Impact of deadwood decomposition on soil organic carbon sequestration in Estonian and Polish forests
Key message The deadwood of different tree species with different decomposition rates affects soil organic carbon sequestration in Estonian and Polish forests. In warmer conditions (Poland), the deadwood decomposition process had a higher rate than in cooler Estonian forests. Soil organic matter fra...
Ausführliche Beschreibung
Autor*in: |
Błońska, Ewa [verfasserIn] Lasota, Jarosław [verfasserIn] Tullus, Arvo [verfasserIn] Lutter, Reimo [verfasserIn] Ostonen, Ivika [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Annals of forest science - Paris : Springer, 1999, 76(2019), 4 vom: 29. Okt. |
---|---|
Übergeordnetes Werk: |
volume:76 ; year:2019 ; number:4 ; day:29 ; month:10 |
Links: |
---|
DOI / URN: |
10.1007/s13595-019-0889-9 |
---|
Katalog-ID: |
SPR031902693 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR031902693 | ||
003 | DE-627 | ||
005 | 20220111194502.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s13595-019-0889-9 |2 doi | |
035 | |a (DE-627)SPR031902693 | ||
035 | |a (SPR)s13595-019-0889-9-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 630 |a 640 |q ASE |
084 | |a 48.00 |2 bkl | ||
100 | 1 | |a Błońska, Ewa |e verfasserin |4 aut | |
245 | 1 | 0 | |a Impact of deadwood decomposition on soil organic carbon sequestration in Estonian and Polish forests |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Key message The deadwood of different tree species with different decomposition rates affects soil organic carbon sequestration in Estonian and Polish forests. In warmer conditions (Poland), the deadwood decomposition process had a higher rate than in cooler Estonian forests. Soil organic matter fractions analysis can be used to assess the stability and turnover of organic carbon between deadwood and soil in different experimental localities. Context Deadwood is an important element of properly functioning forest ecosystem and plays a very important role in the maintenance of biodiversity, soil fertility, and carbon sequestration. Aims The main aim was to estimate how decomposition of deadwood of different tree species with different decomposition rates affects soil organic carbon sequestration in Estonian and Polish forests. Methods The investigation was carried out in six forests in Poland (51° N) and Estonia (58° N). The study localities differ in their mean annual air temperature (of 2 °C) and the length of the growing season (of 1 month). The deadwood logs of Norway spruce (Picea abies (L.) Karst.), common aspen (Populus tremula L.), and silver birch (Betula pendula Roth) were included in the research. Logs in three stages of decomposition (III–V) were selected for the analysis. Results There were differences in the stock of soil organic carbon in two experimental localities. There was a higher soil carbon content under logs and in their direct vicinity in Polish forests compared to those in the cooler climate of Estonia. Considerable differences in the amount of soil organic matter were found. The light fraction constituted the greatest quantitative component of organic matter of soils associated with deadwood. Conclusion A higher carbon content in surface soil horizons as an effect of deadwood decomposition was determined for the Polish (temperate) forests. More decomposed deadwood affected soil organic matter stabilization more strongly than less decayed deadwood. This relationship was clearer in Polish forests. Higher temperatures and longer growing periods primarily influenced the increase of soil organic matter free light fraction concentrations directly under and in close proximity to logs of the studied species. The slower release of deadwood decomposition products was noted in Estonian (hemiboreal) forests. The soil organic matter mineral fraction increased under aspen and spruce logs at advanced decomposition in Poland. | ||
650 | 4 | |a Carbon accumulation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Decomposition stage |7 (dpeaa)DE-He213 | |
650 | 4 | |a Soil organic matter fractions |7 (dpeaa)DE-He213 | |
700 | 1 | |a Lasota, Jarosław |e verfasserin |4 aut | |
700 | 1 | |a Tullus, Arvo |e verfasserin |4 aut | |
700 | 1 | |a Lutter, Reimo |e verfasserin |4 aut | |
700 | 1 | |a Ostonen, Ivika |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Annals of forest science |d Paris : Springer, 1999 |g 76(2019), 4 vom: 29. Okt. |w (DE-627)312842457 |w (DE-600)2012340-1 |x 1297-966X |7 nnns |
773 | 1 | 8 | |g volume:76 |g year:2019 |g number:4 |g day:29 |g month:10 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s13595-019-0889-9 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-FOR | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 48.00 |q ASE |
951 | |a AR | ||
952 | |d 76 |j 2019 |e 4 |b 29 |c 10 |
author_variant |
e b eb j l jl a t at r l rl i o io |
---|---|
matchkey_str |
article:1297966X:2019----::matfedodeopstoosiogncabneusrtoi |
hierarchy_sort_str |
2019 |
bklnumber |
48.00 |
publishDate |
2019 |
allfields |
10.1007/s13595-019-0889-9 doi (DE-627)SPR031902693 (SPR)s13595-019-0889-9-e DE-627 ger DE-627 rakwb eng 630 640 ASE 48.00 bkl Błońska, Ewa verfasserin aut Impact of deadwood decomposition on soil organic carbon sequestration in Estonian and Polish forests 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Key message The deadwood of different tree species with different decomposition rates affects soil organic carbon sequestration in Estonian and Polish forests. In warmer conditions (Poland), the deadwood decomposition process had a higher rate than in cooler Estonian forests. Soil organic matter fractions analysis can be used to assess the stability and turnover of organic carbon between deadwood and soil in different experimental localities. Context Deadwood is an important element of properly functioning forest ecosystem and plays a very important role in the maintenance of biodiversity, soil fertility, and carbon sequestration. Aims The main aim was to estimate how decomposition of deadwood of different tree species with different decomposition rates affects soil organic carbon sequestration in Estonian and Polish forests. Methods The investigation was carried out in six forests in Poland (51° N) and Estonia (58° N). The study localities differ in their mean annual air temperature (of 2 °C) and the length of the growing season (of 1 month). The deadwood logs of Norway spruce (Picea abies (L.) Karst.), common aspen (Populus tremula L.), and silver birch (Betula pendula Roth) were included in the research. Logs in three stages of decomposition (III–V) were selected for the analysis. Results There were differences in the stock of soil organic carbon in two experimental localities. There was a higher soil carbon content under logs and in their direct vicinity in Polish forests compared to those in the cooler climate of Estonia. Considerable differences in the amount of soil organic matter were found. The light fraction constituted the greatest quantitative component of organic matter of soils associated with deadwood. Conclusion A higher carbon content in surface soil horizons as an effect of deadwood decomposition was determined for the Polish (temperate) forests. More decomposed deadwood affected soil organic matter stabilization more strongly than less decayed deadwood. This relationship was clearer in Polish forests. Higher temperatures and longer growing periods primarily influenced the increase of soil organic matter free light fraction concentrations directly under and in close proximity to logs of the studied species. The slower release of deadwood decomposition products was noted in Estonian (hemiboreal) forests. The soil organic matter mineral fraction increased under aspen and spruce logs at advanced decomposition in Poland. Carbon accumulation (dpeaa)DE-He213 Decomposition stage (dpeaa)DE-He213 Soil organic matter fractions (dpeaa)DE-He213 Lasota, Jarosław verfasserin aut Tullus, Arvo verfasserin aut Lutter, Reimo verfasserin aut Ostonen, Ivika verfasserin aut Enthalten in Annals of forest science Paris : Springer, 1999 76(2019), 4 vom: 29. Okt. (DE-627)312842457 (DE-600)2012340-1 1297-966X nnns volume:76 year:2019 number:4 day:29 month:10 https://dx.doi.org/10.1007/s13595-019-0889-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-FOR SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 48.00 ASE AR 76 2019 4 29 10 |
spelling |
10.1007/s13595-019-0889-9 doi (DE-627)SPR031902693 (SPR)s13595-019-0889-9-e DE-627 ger DE-627 rakwb eng 630 640 ASE 48.00 bkl Błońska, Ewa verfasserin aut Impact of deadwood decomposition on soil organic carbon sequestration in Estonian and Polish forests 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Key message The deadwood of different tree species with different decomposition rates affects soil organic carbon sequestration in Estonian and Polish forests. In warmer conditions (Poland), the deadwood decomposition process had a higher rate than in cooler Estonian forests. Soil organic matter fractions analysis can be used to assess the stability and turnover of organic carbon between deadwood and soil in different experimental localities. Context Deadwood is an important element of properly functioning forest ecosystem and plays a very important role in the maintenance of biodiversity, soil fertility, and carbon sequestration. Aims The main aim was to estimate how decomposition of deadwood of different tree species with different decomposition rates affects soil organic carbon sequestration in Estonian and Polish forests. Methods The investigation was carried out in six forests in Poland (51° N) and Estonia (58° N). The study localities differ in their mean annual air temperature (of 2 °C) and the length of the growing season (of 1 month). The deadwood logs of Norway spruce (Picea abies (L.) Karst.), common aspen (Populus tremula L.), and silver birch (Betula pendula Roth) were included in the research. Logs in three stages of decomposition (III–V) were selected for the analysis. Results There were differences in the stock of soil organic carbon in two experimental localities. There was a higher soil carbon content under logs and in their direct vicinity in Polish forests compared to those in the cooler climate of Estonia. Considerable differences in the amount of soil organic matter were found. The light fraction constituted the greatest quantitative component of organic matter of soils associated with deadwood. Conclusion A higher carbon content in surface soil horizons as an effect of deadwood decomposition was determined for the Polish (temperate) forests. More decomposed deadwood affected soil organic matter stabilization more strongly than less decayed deadwood. This relationship was clearer in Polish forests. Higher temperatures and longer growing periods primarily influenced the increase of soil organic matter free light fraction concentrations directly under and in close proximity to logs of the studied species. The slower release of deadwood decomposition products was noted in Estonian (hemiboreal) forests. The soil organic matter mineral fraction increased under aspen and spruce logs at advanced decomposition in Poland. Carbon accumulation (dpeaa)DE-He213 Decomposition stage (dpeaa)DE-He213 Soil organic matter fractions (dpeaa)DE-He213 Lasota, Jarosław verfasserin aut Tullus, Arvo verfasserin aut Lutter, Reimo verfasserin aut Ostonen, Ivika verfasserin aut Enthalten in Annals of forest science Paris : Springer, 1999 76(2019), 4 vom: 29. Okt. (DE-627)312842457 (DE-600)2012340-1 1297-966X nnns volume:76 year:2019 number:4 day:29 month:10 https://dx.doi.org/10.1007/s13595-019-0889-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-FOR SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 48.00 ASE AR 76 2019 4 29 10 |
allfields_unstemmed |
10.1007/s13595-019-0889-9 doi (DE-627)SPR031902693 (SPR)s13595-019-0889-9-e DE-627 ger DE-627 rakwb eng 630 640 ASE 48.00 bkl Błońska, Ewa verfasserin aut Impact of deadwood decomposition on soil organic carbon sequestration in Estonian and Polish forests 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Key message The deadwood of different tree species with different decomposition rates affects soil organic carbon sequestration in Estonian and Polish forests. In warmer conditions (Poland), the deadwood decomposition process had a higher rate than in cooler Estonian forests. Soil organic matter fractions analysis can be used to assess the stability and turnover of organic carbon between deadwood and soil in different experimental localities. Context Deadwood is an important element of properly functioning forest ecosystem and plays a very important role in the maintenance of biodiversity, soil fertility, and carbon sequestration. Aims The main aim was to estimate how decomposition of deadwood of different tree species with different decomposition rates affects soil organic carbon sequestration in Estonian and Polish forests. Methods The investigation was carried out in six forests in Poland (51° N) and Estonia (58° N). The study localities differ in their mean annual air temperature (of 2 °C) and the length of the growing season (of 1 month). The deadwood logs of Norway spruce (Picea abies (L.) Karst.), common aspen (Populus tremula L.), and silver birch (Betula pendula Roth) were included in the research. Logs in three stages of decomposition (III–V) were selected for the analysis. Results There were differences in the stock of soil organic carbon in two experimental localities. There was a higher soil carbon content under logs and in their direct vicinity in Polish forests compared to those in the cooler climate of Estonia. Considerable differences in the amount of soil organic matter were found. The light fraction constituted the greatest quantitative component of organic matter of soils associated with deadwood. Conclusion A higher carbon content in surface soil horizons as an effect of deadwood decomposition was determined for the Polish (temperate) forests. More decomposed deadwood affected soil organic matter stabilization more strongly than less decayed deadwood. This relationship was clearer in Polish forests. Higher temperatures and longer growing periods primarily influenced the increase of soil organic matter free light fraction concentrations directly under and in close proximity to logs of the studied species. The slower release of deadwood decomposition products was noted in Estonian (hemiboreal) forests. The soil organic matter mineral fraction increased under aspen and spruce logs at advanced decomposition in Poland. Carbon accumulation (dpeaa)DE-He213 Decomposition stage (dpeaa)DE-He213 Soil organic matter fractions (dpeaa)DE-He213 Lasota, Jarosław verfasserin aut Tullus, Arvo verfasserin aut Lutter, Reimo verfasserin aut Ostonen, Ivika verfasserin aut Enthalten in Annals of forest science Paris : Springer, 1999 76(2019), 4 vom: 29. Okt. (DE-627)312842457 (DE-600)2012340-1 1297-966X nnns volume:76 year:2019 number:4 day:29 month:10 https://dx.doi.org/10.1007/s13595-019-0889-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-FOR SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 48.00 ASE AR 76 2019 4 29 10 |
allfieldsGer |
10.1007/s13595-019-0889-9 doi (DE-627)SPR031902693 (SPR)s13595-019-0889-9-e DE-627 ger DE-627 rakwb eng 630 640 ASE 48.00 bkl Błońska, Ewa verfasserin aut Impact of deadwood decomposition on soil organic carbon sequestration in Estonian and Polish forests 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Key message The deadwood of different tree species with different decomposition rates affects soil organic carbon sequestration in Estonian and Polish forests. In warmer conditions (Poland), the deadwood decomposition process had a higher rate than in cooler Estonian forests. Soil organic matter fractions analysis can be used to assess the stability and turnover of organic carbon between deadwood and soil in different experimental localities. Context Deadwood is an important element of properly functioning forest ecosystem and plays a very important role in the maintenance of biodiversity, soil fertility, and carbon sequestration. Aims The main aim was to estimate how decomposition of deadwood of different tree species with different decomposition rates affects soil organic carbon sequestration in Estonian and Polish forests. Methods The investigation was carried out in six forests in Poland (51° N) and Estonia (58° N). The study localities differ in their mean annual air temperature (of 2 °C) and the length of the growing season (of 1 month). The deadwood logs of Norway spruce (Picea abies (L.) Karst.), common aspen (Populus tremula L.), and silver birch (Betula pendula Roth) were included in the research. Logs in three stages of decomposition (III–V) were selected for the analysis. Results There were differences in the stock of soil organic carbon in two experimental localities. There was a higher soil carbon content under logs and in their direct vicinity in Polish forests compared to those in the cooler climate of Estonia. Considerable differences in the amount of soil organic matter were found. The light fraction constituted the greatest quantitative component of organic matter of soils associated with deadwood. Conclusion A higher carbon content in surface soil horizons as an effect of deadwood decomposition was determined for the Polish (temperate) forests. More decomposed deadwood affected soil organic matter stabilization more strongly than less decayed deadwood. This relationship was clearer in Polish forests. Higher temperatures and longer growing periods primarily influenced the increase of soil organic matter free light fraction concentrations directly under and in close proximity to logs of the studied species. The slower release of deadwood decomposition products was noted in Estonian (hemiboreal) forests. The soil organic matter mineral fraction increased under aspen and spruce logs at advanced decomposition in Poland. Carbon accumulation (dpeaa)DE-He213 Decomposition stage (dpeaa)DE-He213 Soil organic matter fractions (dpeaa)DE-He213 Lasota, Jarosław verfasserin aut Tullus, Arvo verfasserin aut Lutter, Reimo verfasserin aut Ostonen, Ivika verfasserin aut Enthalten in Annals of forest science Paris : Springer, 1999 76(2019), 4 vom: 29. Okt. (DE-627)312842457 (DE-600)2012340-1 1297-966X nnns volume:76 year:2019 number:4 day:29 month:10 https://dx.doi.org/10.1007/s13595-019-0889-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-FOR SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 48.00 ASE AR 76 2019 4 29 10 |
allfieldsSound |
10.1007/s13595-019-0889-9 doi (DE-627)SPR031902693 (SPR)s13595-019-0889-9-e DE-627 ger DE-627 rakwb eng 630 640 ASE 48.00 bkl Błońska, Ewa verfasserin aut Impact of deadwood decomposition on soil organic carbon sequestration in Estonian and Polish forests 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Key message The deadwood of different tree species with different decomposition rates affects soil organic carbon sequestration in Estonian and Polish forests. In warmer conditions (Poland), the deadwood decomposition process had a higher rate than in cooler Estonian forests. Soil organic matter fractions analysis can be used to assess the stability and turnover of organic carbon between deadwood and soil in different experimental localities. Context Deadwood is an important element of properly functioning forest ecosystem and plays a very important role in the maintenance of biodiversity, soil fertility, and carbon sequestration. Aims The main aim was to estimate how decomposition of deadwood of different tree species with different decomposition rates affects soil organic carbon sequestration in Estonian and Polish forests. Methods The investigation was carried out in six forests in Poland (51° N) and Estonia (58° N). The study localities differ in their mean annual air temperature (of 2 °C) and the length of the growing season (of 1 month). The deadwood logs of Norway spruce (Picea abies (L.) Karst.), common aspen (Populus tremula L.), and silver birch (Betula pendula Roth) were included in the research. Logs in three stages of decomposition (III–V) were selected for the analysis. Results There were differences in the stock of soil organic carbon in two experimental localities. There was a higher soil carbon content under logs and in their direct vicinity in Polish forests compared to those in the cooler climate of Estonia. Considerable differences in the amount of soil organic matter were found. The light fraction constituted the greatest quantitative component of organic matter of soils associated with deadwood. Conclusion A higher carbon content in surface soil horizons as an effect of deadwood decomposition was determined for the Polish (temperate) forests. More decomposed deadwood affected soil organic matter stabilization more strongly than less decayed deadwood. This relationship was clearer in Polish forests. Higher temperatures and longer growing periods primarily influenced the increase of soil organic matter free light fraction concentrations directly under and in close proximity to logs of the studied species. The slower release of deadwood decomposition products was noted in Estonian (hemiboreal) forests. The soil organic matter mineral fraction increased under aspen and spruce logs at advanced decomposition in Poland. Carbon accumulation (dpeaa)DE-He213 Decomposition stage (dpeaa)DE-He213 Soil organic matter fractions (dpeaa)DE-He213 Lasota, Jarosław verfasserin aut Tullus, Arvo verfasserin aut Lutter, Reimo verfasserin aut Ostonen, Ivika verfasserin aut Enthalten in Annals of forest science Paris : Springer, 1999 76(2019), 4 vom: 29. Okt. (DE-627)312842457 (DE-600)2012340-1 1297-966X nnns volume:76 year:2019 number:4 day:29 month:10 https://dx.doi.org/10.1007/s13595-019-0889-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-FOR SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 48.00 ASE AR 76 2019 4 29 10 |
language |
English |
source |
Enthalten in Annals of forest science 76(2019), 4 vom: 29. Okt. volume:76 year:2019 number:4 day:29 month:10 |
sourceStr |
Enthalten in Annals of forest science 76(2019), 4 vom: 29. Okt. volume:76 year:2019 number:4 day:29 month:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Carbon accumulation Decomposition stage Soil organic matter fractions |
dewey-raw |
630 |
isfreeaccess_bool |
true |
container_title |
Annals of forest science |
authorswithroles_txt_mv |
Błońska, Ewa @@aut@@ Lasota, Jarosław @@aut@@ Tullus, Arvo @@aut@@ Lutter, Reimo @@aut@@ Ostonen, Ivika @@aut@@ |
publishDateDaySort_date |
2019-10-29T00:00:00Z |
hierarchy_top_id |
312842457 |
dewey-sort |
3630 |
id |
SPR031902693 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR031902693</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111194502.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13595-019-0889-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR031902693</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13595-019-0889-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Błońska, Ewa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Impact of deadwood decomposition on soil organic carbon sequestration in Estonian and Polish forests</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Key message The deadwood of different tree species with different decomposition rates affects soil organic carbon sequestration in Estonian and Polish forests. In warmer conditions (Poland), the deadwood decomposition process had a higher rate than in cooler Estonian forests. Soil organic matter fractions analysis can be used to assess the stability and turnover of organic carbon between deadwood and soil in different experimental localities. Context Deadwood is an important element of properly functioning forest ecosystem and plays a very important role in the maintenance of biodiversity, soil fertility, and carbon sequestration. Aims The main aim was to estimate how decomposition of deadwood of different tree species with different decomposition rates affects soil organic carbon sequestration in Estonian and Polish forests. Methods The investigation was carried out in six forests in Poland (51° N) and Estonia (58° N). The study localities differ in their mean annual air temperature (of 2 °C) and the length of the growing season (of 1 month). The deadwood logs of Norway spruce (Picea abies (L.) Karst.), common aspen (Populus tremula L.), and silver birch (Betula pendula Roth) were included in the research. Logs in three stages of decomposition (III–V) were selected for the analysis. Results There were differences in the stock of soil organic carbon in two experimental localities. There was a higher soil carbon content under logs and in their direct vicinity in Polish forests compared to those in the cooler climate of Estonia. Considerable differences in the amount of soil organic matter were found. The light fraction constituted the greatest quantitative component of organic matter of soils associated with deadwood. Conclusion A higher carbon content in surface soil horizons as an effect of deadwood decomposition was determined for the Polish (temperate) forests. More decomposed deadwood affected soil organic matter stabilization more strongly than less decayed deadwood. This relationship was clearer in Polish forests. Higher temperatures and longer growing periods primarily influenced the increase of soil organic matter free light fraction concentrations directly under and in close proximity to logs of the studied species. The slower release of deadwood decomposition products was noted in Estonian (hemiboreal) forests. The soil organic matter mineral fraction increased under aspen and spruce logs at advanced decomposition in Poland.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon accumulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decomposition stage</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil organic matter fractions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lasota, Jarosław</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tullus, Arvo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lutter, Reimo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ostonen, Ivika</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of forest science</subfield><subfield code="d">Paris : Springer, 1999</subfield><subfield code="g">76(2019), 4 vom: 29. Okt.</subfield><subfield code="w">(DE-627)312842457</subfield><subfield code="w">(DE-600)2012340-1</subfield><subfield code="x">1297-966X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:76</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:4</subfield><subfield code="g">day:29</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13595-019-0889-9</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">76</subfield><subfield code="j">2019</subfield><subfield code="e">4</subfield><subfield code="b">29</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
author |
Błońska, Ewa |
spellingShingle |
Błońska, Ewa ddc 630 bkl 48.00 misc Carbon accumulation misc Decomposition stage misc Soil organic matter fractions Impact of deadwood decomposition on soil organic carbon sequestration in Estonian and Polish forests |
authorStr |
Błońska, Ewa |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)312842457 |
format |
electronic Article |
dewey-ones |
630 - Agriculture & related technologies 640 - Home & family management |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1297-966X |
topic_title |
630 640 ASE 48.00 bkl Impact of deadwood decomposition on soil organic carbon sequestration in Estonian and Polish forests Carbon accumulation (dpeaa)DE-He213 Decomposition stage (dpeaa)DE-He213 Soil organic matter fractions (dpeaa)DE-He213 |
topic |
ddc 630 bkl 48.00 misc Carbon accumulation misc Decomposition stage misc Soil organic matter fractions |
topic_unstemmed |
ddc 630 bkl 48.00 misc Carbon accumulation misc Decomposition stage misc Soil organic matter fractions |
topic_browse |
ddc 630 bkl 48.00 misc Carbon accumulation misc Decomposition stage misc Soil organic matter fractions |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Annals of forest science |
hierarchy_parent_id |
312842457 |
dewey-tens |
630 - Agriculture 640 - Home & family management |
hierarchy_top_title |
Annals of forest science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)312842457 (DE-600)2012340-1 |
title |
Impact of deadwood decomposition on soil organic carbon sequestration in Estonian and Polish forests |
ctrlnum |
(DE-627)SPR031902693 (SPR)s13595-019-0889-9-e |
title_full |
Impact of deadwood decomposition on soil organic carbon sequestration in Estonian and Polish forests |
author_sort |
Błońska, Ewa |
journal |
Annals of forest science |
journalStr |
Annals of forest science |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Błońska, Ewa Lasota, Jarosław Tullus, Arvo Lutter, Reimo Ostonen, Ivika |
container_volume |
76 |
class |
630 640 ASE 48.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Błońska, Ewa |
doi_str_mv |
10.1007/s13595-019-0889-9 |
dewey-full |
630 640 |
author2-role |
verfasserin |
title_sort |
impact of deadwood decomposition on soil organic carbon sequestration in estonian and polish forests |
title_auth |
Impact of deadwood decomposition on soil organic carbon sequestration in Estonian and Polish forests |
abstract |
Key message The deadwood of different tree species with different decomposition rates affects soil organic carbon sequestration in Estonian and Polish forests. In warmer conditions (Poland), the deadwood decomposition process had a higher rate than in cooler Estonian forests. Soil organic matter fractions analysis can be used to assess the stability and turnover of organic carbon between deadwood and soil in different experimental localities. Context Deadwood is an important element of properly functioning forest ecosystem and plays a very important role in the maintenance of biodiversity, soil fertility, and carbon sequestration. Aims The main aim was to estimate how decomposition of deadwood of different tree species with different decomposition rates affects soil organic carbon sequestration in Estonian and Polish forests. Methods The investigation was carried out in six forests in Poland (51° N) and Estonia (58° N). The study localities differ in their mean annual air temperature (of 2 °C) and the length of the growing season (of 1 month). The deadwood logs of Norway spruce (Picea abies (L.) Karst.), common aspen (Populus tremula L.), and silver birch (Betula pendula Roth) were included in the research. Logs in three stages of decomposition (III–V) were selected for the analysis. Results There were differences in the stock of soil organic carbon in two experimental localities. There was a higher soil carbon content under logs and in their direct vicinity in Polish forests compared to those in the cooler climate of Estonia. Considerable differences in the amount of soil organic matter were found. The light fraction constituted the greatest quantitative component of organic matter of soils associated with deadwood. Conclusion A higher carbon content in surface soil horizons as an effect of deadwood decomposition was determined for the Polish (temperate) forests. More decomposed deadwood affected soil organic matter stabilization more strongly than less decayed deadwood. This relationship was clearer in Polish forests. Higher temperatures and longer growing periods primarily influenced the increase of soil organic matter free light fraction concentrations directly under and in close proximity to logs of the studied species. The slower release of deadwood decomposition products was noted in Estonian (hemiboreal) forests. The soil organic matter mineral fraction increased under aspen and spruce logs at advanced decomposition in Poland. |
abstractGer |
Key message The deadwood of different tree species with different decomposition rates affects soil organic carbon sequestration in Estonian and Polish forests. In warmer conditions (Poland), the deadwood decomposition process had a higher rate than in cooler Estonian forests. Soil organic matter fractions analysis can be used to assess the stability and turnover of organic carbon between deadwood and soil in different experimental localities. Context Deadwood is an important element of properly functioning forest ecosystem and plays a very important role in the maintenance of biodiversity, soil fertility, and carbon sequestration. Aims The main aim was to estimate how decomposition of deadwood of different tree species with different decomposition rates affects soil organic carbon sequestration in Estonian and Polish forests. Methods The investigation was carried out in six forests in Poland (51° N) and Estonia (58° N). The study localities differ in their mean annual air temperature (of 2 °C) and the length of the growing season (of 1 month). The deadwood logs of Norway spruce (Picea abies (L.) Karst.), common aspen (Populus tremula L.), and silver birch (Betula pendula Roth) were included in the research. Logs in three stages of decomposition (III–V) were selected for the analysis. Results There were differences in the stock of soil organic carbon in two experimental localities. There was a higher soil carbon content under logs and in their direct vicinity in Polish forests compared to those in the cooler climate of Estonia. Considerable differences in the amount of soil organic matter were found. The light fraction constituted the greatest quantitative component of organic matter of soils associated with deadwood. Conclusion A higher carbon content in surface soil horizons as an effect of deadwood decomposition was determined for the Polish (temperate) forests. More decomposed deadwood affected soil organic matter stabilization more strongly than less decayed deadwood. This relationship was clearer in Polish forests. Higher temperatures and longer growing periods primarily influenced the increase of soil organic matter free light fraction concentrations directly under and in close proximity to logs of the studied species. The slower release of deadwood decomposition products was noted in Estonian (hemiboreal) forests. The soil organic matter mineral fraction increased under aspen and spruce logs at advanced decomposition in Poland. |
abstract_unstemmed |
Key message The deadwood of different tree species with different decomposition rates affects soil organic carbon sequestration in Estonian and Polish forests. In warmer conditions (Poland), the deadwood decomposition process had a higher rate than in cooler Estonian forests. Soil organic matter fractions analysis can be used to assess the stability and turnover of organic carbon between deadwood and soil in different experimental localities. Context Deadwood is an important element of properly functioning forest ecosystem and plays a very important role in the maintenance of biodiversity, soil fertility, and carbon sequestration. Aims The main aim was to estimate how decomposition of deadwood of different tree species with different decomposition rates affects soil organic carbon sequestration in Estonian and Polish forests. Methods The investigation was carried out in six forests in Poland (51° N) and Estonia (58° N). The study localities differ in their mean annual air temperature (of 2 °C) and the length of the growing season (of 1 month). The deadwood logs of Norway spruce (Picea abies (L.) Karst.), common aspen (Populus tremula L.), and silver birch (Betula pendula Roth) were included in the research. Logs in three stages of decomposition (III–V) were selected for the analysis. Results There were differences in the stock of soil organic carbon in two experimental localities. There was a higher soil carbon content under logs and in their direct vicinity in Polish forests compared to those in the cooler climate of Estonia. Considerable differences in the amount of soil organic matter were found. The light fraction constituted the greatest quantitative component of organic matter of soils associated with deadwood. Conclusion A higher carbon content in surface soil horizons as an effect of deadwood decomposition was determined for the Polish (temperate) forests. More decomposed deadwood affected soil organic matter stabilization more strongly than less decayed deadwood. This relationship was clearer in Polish forests. Higher temperatures and longer growing periods primarily influenced the increase of soil organic matter free light fraction concentrations directly under and in close proximity to logs of the studied species. The slower release of deadwood decomposition products was noted in Estonian (hemiboreal) forests. The soil organic matter mineral fraction increased under aspen and spruce logs at advanced decomposition in Poland. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-FOR SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Impact of deadwood decomposition on soil organic carbon sequestration in Estonian and Polish forests |
url |
https://dx.doi.org/10.1007/s13595-019-0889-9 |
remote_bool |
true |
author2 |
Lasota, Jarosław Tullus, Arvo Lutter, Reimo Ostonen, Ivika |
author2Str |
Lasota, Jarosław Tullus, Arvo Lutter, Reimo Ostonen, Ivika |
ppnlink |
312842457 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s13595-019-0889-9 |
up_date |
2024-07-04T01:45:30.662Z |
_version_ |
1803611045273534464 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR031902693</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111194502.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13595-019-0889-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR031902693</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13595-019-0889-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Błońska, Ewa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Impact of deadwood decomposition on soil organic carbon sequestration in Estonian and Polish forests</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Key message The deadwood of different tree species with different decomposition rates affects soil organic carbon sequestration in Estonian and Polish forests. In warmer conditions (Poland), the deadwood decomposition process had a higher rate than in cooler Estonian forests. Soil organic matter fractions analysis can be used to assess the stability and turnover of organic carbon between deadwood and soil in different experimental localities. Context Deadwood is an important element of properly functioning forest ecosystem and plays a very important role in the maintenance of biodiversity, soil fertility, and carbon sequestration. Aims The main aim was to estimate how decomposition of deadwood of different tree species with different decomposition rates affects soil organic carbon sequestration in Estonian and Polish forests. Methods The investigation was carried out in six forests in Poland (51° N) and Estonia (58° N). The study localities differ in their mean annual air temperature (of 2 °C) and the length of the growing season (of 1 month). The deadwood logs of Norway spruce (Picea abies (L.) Karst.), common aspen (Populus tremula L.), and silver birch (Betula pendula Roth) were included in the research. Logs in three stages of decomposition (III–V) were selected for the analysis. Results There were differences in the stock of soil organic carbon in two experimental localities. There was a higher soil carbon content under logs and in their direct vicinity in Polish forests compared to those in the cooler climate of Estonia. Considerable differences in the amount of soil organic matter were found. The light fraction constituted the greatest quantitative component of organic matter of soils associated with deadwood. Conclusion A higher carbon content in surface soil horizons as an effect of deadwood decomposition was determined for the Polish (temperate) forests. More decomposed deadwood affected soil organic matter stabilization more strongly than less decayed deadwood. This relationship was clearer in Polish forests. Higher temperatures and longer growing periods primarily influenced the increase of soil organic matter free light fraction concentrations directly under and in close proximity to logs of the studied species. The slower release of deadwood decomposition products was noted in Estonian (hemiboreal) forests. The soil organic matter mineral fraction increased under aspen and spruce logs at advanced decomposition in Poland.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon accumulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decomposition stage</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil organic matter fractions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lasota, Jarosław</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tullus, Arvo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lutter, Reimo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ostonen, Ivika</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of forest science</subfield><subfield code="d">Paris : Springer, 1999</subfield><subfield code="g">76(2019), 4 vom: 29. Okt.</subfield><subfield code="w">(DE-627)312842457</subfield><subfield code="w">(DE-600)2012340-1</subfield><subfield code="x">1297-966X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:76</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:4</subfield><subfield code="g">day:29</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13595-019-0889-9</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">76</subfield><subfield code="j">2019</subfield><subfield code="e">4</subfield><subfield code="b">29</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
score |
7.4003944 |