai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Strategies for reducing the carbon footprint of field crops for semiarid areas. A review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The Earth’s climate is rapidly changing largely due to increasing anthropogenic greenhouse gas (GHG) emissions. Agricultural practices during crop production, food processing, and product marketing all generate GHG, contributing to the global climate change. The general public and farmers are urging the development and adoption of effective measures to reduce GHG emissions from all agricultural activities and sectors. However, quantitative information is not available in regard to what strategies and practices should be adopted to reduce emission from agriculture and how crop productivity would affect the intensity of GHG emission. To provide the potential solution, we estimated the carbon footprint [i.e., the total amount of GHG associated with the production and distribution of a given food product expressed in carbon dioxide equivalence ($ CO_{2} $e)] for some of the major field crops grown on the Canadian prairie and assessed the effect of crop sequences on the carbon footprint of durum wheat. Key strategies for reducing the carbon footprint of various field crops grown in semiarid areas were identified. Carbon footprints were estimated using emissions from (1) the decomposition of crop straw and roots; (2) the manufacture of N and P fertilizers and their rates of application; (3) the production of herbicides and fungicides; and (4) miscellaneous farm field operations. Production and application of N fertilizers accounted for 57% to 65% of the total footprint, those from crop residue decomposition 16% to 30%, and the remaining portion of the footprint included $ CO_{2} $e from the production of P fertilizer and pesticides, and from miscellaneous field operations. Crops grown in the Brown soil zone had the lowest carbon footprint, averaging 0.46 kg $ CO_{2} $e $ kg^{−1} $ of grain, whereas crops grown in the Black soil zone had a larger average carbon footprint of 0.83 kg $ CO_{2} $e $ kg^{−1} $ of grain. The average carbon footprint for crops grown in the Dark Brown soil zone was intermediate to the other two at 0.61 kg $ CO_{2} $e $ kg^{−1} $ of grain. One kilogram of grain product emitted 0.80 kg $ CO_{2} $e for canola (Brassica napus L.), 0.59 for mustard (Brassica juncea L.) and flaxseed (Linum usitatissimum L.), 0.46 for spring wheat (Triticum aestivum L.), and 0.20 to 0.33 kg $ CO_{2} $e for chickpea (Cicer arietinum L.), dry pea (Pisum sativum L.), and lentil (Lens culinaris Medik.). Durum wheat (T. aestivum L.) preceded by an N-fixing crop (i.e., pulses) emitted total greenhouse gases of 673 kg $ CO_{2} $e, 20% lower than when the crop was preceded by a cereal crop. Similarly, durum wheat preceded by an oilseed emitted 744 kg $ CO_{2} $e, 11% lower than when preceded by a cereal. The carbon footprint for durum grown after a pulse was 0.25 kg $ CO_{2} $e per kg of the grain and 0.28 kg $ CO_{2} $e per kg of the grain when grown after an oilseed: a reduction in the carbon footprint of 24% to 32% than when grown after a cereal. The average carbon footprint can be lowered by as much as 24% for crops grown in the Black, 28% in the Dark Brown, and 37% in the Brown soil zones, through improved agronomic practices, increased N use efficiency, use of diversified cropping systems, adoption of crop cultivars with high harvest index, and the use of soil bioresources such as P-solublizers and arbuscular mycorrhizal fungi in crop production.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon footprint</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Legumes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oilseeds</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Broadleaf crops</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biochar</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crop diversification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon sequestration</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Straw management</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Input</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">N-fixation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Chang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hamel, Chantal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cutforth, Herb</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Agronomy for sustainable development</subfield><subfield code="d">Berlin : Springer, 1981</subfield><subfield code="g">31(2011), 4 vom: 08. März, Seite 643-656</subfield><subfield code="w">(DE-627)312838921</subfield><subfield code="w">(DE-600)2012314-0</subfield><subfield code="x">1773-0155</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:4</subfield><subfield code="g">day:08</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:643-656</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13593-011-0011-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.16</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2011</subfield><subfield code="e">4</subfield><subfield code="b">08</subfield><subfield code="c">03</subfield><subfield code="h">643-656</subfield></datafield></record></collection>
|
author |
Gan, Yantai |
spellingShingle |
Gan, Yantai ddc 580 bkl 48.16 misc Carbon footprint misc Legumes misc Oilseeds misc Broadleaf crops misc Biochar misc Crop diversification misc Carbon sequestration misc Straw management misc Input misc N-fixation Strategies for reducing the carbon footprint of field crops for semiarid areas. A review |
authorStr |
Gan, Yantai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)312838921 |
format |
electronic Article |
dewey-ones |
580 - Plants (Botany) 630 - Agriculture & related technologies 640 - Home & family management |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1773-0155 |
topic_title |
580 630 640 ASE 48.16 bkl Strategies for reducing the carbon footprint of field crops for semiarid areas. A review Carbon footprint (dpeaa)DE-He213 Legumes (dpeaa)DE-He213 Oilseeds (dpeaa)DE-He213 Broadleaf crops (dpeaa)DE-He213 Biochar (dpeaa)DE-He213 Crop diversification (dpeaa)DE-He213 Carbon sequestration (dpeaa)DE-He213 Straw management (dpeaa)DE-He213 Input (dpeaa)DE-He213 N-fixation (dpeaa)DE-He213 |
topic |
ddc 580 bkl 48.16 misc Carbon footprint misc Legumes misc Oilseeds misc Broadleaf crops misc Biochar misc Crop diversification misc Carbon sequestration misc Straw management misc Input misc N-fixation |
topic_unstemmed |
ddc 580 bkl 48.16 misc Carbon footprint misc Legumes misc Oilseeds misc Broadleaf crops misc Biochar misc Crop diversification misc Carbon sequestration misc Straw management misc Input misc N-fixation |
topic_browse |
ddc 580 bkl 48.16 misc Carbon footprint misc Legumes misc Oilseeds misc Broadleaf crops misc Biochar misc Crop diversification misc Carbon sequestration misc Straw management misc Input misc N-fixation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Agronomy for sustainable development |
hierarchy_parent_id |
312838921 |
dewey-tens |
580 - Plants (Botany) 630 - Agriculture 640 - Home & family management |
hierarchy_top_title |
Agronomy for sustainable development |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)312838921 (DE-600)2012314-0 |
title |
Strategies for reducing the carbon footprint of field crops for semiarid areas. A review |
ctrlnum |
(DE-627)SPR031882420 (SPR)s13593-011-0011-7-e |
title_full |
Strategies for reducing the carbon footprint of field crops for semiarid areas. A review |
author_sort |
Gan, Yantai |
journal |
Agronomy for sustainable development |
journalStr |
Agronomy for sustainable development |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
643 |
author_browse |
Gan, Yantai Liang, Chang Hamel, Chantal Cutforth, Herb Wang, Hong |
container_volume |
31 |
class |
580 630 640 ASE 48.16 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Gan, Yantai |
doi_str_mv |
10.1007/s13593-011-0011-7 |
dewey-full |
580 630 640 |
author2-role |
verfasserin |
title_sort |
strategies for reducing the carbon footprint of field crops for semiarid areas. a review |
title_auth |
Strategies for reducing the carbon footprint of field crops for semiarid areas. A review |
abstract |
Abstract The Earth’s climate is rapidly changing largely due to increasing anthropogenic greenhouse gas (GHG) emissions. Agricultural practices during crop production, food processing, and product marketing all generate GHG, contributing to the global climate change. The general public and farmers are urging the development and adoption of effective measures to reduce GHG emissions from all agricultural activities and sectors. However, quantitative information is not available in regard to what strategies and practices should be adopted to reduce emission from agriculture and how crop productivity would affect the intensity of GHG emission. To provide the potential solution, we estimated the carbon footprint [i.e., the total amount of GHG associated with the production and distribution of a given food product expressed in carbon dioxide equivalence ($ CO_{2} $e)] for some of the major field crops grown on the Canadian prairie and assessed the effect of crop sequences on the carbon footprint of durum wheat. Key strategies for reducing the carbon footprint of various field crops grown in semiarid areas were identified. Carbon footprints were estimated using emissions from (1) the decomposition of crop straw and roots; (2) the manufacture of N and P fertilizers and their rates of application; (3) the production of herbicides and fungicides; and (4) miscellaneous farm field operations. Production and application of N fertilizers accounted for 57% to 65% of the total footprint, those from crop residue decomposition 16% to 30%, and the remaining portion of the footprint included $ CO_{2} $e from the production of P fertilizer and pesticides, and from miscellaneous field operations. Crops grown in the Brown soil zone had the lowest carbon footprint, averaging 0.46 kg $ CO_{2} $e $ kg^{−1} $ of grain, whereas crops grown in the Black soil zone had a larger average carbon footprint of 0.83 kg $ CO_{2} $e $ kg^{−1} $ of grain. The average carbon footprint for crops grown in the Dark Brown soil zone was intermediate to the other two at 0.61 kg $ CO_{2} $e $ kg^{−1} $ of grain. One kilogram of grain product emitted 0.80 kg $ CO_{2} $e for canola (Brassica napus L.), 0.59 for mustard (Brassica juncea L.) and flaxseed (Linum usitatissimum L.), 0.46 for spring wheat (Triticum aestivum L.), and 0.20 to 0.33 kg $ CO_{2} $e for chickpea (Cicer arietinum L.), dry pea (Pisum sativum L.), and lentil (Lens culinaris Medik.). Durum wheat (T. aestivum L.) preceded by an N-fixing crop (i.e., pulses) emitted total greenhouse gases of 673 kg $ CO_{2} $e, 20% lower than when the crop was preceded by a cereal crop. Similarly, durum wheat preceded by an oilseed emitted 744 kg $ CO_{2} $e, 11% lower than when preceded by a cereal. The carbon footprint for durum grown after a pulse was 0.25 kg $ CO_{2} $e per kg of the grain and 0.28 kg $ CO_{2} $e per kg of the grain when grown after an oilseed: a reduction in the carbon footprint of 24% to 32% than when grown after a cereal. The average carbon footprint can be lowered by as much as 24% for crops grown in the Black, 28% in the Dark Brown, and 37% in the Brown soil zones, through improved agronomic practices, increased N use efficiency, use of diversified cropping systems, adoption of crop cultivars with high harvest index, and the use of soil bioresources such as P-solublizers and arbuscular mycorrhizal fungi in crop production. |
abstractGer |
Abstract The Earth’s climate is rapidly changing largely due to increasing anthropogenic greenhouse gas (GHG) emissions. Agricultural practices during crop production, food processing, and product marketing all generate GHG, contributing to the global climate change. The general public and farmers are urging the development and adoption of effective measures to reduce GHG emissions from all agricultural activities and sectors. However, quantitative information is not available in regard to what strategies and practices should be adopted to reduce emission from agriculture and how crop productivity would affect the intensity of GHG emission. To provide the potential solution, we estimated the carbon footprint [i.e., the total amount of GHG associated with the production and distribution of a given food product expressed in carbon dioxide equivalence ($ CO_{2} $e)] for some of the major field crops grown on the Canadian prairie and assessed the effect of crop sequences on the carbon footprint of durum wheat. Key strategies for reducing the carbon footprint of various field crops grown in semiarid areas were identified. Carbon footprints were estimated using emissions from (1) the decomposition of crop straw and roots; (2) the manufacture of N and P fertilizers and their rates of application; (3) the production of herbicides and fungicides; and (4) miscellaneous farm field operations. Production and application of N fertilizers accounted for 57% to 65% of the total footprint, those from crop residue decomposition 16% to 30%, and the remaining portion of the footprint included $ CO_{2} $e from the production of P fertilizer and pesticides, and from miscellaneous field operations. Crops grown in the Brown soil zone had the lowest carbon footprint, averaging 0.46 kg $ CO_{2} $e $ kg^{−1} $ of grain, whereas crops grown in the Black soil zone had a larger average carbon footprint of 0.83 kg $ CO_{2} $e $ kg^{−1} $ of grain. The average carbon footprint for crops grown in the Dark Brown soil zone was intermediate to the other two at 0.61 kg $ CO_{2} $e $ kg^{−1} $ of grain. One kilogram of grain product emitted 0.80 kg $ CO_{2} $e for canola (Brassica napus L.), 0.59 for mustard (Brassica juncea L.) and flaxseed (Linum usitatissimum L.), 0.46 for spring wheat (Triticum aestivum L.), and 0.20 to 0.33 kg $ CO_{2} $e for chickpea (Cicer arietinum L.), dry pea (Pisum sativum L.), and lentil (Lens culinaris Medik.). Durum wheat (T. aestivum L.) preceded by an N-fixing crop (i.e., pulses) emitted total greenhouse gases of 673 kg $ CO_{2} $e, 20% lower than when the crop was preceded by a cereal crop. Similarly, durum wheat preceded by an oilseed emitted 744 kg $ CO_{2} $e, 11% lower than when preceded by a cereal. The carbon footprint for durum grown after a pulse was 0.25 kg $ CO_{2} $e per kg of the grain and 0.28 kg $ CO_{2} $e per kg of the grain when grown after an oilseed: a reduction in the carbon footprint of 24% to 32% than when grown after a cereal. The average carbon footprint can be lowered by as much as 24% for crops grown in the Black, 28% in the Dark Brown, and 37% in the Brown soil zones, through improved agronomic practices, increased N use efficiency, use of diversified cropping systems, adoption of crop cultivars with high harvest index, and the use of soil bioresources such as P-solublizers and arbuscular mycorrhizal fungi in crop production. |
abstract_unstemmed |
Abstract The Earth’s climate is rapidly changing largely due to increasing anthropogenic greenhouse gas (GHG) emissions. Agricultural practices during crop production, food processing, and product marketing all generate GHG, contributing to the global climate change. The general public and farmers are urging the development and adoption of effective measures to reduce GHG emissions from all agricultural activities and sectors. However, quantitative information is not available in regard to what strategies and practices should be adopted to reduce emission from agriculture and how crop productivity would affect the intensity of GHG emission. To provide the potential solution, we estimated the carbon footprint [i.e., the total amount of GHG associated with the production and distribution of a given food product expressed in carbon dioxide equivalence ($ CO_{2} $e)] for some of the major field crops grown on the Canadian prairie and assessed the effect of crop sequences on the carbon footprint of durum wheat. Key strategies for reducing the carbon footprint of various field crops grown in semiarid areas were identified. Carbon footprints were estimated using emissions from (1) the decomposition of crop straw and roots; (2) the manufacture of N and P fertilizers and their rates of application; (3) the production of herbicides and fungicides; and (4) miscellaneous farm field operations. Production and application of N fertilizers accounted for 57% to 65% of the total footprint, those from crop residue decomposition 16% to 30%, and the remaining portion of the footprint included $ CO_{2} $e from the production of P fertilizer and pesticides, and from miscellaneous field operations. Crops grown in the Brown soil zone had the lowest carbon footprint, averaging 0.46 kg $ CO_{2} $e $ kg^{−1} $ of grain, whereas crops grown in the Black soil zone had a larger average carbon footprint of 0.83 kg $ CO_{2} $e $ kg^{−1} $ of grain. The average carbon footprint for crops grown in the Dark Brown soil zone was intermediate to the other two at 0.61 kg $ CO_{2} $e $ kg^{−1} $ of grain. One kilogram of grain product emitted 0.80 kg $ CO_{2} $e for canola (Brassica napus L.), 0.59 for mustard (Brassica juncea L.) and flaxseed (Linum usitatissimum L.), 0.46 for spring wheat (Triticum aestivum L.), and 0.20 to 0.33 kg $ CO_{2} $e for chickpea (Cicer arietinum L.), dry pea (Pisum sativum L.), and lentil (Lens culinaris Medik.). Durum wheat (T. aestivum L.) preceded by an N-fixing crop (i.e., pulses) emitted total greenhouse gases of 673 kg $ CO_{2} $e, 20% lower than when the crop was preceded by a cereal crop. Similarly, durum wheat preceded by an oilseed emitted 744 kg $ CO_{2} $e, 11% lower than when preceded by a cereal. The carbon footprint for durum grown after a pulse was 0.25 kg $ CO_{2} $e per kg of the grain and 0.28 kg $ CO_{2} $e per kg of the grain when grown after an oilseed: a reduction in the carbon footprint of 24% to 32% than when grown after a cereal. The average carbon footprint can be lowered by as much as 24% for crops grown in the Black, 28% in the Dark Brown, and 37% in the Brown soil zones, through improved agronomic practices, increased N use efficiency, use of diversified cropping systems, adoption of crop cultivars with high harvest index, and the use of soil bioresources such as P-solublizers and arbuscular mycorrhizal fungi in crop production. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Strategies for reducing the carbon footprint of field crops for semiarid areas. A review |
url |
https://dx.doi.org/10.1007/s13593-011-0011-7 |
remote_bool |
true |
author2 |
Liang, Chang Hamel, Chantal Cutforth, Herb Wang, Hong |
author2Str |
Liang, Chang Hamel, Chantal Cutforth, Herb Wang, Hong |
ppnlink |
312838921 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s13593-011-0011-7 |
up_date |
2024-07-04T01:39:31.377Z |
_version_ |
1803610668541149184 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR031882420</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519140544.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13593-011-0011-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR031882420</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13593-011-0011-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">580</subfield><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gan, Yantai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Strategies for reducing the carbon footprint of field crops for semiarid areas. A review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The Earth’s climate is rapidly changing largely due to increasing anthropogenic greenhouse gas (GHG) emissions. Agricultural practices during crop production, food processing, and product marketing all generate GHG, contributing to the global climate change. The general public and farmers are urging the development and adoption of effective measures to reduce GHG emissions from all agricultural activities and sectors. However, quantitative information is not available in regard to what strategies and practices should be adopted to reduce emission from agriculture and how crop productivity would affect the intensity of GHG emission. To provide the potential solution, we estimated the carbon footprint [i.e., the total amount of GHG associated with the production and distribution of a given food product expressed in carbon dioxide equivalence ($ CO_{2} $e)] for some of the major field crops grown on the Canadian prairie and assessed the effect of crop sequences on the carbon footprint of durum wheat. Key strategies for reducing the carbon footprint of various field crops grown in semiarid areas were identified. Carbon footprints were estimated using emissions from (1) the decomposition of crop straw and roots; (2) the manufacture of N and P fertilizers and their rates of application; (3) the production of herbicides and fungicides; and (4) miscellaneous farm field operations. Production and application of N fertilizers accounted for 57% to 65% of the total footprint, those from crop residue decomposition 16% to 30%, and the remaining portion of the footprint included $ CO_{2} $e from the production of P fertilizer and pesticides, and from miscellaneous field operations. Crops grown in the Brown soil zone had the lowest carbon footprint, averaging 0.46 kg $ CO_{2} $e $ kg^{−1} $ of grain, whereas crops grown in the Black soil zone had a larger average carbon footprint of 0.83 kg $ CO_{2} $e $ kg^{−1} $ of grain. The average carbon footprint for crops grown in the Dark Brown soil zone was intermediate to the other two at 0.61 kg $ CO_{2} $e $ kg^{−1} $ of grain. One kilogram of grain product emitted 0.80 kg $ CO_{2} $e for canola (Brassica napus L.), 0.59 for mustard (Brassica juncea L.) and flaxseed (Linum usitatissimum L.), 0.46 for spring wheat (Triticum aestivum L.), and 0.20 to 0.33 kg $ CO_{2} $e for chickpea (Cicer arietinum L.), dry pea (Pisum sativum L.), and lentil (Lens culinaris Medik.). Durum wheat (T. aestivum L.) preceded by an N-fixing crop (i.e., pulses) emitted total greenhouse gases of 673 kg $ CO_{2} $e, 20% lower than when the crop was preceded by a cereal crop. Similarly, durum wheat preceded by an oilseed emitted 744 kg $ CO_{2} $e, 11% lower than when preceded by a cereal. The carbon footprint for durum grown after a pulse was 0.25 kg $ CO_{2} $e per kg of the grain and 0.28 kg $ CO_{2} $e per kg of the grain when grown after an oilseed: a reduction in the carbon footprint of 24% to 32% than when grown after a cereal. The average carbon footprint can be lowered by as much as 24% for crops grown in the Black, 28% in the Dark Brown, and 37% in the Brown soil zones, through improved agronomic practices, increased N use efficiency, use of diversified cropping systems, adoption of crop cultivars with high harvest index, and the use of soil bioresources such as P-solublizers and arbuscular mycorrhizal fungi in crop production.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon footprint</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Legumes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oilseeds</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Broadleaf crops</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biochar</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crop diversification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon sequestration</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Straw management</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Input</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">N-fixation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Chang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hamel, Chantal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cutforth, Herb</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Agronomy for sustainable development</subfield><subfield code="d">Berlin : Springer, 1981</subfield><subfield code="g">31(2011), 4 vom: 08. März, Seite 643-656</subfield><subfield code="w">(DE-627)312838921</subfield><subfield code="w">(DE-600)2012314-0</subfield><subfield code="x">1773-0155</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:4</subfield><subfield code="g">day:08</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:643-656</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13593-011-0011-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.16</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2011</subfield><subfield code="e">4</subfield><subfield code="b">08</subfield><subfield code="c">03</subfield><subfield code="h">643-656</subfield></datafield></record></collection>
|
score |
7.4018383 |