Biomarker kinetics in the prediction of VAP diagnosis: results from the BioVAP study
Background Prediction of diagnosis of ventilator-associated pneumonia (VAP) remains difficult. Our aim was to assess the value of biomarker kinetics in VAP prediction. Methods We performed a prospective, multicenter, observational study to evaluate predictive accuracy of biomarker kinetics, namely C...
Ausführliche Beschreibung
Autor*in: |
Póvoa, Pedro [verfasserIn] Martin-Loeches, Ignacio [verfasserIn] Ramirez, Paula [verfasserIn] Bos, Lieuwe D. [verfasserIn] Esperatti, Mariano [verfasserIn] Silvestre, Joana [verfasserIn] Gili, Gisela [verfasserIn] Goma, Gema [verfasserIn] Berlanga, Eugenio [verfasserIn] Espasa, Mateu [verfasserIn] Gonçalves, Elsa [verfasserIn] Torres, Antoni [verfasserIn] Artigas, Antonio [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
Mid-region fragment of pro-adrenomedullin Ventilator-associated pneumonia |
---|
Übergeordnetes Werk: |
Enthalten in: Annals of intensive care - Heidelberg : Springer, 2011, 6(2016), 1 vom: 14. Apr. |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2016 ; number:1 ; day:14 ; month:04 |
Links: |
---|
DOI / URN: |
10.1186/s13613-016-0134-8 |
---|
Katalog-ID: |
SPR03192882X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR03192882X | ||
003 | DE-627 | ||
005 | 20230519112905.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13613-016-0134-8 |2 doi | |
035 | |a (DE-627)SPR03192882X | ||
035 | |a (SPR)s13613-016-0134-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q ASE |
100 | 1 | |a Póvoa, Pedro |e verfasserin |4 aut | |
245 | 1 | 0 | |a Biomarker kinetics in the prediction of VAP diagnosis: results from the BioVAP study |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background Prediction of diagnosis of ventilator-associated pneumonia (VAP) remains difficult. Our aim was to assess the value of biomarker kinetics in VAP prediction. Methods We performed a prospective, multicenter, observational study to evaluate predictive accuracy of biomarker kinetics, namely C-reactive protein (CRP), procalcitonin (PCT), mid-region fragment of pro-adrenomedullin (MR-proADM), for VAP management in 211 patients receiving mechanical ventilation for >72 h. For the present analysis, we assessed all (N = 138) mechanically ventilated patients without an infection at admission. The kinetics of each variable, from day 1 to day 6 of mechanical ventilation, was assessed with each variable’s slopes (rate of biomarker change per day), highest level and maximum amplitude of variation (Δmax). Results A total of 35 patients (25.4 %) developed a VAP and were compared with 70 non-infected controls (50.7 %). We excluded 33 patients (23.9 %) who developed a non-VAP nosocomial infection. Among the studied biomarkers, CRP and CRP ratio showed the best performance in VAP prediction. The slope of CRP change over time (adjusted odds ratio [aOR] 1.624, confidence interval [CI]95% [1.206, 2.189], p = 0.001), the highest CRP ratio concentration (aOR 1.202, $ CI_{95%} $ [1.061, 1.363], p = 0.004) and Δmax CRP (aOR 1.139, $ CI_{95%} $ [1.039, 1.248], p = 0.006), during the first 6 days of mechanical ventilation, were all significantly associated with VAP development. Both PCT and MR-proADM showed a poor predictive performance as well as temperature and white cell count. Conclusions Our results suggest that in patients under mechanical ventilation, daily CRP monitoring was useful in VAP prediction. Trial registration NCT02078999 | ||
650 | 4 | |a Biomarkers |7 (dpeaa)DE-He213 | |
650 | 4 | |a C-reactive protein |7 (dpeaa)DE-He213 | |
650 | 4 | |a Procalcitonin |7 (dpeaa)DE-He213 | |
650 | 4 | |a Mid-region fragment of pro-adrenomedullin |7 (dpeaa)DE-He213 | |
650 | 4 | |a Ventilator-associated pneumonia |7 (dpeaa)DE-He213 | |
650 | 4 | |a Clinical Pulmonary Infection Score |7 (dpeaa)DE-He213 | |
650 | 4 | |a Diagnosis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Prediction |7 (dpeaa)DE-He213 | |
700 | 1 | |a Martin-Loeches, Ignacio |e verfasserin |4 aut | |
700 | 1 | |a Ramirez, Paula |e verfasserin |4 aut | |
700 | 1 | |a Bos, Lieuwe D. |e verfasserin |4 aut | |
700 | 1 | |a Esperatti, Mariano |e verfasserin |4 aut | |
700 | 1 | |a Silvestre, Joana |e verfasserin |4 aut | |
700 | 1 | |a Gili, Gisela |e verfasserin |4 aut | |
700 | 1 | |a Goma, Gema |e verfasserin |4 aut | |
700 | 1 | |a Berlanga, Eugenio |e verfasserin |4 aut | |
700 | 1 | |a Espasa, Mateu |e verfasserin |4 aut | |
700 | 1 | |a Gonçalves, Elsa |e verfasserin |4 aut | |
700 | 1 | |a Torres, Antoni |e verfasserin |4 aut | |
700 | 1 | |a Artigas, Antonio |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Annals of intensive care |d Heidelberg : Springer, 2011 |g 6(2016), 1 vom: 14. Apr. |w (DE-627)664260918 |w (DE-600)2617094-2 |x 2110-5820 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2016 |g number:1 |g day:14 |g month:04 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13613-016-0134-8 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2016 |e 1 |b 14 |c 04 |
author_variant |
p p pp i m l iml p r pr l d b ld ldb m e me j s js g g gg g g gg e b eb m e me e g eg a t at a a aa |
---|---|
matchkey_str |
article:21105820:2016----::imrekntciterdcinfadansseu |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1186/s13613-016-0134-8 doi (DE-627)SPR03192882X (SPR)s13613-016-0134-8-e DE-627 ger DE-627 rakwb eng 610 ASE Póvoa, Pedro verfasserin aut Biomarker kinetics in the prediction of VAP diagnosis: results from the BioVAP study 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background Prediction of diagnosis of ventilator-associated pneumonia (VAP) remains difficult. Our aim was to assess the value of biomarker kinetics in VAP prediction. Methods We performed a prospective, multicenter, observational study to evaluate predictive accuracy of biomarker kinetics, namely C-reactive protein (CRP), procalcitonin (PCT), mid-region fragment of pro-adrenomedullin (MR-proADM), for VAP management in 211 patients receiving mechanical ventilation for >72 h. For the present analysis, we assessed all (N = 138) mechanically ventilated patients without an infection at admission. The kinetics of each variable, from day 1 to day 6 of mechanical ventilation, was assessed with each variable’s slopes (rate of biomarker change per day), highest level and maximum amplitude of variation (Δmax). Results A total of 35 patients (25.4 %) developed a VAP and were compared with 70 non-infected controls (50.7 %). We excluded 33 patients (23.9 %) who developed a non-VAP nosocomial infection. Among the studied biomarkers, CRP and CRP ratio showed the best performance in VAP prediction. The slope of CRP change over time (adjusted odds ratio [aOR] 1.624, confidence interval [CI]95% [1.206, 2.189], p = 0.001), the highest CRP ratio concentration (aOR 1.202, $ CI_{95%} $ [1.061, 1.363], p = 0.004) and Δmax CRP (aOR 1.139, $ CI_{95%} $ [1.039, 1.248], p = 0.006), during the first 6 days of mechanical ventilation, were all significantly associated with VAP development. Both PCT and MR-proADM showed a poor predictive performance as well as temperature and white cell count. Conclusions Our results suggest that in patients under mechanical ventilation, daily CRP monitoring was useful in VAP prediction. Trial registration NCT02078999 Biomarkers (dpeaa)DE-He213 C-reactive protein (dpeaa)DE-He213 Procalcitonin (dpeaa)DE-He213 Mid-region fragment of pro-adrenomedullin (dpeaa)DE-He213 Ventilator-associated pneumonia (dpeaa)DE-He213 Clinical Pulmonary Infection Score (dpeaa)DE-He213 Diagnosis (dpeaa)DE-He213 Prediction (dpeaa)DE-He213 Martin-Loeches, Ignacio verfasserin aut Ramirez, Paula verfasserin aut Bos, Lieuwe D. verfasserin aut Esperatti, Mariano verfasserin aut Silvestre, Joana verfasserin aut Gili, Gisela verfasserin aut Goma, Gema verfasserin aut Berlanga, Eugenio verfasserin aut Espasa, Mateu verfasserin aut Gonçalves, Elsa verfasserin aut Torres, Antoni verfasserin aut Artigas, Antonio verfasserin aut Enthalten in Annals of intensive care Heidelberg : Springer, 2011 6(2016), 1 vom: 14. Apr. (DE-627)664260918 (DE-600)2617094-2 2110-5820 nnns volume:6 year:2016 number:1 day:14 month:04 https://dx.doi.org/10.1186/s13613-016-0134-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2016 1 14 04 |
spelling |
10.1186/s13613-016-0134-8 doi (DE-627)SPR03192882X (SPR)s13613-016-0134-8-e DE-627 ger DE-627 rakwb eng 610 ASE Póvoa, Pedro verfasserin aut Biomarker kinetics in the prediction of VAP diagnosis: results from the BioVAP study 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background Prediction of diagnosis of ventilator-associated pneumonia (VAP) remains difficult. Our aim was to assess the value of biomarker kinetics in VAP prediction. Methods We performed a prospective, multicenter, observational study to evaluate predictive accuracy of biomarker kinetics, namely C-reactive protein (CRP), procalcitonin (PCT), mid-region fragment of pro-adrenomedullin (MR-proADM), for VAP management in 211 patients receiving mechanical ventilation for >72 h. For the present analysis, we assessed all (N = 138) mechanically ventilated patients without an infection at admission. The kinetics of each variable, from day 1 to day 6 of mechanical ventilation, was assessed with each variable’s slopes (rate of biomarker change per day), highest level and maximum amplitude of variation (Δmax). Results A total of 35 patients (25.4 %) developed a VAP and were compared with 70 non-infected controls (50.7 %). We excluded 33 patients (23.9 %) who developed a non-VAP nosocomial infection. Among the studied biomarkers, CRP and CRP ratio showed the best performance in VAP prediction. The slope of CRP change over time (adjusted odds ratio [aOR] 1.624, confidence interval [CI]95% [1.206, 2.189], p = 0.001), the highest CRP ratio concentration (aOR 1.202, $ CI_{95%} $ [1.061, 1.363], p = 0.004) and Δmax CRP (aOR 1.139, $ CI_{95%} $ [1.039, 1.248], p = 0.006), during the first 6 days of mechanical ventilation, were all significantly associated with VAP development. Both PCT and MR-proADM showed a poor predictive performance as well as temperature and white cell count. Conclusions Our results suggest that in patients under mechanical ventilation, daily CRP monitoring was useful in VAP prediction. Trial registration NCT02078999 Biomarkers (dpeaa)DE-He213 C-reactive protein (dpeaa)DE-He213 Procalcitonin (dpeaa)DE-He213 Mid-region fragment of pro-adrenomedullin (dpeaa)DE-He213 Ventilator-associated pneumonia (dpeaa)DE-He213 Clinical Pulmonary Infection Score (dpeaa)DE-He213 Diagnosis (dpeaa)DE-He213 Prediction (dpeaa)DE-He213 Martin-Loeches, Ignacio verfasserin aut Ramirez, Paula verfasserin aut Bos, Lieuwe D. verfasserin aut Esperatti, Mariano verfasserin aut Silvestre, Joana verfasserin aut Gili, Gisela verfasserin aut Goma, Gema verfasserin aut Berlanga, Eugenio verfasserin aut Espasa, Mateu verfasserin aut Gonçalves, Elsa verfasserin aut Torres, Antoni verfasserin aut Artigas, Antonio verfasserin aut Enthalten in Annals of intensive care Heidelberg : Springer, 2011 6(2016), 1 vom: 14. Apr. (DE-627)664260918 (DE-600)2617094-2 2110-5820 nnns volume:6 year:2016 number:1 day:14 month:04 https://dx.doi.org/10.1186/s13613-016-0134-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2016 1 14 04 |
allfields_unstemmed |
10.1186/s13613-016-0134-8 doi (DE-627)SPR03192882X (SPR)s13613-016-0134-8-e DE-627 ger DE-627 rakwb eng 610 ASE Póvoa, Pedro verfasserin aut Biomarker kinetics in the prediction of VAP diagnosis: results from the BioVAP study 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background Prediction of diagnosis of ventilator-associated pneumonia (VAP) remains difficult. Our aim was to assess the value of biomarker kinetics in VAP prediction. Methods We performed a prospective, multicenter, observational study to evaluate predictive accuracy of biomarker kinetics, namely C-reactive protein (CRP), procalcitonin (PCT), mid-region fragment of pro-adrenomedullin (MR-proADM), for VAP management in 211 patients receiving mechanical ventilation for >72 h. For the present analysis, we assessed all (N = 138) mechanically ventilated patients without an infection at admission. The kinetics of each variable, from day 1 to day 6 of mechanical ventilation, was assessed with each variable’s slopes (rate of biomarker change per day), highest level and maximum amplitude of variation (Δmax). Results A total of 35 patients (25.4 %) developed a VAP and were compared with 70 non-infected controls (50.7 %). We excluded 33 patients (23.9 %) who developed a non-VAP nosocomial infection. Among the studied biomarkers, CRP and CRP ratio showed the best performance in VAP prediction. The slope of CRP change over time (adjusted odds ratio [aOR] 1.624, confidence interval [CI]95% [1.206, 2.189], p = 0.001), the highest CRP ratio concentration (aOR 1.202, $ CI_{95%} $ [1.061, 1.363], p = 0.004) and Δmax CRP (aOR 1.139, $ CI_{95%} $ [1.039, 1.248], p = 0.006), during the first 6 days of mechanical ventilation, were all significantly associated with VAP development. Both PCT and MR-proADM showed a poor predictive performance as well as temperature and white cell count. Conclusions Our results suggest that in patients under mechanical ventilation, daily CRP monitoring was useful in VAP prediction. Trial registration NCT02078999 Biomarkers (dpeaa)DE-He213 C-reactive protein (dpeaa)DE-He213 Procalcitonin (dpeaa)DE-He213 Mid-region fragment of pro-adrenomedullin (dpeaa)DE-He213 Ventilator-associated pneumonia (dpeaa)DE-He213 Clinical Pulmonary Infection Score (dpeaa)DE-He213 Diagnosis (dpeaa)DE-He213 Prediction (dpeaa)DE-He213 Martin-Loeches, Ignacio verfasserin aut Ramirez, Paula verfasserin aut Bos, Lieuwe D. verfasserin aut Esperatti, Mariano verfasserin aut Silvestre, Joana verfasserin aut Gili, Gisela verfasserin aut Goma, Gema verfasserin aut Berlanga, Eugenio verfasserin aut Espasa, Mateu verfasserin aut Gonçalves, Elsa verfasserin aut Torres, Antoni verfasserin aut Artigas, Antonio verfasserin aut Enthalten in Annals of intensive care Heidelberg : Springer, 2011 6(2016), 1 vom: 14. Apr. (DE-627)664260918 (DE-600)2617094-2 2110-5820 nnns volume:6 year:2016 number:1 day:14 month:04 https://dx.doi.org/10.1186/s13613-016-0134-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2016 1 14 04 |
allfieldsGer |
10.1186/s13613-016-0134-8 doi (DE-627)SPR03192882X (SPR)s13613-016-0134-8-e DE-627 ger DE-627 rakwb eng 610 ASE Póvoa, Pedro verfasserin aut Biomarker kinetics in the prediction of VAP diagnosis: results from the BioVAP study 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background Prediction of diagnosis of ventilator-associated pneumonia (VAP) remains difficult. Our aim was to assess the value of biomarker kinetics in VAP prediction. Methods We performed a prospective, multicenter, observational study to evaluate predictive accuracy of biomarker kinetics, namely C-reactive protein (CRP), procalcitonin (PCT), mid-region fragment of pro-adrenomedullin (MR-proADM), for VAP management in 211 patients receiving mechanical ventilation for >72 h. For the present analysis, we assessed all (N = 138) mechanically ventilated patients without an infection at admission. The kinetics of each variable, from day 1 to day 6 of mechanical ventilation, was assessed with each variable’s slopes (rate of biomarker change per day), highest level and maximum amplitude of variation (Δmax). Results A total of 35 patients (25.4 %) developed a VAP and were compared with 70 non-infected controls (50.7 %). We excluded 33 patients (23.9 %) who developed a non-VAP nosocomial infection. Among the studied biomarkers, CRP and CRP ratio showed the best performance in VAP prediction. The slope of CRP change over time (adjusted odds ratio [aOR] 1.624, confidence interval [CI]95% [1.206, 2.189], p = 0.001), the highest CRP ratio concentration (aOR 1.202, $ CI_{95%} $ [1.061, 1.363], p = 0.004) and Δmax CRP (aOR 1.139, $ CI_{95%} $ [1.039, 1.248], p = 0.006), during the first 6 days of mechanical ventilation, were all significantly associated with VAP development. Both PCT and MR-proADM showed a poor predictive performance as well as temperature and white cell count. Conclusions Our results suggest that in patients under mechanical ventilation, daily CRP monitoring was useful in VAP prediction. Trial registration NCT02078999 Biomarkers (dpeaa)DE-He213 C-reactive protein (dpeaa)DE-He213 Procalcitonin (dpeaa)DE-He213 Mid-region fragment of pro-adrenomedullin (dpeaa)DE-He213 Ventilator-associated pneumonia (dpeaa)DE-He213 Clinical Pulmonary Infection Score (dpeaa)DE-He213 Diagnosis (dpeaa)DE-He213 Prediction (dpeaa)DE-He213 Martin-Loeches, Ignacio verfasserin aut Ramirez, Paula verfasserin aut Bos, Lieuwe D. verfasserin aut Esperatti, Mariano verfasserin aut Silvestre, Joana verfasserin aut Gili, Gisela verfasserin aut Goma, Gema verfasserin aut Berlanga, Eugenio verfasserin aut Espasa, Mateu verfasserin aut Gonçalves, Elsa verfasserin aut Torres, Antoni verfasserin aut Artigas, Antonio verfasserin aut Enthalten in Annals of intensive care Heidelberg : Springer, 2011 6(2016), 1 vom: 14. Apr. (DE-627)664260918 (DE-600)2617094-2 2110-5820 nnns volume:6 year:2016 number:1 day:14 month:04 https://dx.doi.org/10.1186/s13613-016-0134-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2016 1 14 04 |
allfieldsSound |
10.1186/s13613-016-0134-8 doi (DE-627)SPR03192882X (SPR)s13613-016-0134-8-e DE-627 ger DE-627 rakwb eng 610 ASE Póvoa, Pedro verfasserin aut Biomarker kinetics in the prediction of VAP diagnosis: results from the BioVAP study 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background Prediction of diagnosis of ventilator-associated pneumonia (VAP) remains difficult. Our aim was to assess the value of biomarker kinetics in VAP prediction. Methods We performed a prospective, multicenter, observational study to evaluate predictive accuracy of biomarker kinetics, namely C-reactive protein (CRP), procalcitonin (PCT), mid-region fragment of pro-adrenomedullin (MR-proADM), for VAP management in 211 patients receiving mechanical ventilation for >72 h. For the present analysis, we assessed all (N = 138) mechanically ventilated patients without an infection at admission. The kinetics of each variable, from day 1 to day 6 of mechanical ventilation, was assessed with each variable’s slopes (rate of biomarker change per day), highest level and maximum amplitude of variation (Δmax). Results A total of 35 patients (25.4 %) developed a VAP and were compared with 70 non-infected controls (50.7 %). We excluded 33 patients (23.9 %) who developed a non-VAP nosocomial infection. Among the studied biomarkers, CRP and CRP ratio showed the best performance in VAP prediction. The slope of CRP change over time (adjusted odds ratio [aOR] 1.624, confidence interval [CI]95% [1.206, 2.189], p = 0.001), the highest CRP ratio concentration (aOR 1.202, $ CI_{95%} $ [1.061, 1.363], p = 0.004) and Δmax CRP (aOR 1.139, $ CI_{95%} $ [1.039, 1.248], p = 0.006), during the first 6 days of mechanical ventilation, were all significantly associated with VAP development. Both PCT and MR-proADM showed a poor predictive performance as well as temperature and white cell count. Conclusions Our results suggest that in patients under mechanical ventilation, daily CRP monitoring was useful in VAP prediction. Trial registration NCT02078999 Biomarkers (dpeaa)DE-He213 C-reactive protein (dpeaa)DE-He213 Procalcitonin (dpeaa)DE-He213 Mid-region fragment of pro-adrenomedullin (dpeaa)DE-He213 Ventilator-associated pneumonia (dpeaa)DE-He213 Clinical Pulmonary Infection Score (dpeaa)DE-He213 Diagnosis (dpeaa)DE-He213 Prediction (dpeaa)DE-He213 Martin-Loeches, Ignacio verfasserin aut Ramirez, Paula verfasserin aut Bos, Lieuwe D. verfasserin aut Esperatti, Mariano verfasserin aut Silvestre, Joana verfasserin aut Gili, Gisela verfasserin aut Goma, Gema verfasserin aut Berlanga, Eugenio verfasserin aut Espasa, Mateu verfasserin aut Gonçalves, Elsa verfasserin aut Torres, Antoni verfasserin aut Artigas, Antonio verfasserin aut Enthalten in Annals of intensive care Heidelberg : Springer, 2011 6(2016), 1 vom: 14. Apr. (DE-627)664260918 (DE-600)2617094-2 2110-5820 nnns volume:6 year:2016 number:1 day:14 month:04 https://dx.doi.org/10.1186/s13613-016-0134-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2016 1 14 04 |
language |
English |
source |
Enthalten in Annals of intensive care 6(2016), 1 vom: 14. Apr. volume:6 year:2016 number:1 day:14 month:04 |
sourceStr |
Enthalten in Annals of intensive care 6(2016), 1 vom: 14. Apr. volume:6 year:2016 number:1 day:14 month:04 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Biomarkers C-reactive protein Procalcitonin Mid-region fragment of pro-adrenomedullin Ventilator-associated pneumonia Clinical Pulmonary Infection Score Diagnosis Prediction |
dewey-raw |
610 |
isfreeaccess_bool |
true |
container_title |
Annals of intensive care |
authorswithroles_txt_mv |
Póvoa, Pedro @@aut@@ Martin-Loeches, Ignacio @@aut@@ Ramirez, Paula @@aut@@ Bos, Lieuwe D. @@aut@@ Esperatti, Mariano @@aut@@ Silvestre, Joana @@aut@@ Gili, Gisela @@aut@@ Goma, Gema @@aut@@ Berlanga, Eugenio @@aut@@ Espasa, Mateu @@aut@@ Gonçalves, Elsa @@aut@@ Torres, Antoni @@aut@@ Artigas, Antonio @@aut@@ |
publishDateDaySort_date |
2016-04-14T00:00:00Z |
hierarchy_top_id |
664260918 |
dewey-sort |
3610 |
id |
SPR03192882X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR03192882X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519112905.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13613-016-0134-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR03192882X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13613-016-0134-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Póvoa, Pedro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biomarker kinetics in the prediction of VAP diagnosis: results from the BioVAP study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Prediction of diagnosis of ventilator-associated pneumonia (VAP) remains difficult. Our aim was to assess the value of biomarker kinetics in VAP prediction. Methods We performed a prospective, multicenter, observational study to evaluate predictive accuracy of biomarker kinetics, namely C-reactive protein (CRP), procalcitonin (PCT), mid-region fragment of pro-adrenomedullin (MR-proADM), for VAP management in 211 patients receiving mechanical ventilation for >72 h. For the present analysis, we assessed all (N = 138) mechanically ventilated patients without an infection at admission. The kinetics of each variable, from day 1 to day 6 of mechanical ventilation, was assessed with each variable’s slopes (rate of biomarker change per day), highest level and maximum amplitude of variation (Δmax). Results A total of 35 patients (25.4 %) developed a VAP and were compared with 70 non-infected controls (50.7 %). We excluded 33 patients (23.9 %) who developed a non-VAP nosocomial infection. Among the studied biomarkers, CRP and CRP ratio showed the best performance in VAP prediction. The slope of CRP change over time (adjusted odds ratio [aOR] 1.624, confidence interval [CI]95% [1.206, 2.189], p = 0.001), the highest CRP ratio concentration (aOR 1.202, $ CI_{95%} $ [1.061, 1.363], p = 0.004) and Δmax CRP (aOR 1.139, $ CI_{95%} $ [1.039, 1.248], p = 0.006), during the first 6 days of mechanical ventilation, were all significantly associated with VAP development. Both PCT and MR-proADM showed a poor predictive performance as well as temperature and white cell count. Conclusions Our results suggest that in patients under mechanical ventilation, daily CRP monitoring was useful in VAP prediction. Trial registration NCT02078999</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomarkers</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">C-reactive protein</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Procalcitonin</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mid-region fragment of pro-adrenomedullin</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ventilator-associated pneumonia</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clinical Pulmonary Infection Score</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diagnosis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prediction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martin-Loeches, Ignacio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramirez, Paula</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bos, Lieuwe D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Esperatti, Mariano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Silvestre, Joana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gili, Gisela</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goma, Gema</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Berlanga, Eugenio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Espasa, Mateu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gonçalves, Elsa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Torres, Antoni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Artigas, Antonio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of intensive care</subfield><subfield code="d">Heidelberg : Springer, 2011</subfield><subfield code="g">6(2016), 1 vom: 14. Apr.</subfield><subfield code="w">(DE-627)664260918</subfield><subfield code="w">(DE-600)2617094-2</subfield><subfield code="x">2110-5820</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">day:14</subfield><subfield code="g">month:04</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13613-016-0134-8</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="b">14</subfield><subfield code="c">04</subfield></datafield></record></collection>
|
author |
Póvoa, Pedro |
spellingShingle |
Póvoa, Pedro ddc 610 misc Biomarkers misc C-reactive protein misc Procalcitonin misc Mid-region fragment of pro-adrenomedullin misc Ventilator-associated pneumonia misc Clinical Pulmonary Infection Score misc Diagnosis misc Prediction Biomarker kinetics in the prediction of VAP diagnosis: results from the BioVAP study |
authorStr |
Póvoa, Pedro |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)664260918 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2110-5820 |
topic_title |
610 ASE Biomarker kinetics in the prediction of VAP diagnosis: results from the BioVAP study Biomarkers (dpeaa)DE-He213 C-reactive protein (dpeaa)DE-He213 Procalcitonin (dpeaa)DE-He213 Mid-region fragment of pro-adrenomedullin (dpeaa)DE-He213 Ventilator-associated pneumonia (dpeaa)DE-He213 Clinical Pulmonary Infection Score (dpeaa)DE-He213 Diagnosis (dpeaa)DE-He213 Prediction (dpeaa)DE-He213 |
topic |
ddc 610 misc Biomarkers misc C-reactive protein misc Procalcitonin misc Mid-region fragment of pro-adrenomedullin misc Ventilator-associated pneumonia misc Clinical Pulmonary Infection Score misc Diagnosis misc Prediction |
topic_unstemmed |
ddc 610 misc Biomarkers misc C-reactive protein misc Procalcitonin misc Mid-region fragment of pro-adrenomedullin misc Ventilator-associated pneumonia misc Clinical Pulmonary Infection Score misc Diagnosis misc Prediction |
topic_browse |
ddc 610 misc Biomarkers misc C-reactive protein misc Procalcitonin misc Mid-region fragment of pro-adrenomedullin misc Ventilator-associated pneumonia misc Clinical Pulmonary Infection Score misc Diagnosis misc Prediction |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Annals of intensive care |
hierarchy_parent_id |
664260918 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Annals of intensive care |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)664260918 (DE-600)2617094-2 |
title |
Biomarker kinetics in the prediction of VAP diagnosis: results from the BioVAP study |
ctrlnum |
(DE-627)SPR03192882X (SPR)s13613-016-0134-8-e |
title_full |
Biomarker kinetics in the prediction of VAP diagnosis: results from the BioVAP study |
author_sort |
Póvoa, Pedro |
journal |
Annals of intensive care |
journalStr |
Annals of intensive care |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
author_browse |
Póvoa, Pedro Martin-Loeches, Ignacio Ramirez, Paula Bos, Lieuwe D. Esperatti, Mariano Silvestre, Joana Gili, Gisela Goma, Gema Berlanga, Eugenio Espasa, Mateu Gonçalves, Elsa Torres, Antoni Artigas, Antonio |
container_volume |
6 |
class |
610 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
Póvoa, Pedro |
doi_str_mv |
10.1186/s13613-016-0134-8 |
dewey-full |
610 |
author2-role |
verfasserin |
title_sort |
biomarker kinetics in the prediction of vap diagnosis: results from the biovap study |
title_auth |
Biomarker kinetics in the prediction of VAP diagnosis: results from the BioVAP study |
abstract |
Background Prediction of diagnosis of ventilator-associated pneumonia (VAP) remains difficult. Our aim was to assess the value of biomarker kinetics in VAP prediction. Methods We performed a prospective, multicenter, observational study to evaluate predictive accuracy of biomarker kinetics, namely C-reactive protein (CRP), procalcitonin (PCT), mid-region fragment of pro-adrenomedullin (MR-proADM), for VAP management in 211 patients receiving mechanical ventilation for >72 h. For the present analysis, we assessed all (N = 138) mechanically ventilated patients without an infection at admission. The kinetics of each variable, from day 1 to day 6 of mechanical ventilation, was assessed with each variable’s slopes (rate of biomarker change per day), highest level and maximum amplitude of variation (Δmax). Results A total of 35 patients (25.4 %) developed a VAP and were compared with 70 non-infected controls (50.7 %). We excluded 33 patients (23.9 %) who developed a non-VAP nosocomial infection. Among the studied biomarkers, CRP and CRP ratio showed the best performance in VAP prediction. The slope of CRP change over time (adjusted odds ratio [aOR] 1.624, confidence interval [CI]95% [1.206, 2.189], p = 0.001), the highest CRP ratio concentration (aOR 1.202, $ CI_{95%} $ [1.061, 1.363], p = 0.004) and Δmax CRP (aOR 1.139, $ CI_{95%} $ [1.039, 1.248], p = 0.006), during the first 6 days of mechanical ventilation, were all significantly associated with VAP development. Both PCT and MR-proADM showed a poor predictive performance as well as temperature and white cell count. Conclusions Our results suggest that in patients under mechanical ventilation, daily CRP monitoring was useful in VAP prediction. Trial registration NCT02078999 |
abstractGer |
Background Prediction of diagnosis of ventilator-associated pneumonia (VAP) remains difficult. Our aim was to assess the value of biomarker kinetics in VAP prediction. Methods We performed a prospective, multicenter, observational study to evaluate predictive accuracy of biomarker kinetics, namely C-reactive protein (CRP), procalcitonin (PCT), mid-region fragment of pro-adrenomedullin (MR-proADM), for VAP management in 211 patients receiving mechanical ventilation for >72 h. For the present analysis, we assessed all (N = 138) mechanically ventilated patients without an infection at admission. The kinetics of each variable, from day 1 to day 6 of mechanical ventilation, was assessed with each variable’s slopes (rate of biomarker change per day), highest level and maximum amplitude of variation (Δmax). Results A total of 35 patients (25.4 %) developed a VAP and were compared with 70 non-infected controls (50.7 %). We excluded 33 patients (23.9 %) who developed a non-VAP nosocomial infection. Among the studied biomarkers, CRP and CRP ratio showed the best performance in VAP prediction. The slope of CRP change over time (adjusted odds ratio [aOR] 1.624, confidence interval [CI]95% [1.206, 2.189], p = 0.001), the highest CRP ratio concentration (aOR 1.202, $ CI_{95%} $ [1.061, 1.363], p = 0.004) and Δmax CRP (aOR 1.139, $ CI_{95%} $ [1.039, 1.248], p = 0.006), during the first 6 days of mechanical ventilation, were all significantly associated with VAP development. Both PCT and MR-proADM showed a poor predictive performance as well as temperature and white cell count. Conclusions Our results suggest that in patients under mechanical ventilation, daily CRP monitoring was useful in VAP prediction. Trial registration NCT02078999 |
abstract_unstemmed |
Background Prediction of diagnosis of ventilator-associated pneumonia (VAP) remains difficult. Our aim was to assess the value of biomarker kinetics in VAP prediction. Methods We performed a prospective, multicenter, observational study to evaluate predictive accuracy of biomarker kinetics, namely C-reactive protein (CRP), procalcitonin (PCT), mid-region fragment of pro-adrenomedullin (MR-proADM), for VAP management in 211 patients receiving mechanical ventilation for >72 h. For the present analysis, we assessed all (N = 138) mechanically ventilated patients without an infection at admission. The kinetics of each variable, from day 1 to day 6 of mechanical ventilation, was assessed with each variable’s slopes (rate of biomarker change per day), highest level and maximum amplitude of variation (Δmax). Results A total of 35 patients (25.4 %) developed a VAP and were compared with 70 non-infected controls (50.7 %). We excluded 33 patients (23.9 %) who developed a non-VAP nosocomial infection. Among the studied biomarkers, CRP and CRP ratio showed the best performance in VAP prediction. The slope of CRP change over time (adjusted odds ratio [aOR] 1.624, confidence interval [CI]95% [1.206, 2.189], p = 0.001), the highest CRP ratio concentration (aOR 1.202, $ CI_{95%} $ [1.061, 1.363], p = 0.004) and Δmax CRP (aOR 1.139, $ CI_{95%} $ [1.039, 1.248], p = 0.006), during the first 6 days of mechanical ventilation, were all significantly associated with VAP development. Both PCT and MR-proADM showed a poor predictive performance as well as temperature and white cell count. Conclusions Our results suggest that in patients under mechanical ventilation, daily CRP monitoring was useful in VAP prediction. Trial registration NCT02078999 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Biomarker kinetics in the prediction of VAP diagnosis: results from the BioVAP study |
url |
https://dx.doi.org/10.1186/s13613-016-0134-8 |
remote_bool |
true |
author2 |
Martin-Loeches, Ignacio Ramirez, Paula Bos, Lieuwe D. Esperatti, Mariano Silvestre, Joana Gili, Gisela Goma, Gema Berlanga, Eugenio Espasa, Mateu Gonçalves, Elsa Torres, Antoni Artigas, Antonio |
author2Str |
Martin-Loeches, Ignacio Ramirez, Paula Bos, Lieuwe D. Esperatti, Mariano Silvestre, Joana Gili, Gisela Goma, Gema Berlanga, Eugenio Espasa, Mateu Gonçalves, Elsa Torres, Antoni Artigas, Antonio |
ppnlink |
664260918 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13613-016-0134-8 |
up_date |
2024-07-04T01:52:24.817Z |
_version_ |
1803611479546527744 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR03192882X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519112905.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13613-016-0134-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR03192882X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13613-016-0134-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Póvoa, Pedro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biomarker kinetics in the prediction of VAP diagnosis: results from the BioVAP study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Prediction of diagnosis of ventilator-associated pneumonia (VAP) remains difficult. Our aim was to assess the value of biomarker kinetics in VAP prediction. Methods We performed a prospective, multicenter, observational study to evaluate predictive accuracy of biomarker kinetics, namely C-reactive protein (CRP), procalcitonin (PCT), mid-region fragment of pro-adrenomedullin (MR-proADM), for VAP management in 211 patients receiving mechanical ventilation for >72 h. For the present analysis, we assessed all (N = 138) mechanically ventilated patients without an infection at admission. The kinetics of each variable, from day 1 to day 6 of mechanical ventilation, was assessed with each variable’s slopes (rate of biomarker change per day), highest level and maximum amplitude of variation (Δmax). Results A total of 35 patients (25.4 %) developed a VAP and were compared with 70 non-infected controls (50.7 %). We excluded 33 patients (23.9 %) who developed a non-VAP nosocomial infection. Among the studied biomarkers, CRP and CRP ratio showed the best performance in VAP prediction. The slope of CRP change over time (adjusted odds ratio [aOR] 1.624, confidence interval [CI]95% [1.206, 2.189], p = 0.001), the highest CRP ratio concentration (aOR 1.202, $ CI_{95%} $ [1.061, 1.363], p = 0.004) and Δmax CRP (aOR 1.139, $ CI_{95%} $ [1.039, 1.248], p = 0.006), during the first 6 days of mechanical ventilation, were all significantly associated with VAP development. Both PCT and MR-proADM showed a poor predictive performance as well as temperature and white cell count. Conclusions Our results suggest that in patients under mechanical ventilation, daily CRP monitoring was useful in VAP prediction. Trial registration NCT02078999</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomarkers</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">C-reactive protein</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Procalcitonin</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mid-region fragment of pro-adrenomedullin</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ventilator-associated pneumonia</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clinical Pulmonary Infection Score</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diagnosis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prediction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martin-Loeches, Ignacio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramirez, Paula</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bos, Lieuwe D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Esperatti, Mariano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Silvestre, Joana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gili, Gisela</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goma, Gema</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Berlanga, Eugenio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Espasa, Mateu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gonçalves, Elsa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Torres, Antoni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Artigas, Antonio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of intensive care</subfield><subfield code="d">Heidelberg : Springer, 2011</subfield><subfield code="g">6(2016), 1 vom: 14. Apr.</subfield><subfield code="w">(DE-627)664260918</subfield><subfield code="w">(DE-600)2617094-2</subfield><subfield code="x">2110-5820</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">day:14</subfield><subfield code="g">month:04</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13613-016-0134-8</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="b">14</subfield><subfield code="c">04</subfield></datafield></record></collection>
|
score |
7.399042 |